modern particle methods for complex flows g. amati (2), f. castiglione (1), f. massaioli(2), s....

49
Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC), H. Chen (EXA), S. Orszag (Yale), E. Kaxiras (Harvard), S. Ubertini (Roma) 1) Istituto Applicazioni del Calcolo Mauro Picone , CNR, Roma, Italy 2) CASPUR, Roma, Italy

Upload: oliver-parrish

Post on 28-Dec-2015

220 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Modern Particle Methods for Complex Flows

G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1)

Acks to: G. Bella (Roma), M. Bernaschi(IAC), H. Chen (EXA), S. Orszag

(Yale),E. Kaxiras (Harvard), S. Ubertini (Roma)

1) Istituto Applicazioni del Calcolo Mauro Picone , CNR, Roma, Italy2) CASPUR, Roma, Italy

Page 2: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Why Particle Methods?

Atomistic physics PDEs with large distorsions (Astrophysics) Moving geometries (Combustion) Moving interfaces (Multiphase flows)

Page 3: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

•Particle-Particle (Molecular dynamics, Monte Carlo)

•Particle-Mesh (Neutral Plasmas, Semiconductors)

•P3M (Gravitational,Charged Plasmas)

•Fluids?

J.Eastwood, R. Hockney: Computer Simulations using particles

Classical Particle Methods

Page 4: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Particle Methods: pros and cons

Pros:•Geoflexibility (boundary conditions)•Physically Sound•No matrix algebra

Cons:•Noisy•Small timesteps

Page 5: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

New Particle Methods for Fluid Flows

Simple fluids, complex flows:

The Navier-Stokes equations are very hard to solve:

puuuut

Complex fluids, complex flows:

Fluid equations are often NOT KNOWN!

Page 6: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

New Particle Methods for Fluid Flows

Phase – space Fluid (6N D)

Atoms / Molecules

Fluids (3D)

Kinetic Theory (6D)

Idea: Solve fluid equations using fictitious quasi-particle dynamics

Universality: Molecular details do NOT count

Driver: Statistical Physics (front-end) , Numerical Analysis (back-end)

•Lattice Gas Cellular Automata (LGCA)•Lattice Boltzmann (LBE)•Dissipative Particle Dynamics (DPD)

Page 7: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Details dont count: quasi-particle trajectories

Coarse-Graining via 'Superparticles':

B blocking factor: (Macro to Meso to Micro scale)

1 computational particle = B molecules

BNIxXB

iiI /,1,

1

BNIvVB

iiI /,1,

1

Page 8: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Coarse-grained equations

J

IJI F

dt

dVM

II V

dt

dX

Modeling goes into FIJ

Page 9: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Details dont count: kinetic theory

Free stream

Collision

Pre-averaged distributions: Boltzmann approach (Probabilistic)

i

ii tvvtxxtvxf ))(())((),,(

),( ffCfm

Ffvf vt

Modeling goes into f and C(f,f)

Page 10: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Lattice Gas Cellular Automata

Boolean representation:

n_i=0,1 particle absence/presence

001001

1

23

4

5 6

Page 11: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Lattice Gas Cellular Automata

0 absence

ni = i = 0,6 1 presence

nCtxntcxn iiii ,1,

:nCi

t t+1 t+1+ε2

1

65

4

3

i

streaming collision

collisions (Frisch, Hasslacher, Pomeau, 1986)

Page 12: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Boundary condition

Page 13: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

From LGCA to Navier-Stokes

Conservation laws:

(mass) (momentum)

(energy) No details of molecular interactions

(true collision) (lattice collision)

i

iC 0

i

ii cC 0

02/2 ii

icC

Page 14: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

From LGCA to Navier-Stokes

Isotropy (Rotational invariance)

i

dicibiaidcba ccccT .......,,,,,,,

badc

dcdcba uuuuT

3

1,,,,

zyxdcba ,,,,,

such that:

Page 15: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Von Karman street

Page 16: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LGCA: blue-sky scenario

•Exact computing (Round-off freedom)•Ideal for parallel computing (Local) •Flexible boundary conditions

LGCA: grey-sky scenario

•Noise (Lots of automata)•Low Reynolds (too few collisions)•Exponential complexity 2^b (3D requires b=24)•Lack of Galilean invariance

Page 17: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

From LGCA to (Lattice) Boltzmann

• (Boolean) molecules to (discrete) distributions ni fi = < ni >

• (Lattice) Boltzmann equations (LBE)

fCtxftcxf iiii ,1,

Page 18: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

M (density)

M (speed)

E (temperature)

P (pressure tensor)

