models of synaptic transmission (1)

36
Models of synaptic transmission Dmitry Bibichkov Max Planck Institute for Biophysical Chemistry Göttingen, Germany Bernstein Center for Computational Neuroscience Göttingen , Germany

Upload: ssa-kpi

Post on 14-Apr-2017

470 views

Category:

Education


5 download

TRANSCRIPT

Page 1: Models of Synaptic Transmission (1)

Models of synaptic transmission

Dmitry Bibichkov Max Planck Institute for Biophysical Chemistry Göttingen, Germany

Bernstein Center for Computational Neuroscience Göttingen , Germany

Page 2: Models of Synaptic Transmission (1)

Overview

09.08.2010 D. Bibichkov, AACIMP-2010

1. Basic principles of synaptic transmission2. Basic modelling of synaptic responses3. Dynamical properties of synapses. Short-term plasticity. 4. Phenomenological models of dynamic synapses5. Role of calcium in synaptic transmission6. Statistical models and experimental estimation of their parameters 7. Effects of synaptic dynamics on information transmission8. Effects of synaptic dynamics on neural network behavior9. Long term synaptic plasticity 10. Electric synapses, gap junctions

Page 3: Models of Synaptic Transmission (1)

Synapses: communication devices for neurons

1. Chemical synapses: AP ---> Postsynaptic currents / potentials:

Excitatory: glu, ACh depolarization: - EPSC/EPSP

Inhibitory: GABA hyperpolarization: - IPSC/IPSP

2. Electric synapses: gap junctions: potential synchronization

09.08.2010 D. Bibichkov, AACIMP-2010

Page 4: Models of Synaptic Transmission (1)

Synapses: communication devices for neurons

1. Chemical synapses: AP ---> Postsynaptic currents / potentials:

Excitatory: AMPA-receptors NMDA

Inhibitory: GABA-A GABA-B

2. Electric synapses: gap junctions: potential synchronization

09.08.2010 D. Bibichkov, AACIMP-2010

Page 5: Models of Synaptic Transmission (1)

Chemical synapses

09.08.2010 D. Bibichkov, AACIMP-2010

Page 6: Models of Synaptic Transmission (1)

Chemical synapses

09.08.2010 D. Bibichkov, AACIMP-2010

1. Action potential initiation at the presynaptic neuron

2. Action potential propagation along the axon3. Opening of voltage gated Ca channels at the

presynaptic terminal4. Ca-difusion and interaction with vesicle

release machinery5. Vesicle exocytosis and neurotransmitter

release into the synaptic cleft6. Neurotransmitter binding and activation of

postsynaptic receptors, channel opening7. Neurotransmitter uptake and vesicle recycling

Stages of synaptic transmission

Page 7: Models of Synaptic Transmission (1)

Chemical synapses

09.08.2010 D. Bibichkov, AACIMP-2010

[Meinrenken et al. J 2003; Sudhof 2004]

β/][ 2+Mg

Page 8: Models of Synaptic Transmission (1)

Simplified mathematical description

09.08.2010 D. Bibichkov, AACIMP-2010

)( ∆−−+→ spijii ttVV ε

)()( / teat mt

m

Θ= − τ

τεe.g.

Page 9: Models of Synaptic Transmission (1)

Summation of postsynaptic inputs

09.08.2010 D. Bibichkov, AACIMP-2010

)( ∆−−+→ spijii ttVV ε

)()( / teat mt

m

Θ= − τ

τεe.g.

V(t)Vrest

V(t)

Vrest

Page 10: Models of Synaptic Transmission (1)

Chemical synapses

09.08.2010 D. Bibichkov, AACIMP-2010

)()( / tet t Θ= ↓− τα

For models describing neuron voltage by a differential equation (e.g. I&F neuron)

)()()( synsyn EVtgtI −⋅=Esyn is the reversal potential of the synapse Excitatory Esyn ~0 mVInhibitory Esyn ~ -75 mV

Postsynaptic current

)()( tt δα =

Conductance change

)()( ∆−−⋅= ∑ spsp

synsyn ttgtg α

( ) )()( //max teeIt tt Θ−−

= ↑↓ −−

↑↓

ττ

ττα

Page 11: Models of Synaptic Transmission (1)

Chemical synapses

09.08.2010 D. Bibichkov, AACIMP-2010

)()()( synsyn EVtgtI −⋅=

( ) )()( // tegegt fastfast tslow

tfast Θ+= −− ττα

τ= 5 ms, gsyn= 40 pS

)()( / tet t Θ= − τα

τfast= 5 ms, τslow= 50 ms

Inhibitory neurons

)(~)( ∆−− spsyn tttg α

Page 12: Models of Synaptic Transmission (1)

Chemical synapses

09.08.2010 D. Bibichkov, AACIMP-2010

)()()( synsyn EVtgtI −⋅=

Excitatory neurons

• AMPA ( ) )(273.1)( // teegt ttAMPA Θ−⋅= ↑↓ −− ττα

ms09.0=↑τ

ms5.1=↓τ

pSg AMPA 720=

Page 13: Models of Synaptic Transmission (1)

Chemical synapses

09.08.2010 D. Bibichkov, AACIMP-2010

Excitatory neurons• NMDA voltage-dependent Mg2+- block (removed at V > - 50 mV)

( ) )(])[,(358.1)( 2// tMgVgeegt ttNMDA Θ⋅⋅−⋅= +

∞−− ↑↓ ττα

)][1/(12

β

ε VeMgg−+

∞ +=

[Gabbiani et.al 1994]

-1 0 0 -5 0 0 5 0 1 0 00

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

V

g∞

[ M g 2 + ] = 1 . 2 m M

[ M g 2 + ] = 0 . 2 m M

[ M g 2 + ] = 2 5 m M

nSgNMDA 2.1=

Page 14: Models of Synaptic Transmission (1)

Dynamic changes of postsynaptic responses

facilitation

depression

[Markram, et. al. 1998]

09.08.2010 D. Bibichkov, AACIMP-2010

Page 15: Models of Synaptic Transmission (1)

Dynamic changes of postsynaptic responses

facilitation

depression

09.08.2010 D. Bibichkov, AACIMP-2010

Amplitude of postsynaptic response can also change from spike to spike

presynaptic train

Page 16: Models of Synaptic Transmission (1)

Dynamic changes of postsynaptic responses

Depending on Ca2+-concentration, depression and facilitation can be expressed at the same calyx synapse

Mouse calyx of Held synapse, P16H.Taschenberger

09.08.2010 D. Bibichkov, AACIMP-2010

Page 17: Models of Synaptic Transmission (1)

Dynamic changes of postsynaptic responses

Synaptic depresssion and facilitation can be expressed at the same synapse(reponses to 100Hz trains of stimuli):

[von Gersdorff and Borst, 2002]

09.08.2010 D. Bibichkov, AACIMP-2010

Page 18: Models of Synaptic Transmission (1)

Neurotransmitteraccumulation

Postsynaptic receptordesensitization & saturation

Ca++ accumulation, changes in release probability

facilitation

Depletion of vesicles

depression

(Ca++ - dependent) changes in recycling and refilling of vesicles

Synaptic transmission scheme

09.08.2010 D. Bibichkov, AACIMP-2010

Page 19: Models of Synaptic Transmission (1)

Postsynaptic current amplitude:

Total pool size Navailable pool fraction xrelease probability pquantal size q

Phenomenological model of synaptic dynamics

qpxNI A ⋅⋅⋅=

Quantal hypothesis [Del Castillo, B.Katz, 1954] : The neurotransmitter is released in discrete packets (vesicles) or quanta, and each quantum evoke a nearly constant postsynaptic response. The number of released quanta after each action potential is a random number.

09.08.2010 D. Bibichkov, AACIMP-2010

)()( tItI A α⋅=

Page 20: Models of Synaptic Transmission (1)

Total pool size Navailable pool fraction xrelease probability pquantal size q

qpxNI A ⋅⋅⋅=depression

Phenomenological model of synaptic dynamics

09.08.2010 D. Bibichkov, AACIMP-2010

Postsynaptic current amplitude:

)()( tItI A α⋅=

Page 21: Models of Synaptic Transmission (1)

Postsynaptic current amplitude:

facilitation

Phenomenological model of synaptic dynamics

09.08.2010 D. Bibichkov, AACIMP-2010

qpxNI A ⋅⋅⋅=

)()( tItI A α⋅=

Total pool size Navailable pool fraction xrelease probability pquantal size q

Page 22: Models of Synaptic Transmission (1)

receptor desensitization

Phenomenological model of synaptic dynamics

09.08.2010 D. Bibichkov, AACIMP-2010

qpxNI A ⋅⋅⋅=Postsynaptic current amplitude:

)()( tItI A α⋅=

Total pool size Navailable pool fraction xrelease probability pquantal size q

Page 23: Models of Synaptic Transmission (1)

[Tsodyks and Markram 1997]

3-state model of a synapse:• readily releasable• active• recovering

Depression

Phenomenological model of synaptic dynamics

09.08.2010 D. Bibichkov, AACIMP-2010

1=++ zyx

Page 24: Models of Synaptic Transmission (1)