From (Lattice) Boltzmann to Navier - Stokes

vdtvxftx ),,(),ρ(

vdv,t)v,xf(ρ

,t)xu 1

(

vd)uv(

,t)v,xf(ρ

,t)xT(2

1 2

uv

vdvvtvxfP ),,(

Page 19: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

From (Lattice) Boltzmann to Navier - Stokes

Weak Departure from local equilibrium

neqeq fff

1eq

neq

f

fKn

f

u v

neqf

Page 20: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

From (Lattice) Boltzmann to Navier - Stokes

0 uρdivρt

uλdivuμdivpuuρdivuρt

TKuPTuρdivρTt :

LBE

M

M

E

Page 21: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

THE LBE STORY

• Non-linear LBE (Mc Namara-Zanetti, 1988), noise-free

• Quasi-linear LBE (Higuera-Jimenez, 1989), 3D sim’s

• Enhanced LBE (Higuera-Succi-Benzi, 1989), High Reynolds, TOP-DOWN approach

• G-invariant LBE (Chen-Chen-Mattheus, 1991), Galilean invariant

Page 22: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LATTICE BGK

Since Re depends only on , single time relaxation only

Viscosity

(lattice sound speed)

Qian, d’Humières, Lallemand, 1992

eqiiiii ff

τ,txf,tcxf

11

212 τcν s

3

12 sc

Page 23: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LBE assets:Noise-free, high ReynoldsFlexible Boundary ConditionsEfficient on serial, even more on parallelPoisson-freedomAdditional physics (beyond fluids)Quick grid set up (EXA-Powerflow)

LBE liabilitiesLater …

Who needs LBE?

DON’T USE: Strong heat transfer, compressibility (combustion) CAN USE: Turbulence in simple geosSHOULD USE: Porous mediaMUST USE: Multiphase, Colloidal, External Aerodynamics

Page 24: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Parallel Speed-up

Amati, Massaioli, Bernaschi, Scicomp 2002

Page 25: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LBE

t=0 t=5000

SP

t=20000

Ansumali et al, ETHZ+IAC

Page 26: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Turbulent channel

APE-100: 10 Gflops sustained(Amati , Benzi, Piva, Succi, PRL 99)

Page 27: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),
Page 28: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Porous media: random fiber networks

A.Hoekstra,P Sloot, A.Koponen, J Timonen, PRL 2001

Page 29: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Cristal Growth

Miller, Succi, Mansutti, PRL 1999

Page 30: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LBE-Multiphase, Demixing flow: Amati, Gonnella, Lamura, Massaioli

Page 31: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LBE: MultiphaseB. Palmer, D. Rector, pnl.gov

http://gallery.pnl.gov/mscf/bubble_web1/bubble_web.mpg

Page 32: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Local grid refinement

Different time scales and no. of time steps for different refinement levels, interpolation between levels

Succi, Filippova, Smith, Kaxiras 2001,

Page 33: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LBE: Airfoils

Succi,Filippova,Kaxiras, Cise 2001

Page 34: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

You can do something like this…

Bella, Ubertini, 2001

Page 35: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LBE: Car design

Powerflow, EXA

H Chen, S Kandasamy, R Shock, S. Orszag, S. Succi, V. Yakhot, Science (2003)

Page 36: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LBE: Reactive microflows

Page 37: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LBE: Multiscale microflows

Page 38: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Unstructured LBE

Ubertini,Succi,Bella, 2003

Page 39: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Unstructured LBE

Page 40: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LBE: Unstructured (soon moving) grids

Page 41: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Lattice Boltzmann: Future Agenda

* Better (non-linear) stability

* Turbomodels (boundary conditions)

* Thermal consistency, Potential energy

* High-Knudsen (challenge true Boltzmann?)

* Moving grids

* Multiscale coupling

Page 42: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

LGCA: too stiff

MD: Too expensive

LBE: Grid-Bound

Dissipative particle dynamics

http://www.bfrl.nist.gov/861/vcttl/talks/talkG/sdl001.html

Page 43: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Pressure:

Viscosity:

ijP

2ij

DPD thermodynamics

Page 44: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

DPD applications

•Colloidal suspensions•Dilute polymers•Phase separation•Model membranes

Page 45: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

DPD: High-density suspension under shear

http://www.bfrl.nist.gov/861/vcttl/talks/talkG/sdl001.html

Page 46: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Phase separation

Prof Coveney’s group

Page 47: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

DPD: Amphiphiles

http://www.lce.hut.fi/research/polymer/dpd.shtml

Page 48: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

DPD: pros and cons

+ Thermodynamically consistent

+ Flexible (Grid-free)

+ Soft forces allow large dt

- Adaptive versions (Voronoi) are complex

- Theory still in flux (?)

Page 49: Modern Particle Methods for Complex Flows G. Amati (2), F. Castiglione (1), F. Massaioli(2), S. Succi (1) Acks to: G. Bella (Roma), M. Bernaschi(IAC),

Conclusions and Future Prospects

Strengths:

•Much faster than MD•Comparable with grid methods•Highly flexible•Amenability to parallel computing

Future:

•Multiscale hybrids•Grid computing