[Tsodyks and Markram 1997]

2-state model of a synapse:• readily releasable• active• recovering

Depression

Phenomenological model of synaptic dynamics

09.08.2010 D. Bibichkov, AACIMP-2010

Page 25: Models of Synaptic Transmission (1)

[Tsodyks and Markram 1997]

• Depletion of single synaptic pool at each spike

• Exponential recovery from depression with rate k

Depression

Phenomenological model of synaptic dynamics

09.08.2010 D. Bibichkov, AACIMP-2010

Page 26: Models of Synaptic Transmission (1)

[Tsodyks and Markram 1997]

• Increase of release probability p at each spike

• Exponential decrease of release probability to the basal level with time constant τf

Facilitation

Phenomenological model of synaptic dynamics

09.08.2010 D. Bibichkov, AACIMP-2010

Page 27: Models of Synaptic Transmission (1)

• Depletion of receptor pool at each spike transmission.

• Power law relationship between amount of desensitization and neurotransmitter release.

• Exponential recovery from desensitization with rec. time τq

Receptor desensitization

[Brenowitz and Trussell 2001]

Phenomenological model of synaptic dynamics

09.08.2010 D. Bibichkov, AACIMP-2010

Page 28: Models of Synaptic Transmission (1)

Short-term depression: consequences for rate coding

Pyramidal cells in rat somatosensory cortex[Tsodyks and Markram, 1997]

09.08.2010 D. Bibichkov, AACIMP-2010

Page 29: Models of Synaptic Transmission (1)

Short-term depression: consequences for rate coding

Steady state response decreases as 1/f

Pyramidal cells in rat somatosensory cortex[Tsodyks and Markram, 1997]

Integrated steady state response (summed EPSP/C over time) saturates below the limiting frequency ~k/p

09.08.2010 D. Bibichkov, AACIMP-2010

Page 30: Models of Synaptic Transmission (1)

Short-term depression: consequences for rate coding

Steady state response decreases as 1/f

Transient response to abrupt rate change ~ Δf/f

This corresponds to the Weber-Fechner law in psychophysics

0 0 . 2 0 . 4 0 . 6 0 . 8

5 0

5 5

6 0

0 0 . 2 0 . 4 0 . 6 0 . 8

0 . 2 8

0 . 3

0 . 3 2

0 0 . 2 0 . 4 0 . 6 0 . 81 3

1 4

1 5

1 6

1 7

09.08.2010 D. Bibichkov, AACIMP-2010

f

x

<I>

∞∞∫= pxfdttIT

I ~)(1

fx /1~∞

ffxfI /~~ ∆∆∆ ∞

Page 31: Models of Synaptic Transmission (1)

Calcium-dependent release

• Calcium influx is the trigger for fast evoked transmitter release

• An elevation in intracellular calcium concentration is an absolute requirement for transmitter release. Na+ and K+ ions not necessary for release.

• Release probability is a nonlinear function of calcium concentration in the active zone

09.08.2010 D. Bibichkov, AACIMP-2010

Page 32: Models of Synaptic Transmission (1)

Calcium-dependent release

4-state model [Schneggenburger and Neher 2000]

allosteric model [Lou et al, 2005]

09.08.2010 D. Bibichkov, AACIMP-2010

Page 33: Models of Synaptic Transmission (1)

Calcium-dependent release

[Lou et al, 2005]

09.08.2010 D. Bibichkov, AACIMP-2010

Page 34: Models of Synaptic Transmission (1)

Calcium-dependent recovery

Recovery depends on the integral of the intracellular calcium in the presynaptic terminal

[Hosoi et.al., 2007]

09.08.2010 D. Bibichkov, AACIMP-2010

Page 35: Models of Synaptic Transmission (1)

Activity-dependent recovery

0 . 2 0 . 5 1 2 5 1 0 2 0 5 0 1 0 0 2 0 00

1

2

3

4

5

6

7

8

i n p u t f r e q u e n c y f , H z

reco

very

rat

e k

, H

z

Effective recovery rate:mean recovery rate over an ISI

09.08.2010 D. Bibichkov, AACIMP-2010

Calcium accumulates during the trains of action potentials and leads to increased recovery rates during high-frequency stimulation

Page 36: Models of Synaptic Transmission (1)

Activity-dependent recovery

Calyx of Held[Weis et.al. 1999]

Activity-dependent recovery increases the range of characteristic frequencies towards the maximal recovery rate

climbing fiber to Purkinje cell synapse[Dittmann and Regehr 1998]

activity dependenceno activity dependence

09.08.2010 D. Bibichkov, AACIMP-2010