modelling sn type ii: microphysics

60
Modelling SN Type II: microphysics From Woosley et al. (2002) Woosley Lectures

Upload: mirra

Post on 08-Jan-2016

22 views

Category:

Documents


0 download

DESCRIPTION

Modelling SN Type II: microphysics. From Woosley et al. (2002) Woosley Lectures. Solar-system composition. The s and r processes. Solar-system isotopic composition. Arnett: Supernovae and nucleosynthesis. Solar-system isotopic composition. -2. -4. -2. -6. -8. -10. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Modelling SN Type II: microphysics

Modelling SN Type II: microphysics

From Woosley et al. (2002)

Woosley Lectures

Page 2: Modelling SN Type II: microphysics

Solar-system composition

Page 3: Modelling SN Type II: microphysics

The s and r processes

Page 4: Modelling SN Type II: microphysics

Solar-system isotopic composition

Arnett: Supernovae and nucleosynthesis

Page 5: Modelling SN Type II: microphysics

Solar-system isotopic composition-2

-8

-6

-10

-4

Page 6: Modelling SN Type II: microphysics

Solar-system isotopic composition

Page 7: Modelling SN Type II: microphysics

Solar-system isotopic composition

Page 8: Modelling SN Type II: microphysics

A little on the equation of state

Page 9: Modelling SN Type II: microphysics

Actually the dimensionsof Y are Mole/gm and NA has dimensions particles per Mole.

Page 10: Modelling SN Type II: microphysics

0.5 2

Page 11: Modelling SN Type II: microphysics

0 ConvectiondS

dr

Page 12: Modelling SN Type II: microphysics

Tgram

Page 13: Modelling SN Type II: microphysics

T

S = k log W

ZentralfriedhofVienna, Austria

Page 14: Modelling SN Type II: microphysics

34 4

2

34 4

2 3

3

3

rad

Eg., just the radiation part

1/

4 1 1

3

4 1

3

44

34

3

4So S

3

V

T dS d P dV

aTT dS dT aT d aT dV

aTdT aT dV aT dV

dS aT V dT aT dV

d aT V

aT

For radiation:

Page 15: Modelling SN Type II: microphysics

41

3AN k T

P aT

3/ 2 3 3/ 2( / ) /( / )T T T

for ideal gas plus radiation

dividing by NA k makes s dimensionless

Page 16: Modelling SN Type II: microphysics

Cox and Guili (24.76b)

expressionCox and GuiliPrinciples of Stellar StructureSecond editionA. Weiss et alCambridge Scientific Publishers

ReifFundamentals of Statisticaland Thermal PhysicsMcGraw Hill

Note: here has a different definition

Page 17: Modelling SN Type II: microphysics

( 10.20)

where , the chemical potential is defined by

hence

/ ( )

/

/

/

e

e e e

e ee

e

e

A

AA

e

e

CG

S

kT

T S E PV

V P n T

P

Ps S N k

n

N

S

k

N

Y

T

T

n

N

Y

For an ideal gas

3 1

2 AP N kT

Page 18: Modelling SN Type II: microphysics

i.e., non-relativistic, non- degenerate

For an ideal gas

2

CG (24.134b). ., eYi e

Page 19: Modelling SN Type II: microphysics
Page 20: Modelling SN Type II: microphysics

4/3

23 3

3 3 2

2 44 4

3 3 2 4

2

2

2

2

2 2

2 2( )

For >>1 (great degeneracy)

8 1 1

3

8 1 2 71

3 4 15

21

1

/

14

1

3

21e

e e e

e e

e

e

e

e

e e F

e e

n kTc h

P kTc h

P

n kT

u P

Su P n

k

TV

n

n kT n k

P

T

2e e

eA

S Y

N

T

sk

Page 21: Modelling SN Type II: microphysics

The entropy of most massivestars is predominantly dueto electrons and ions. Radiation is ~10%correction.

Page 22: Modelling SN Type II: microphysics
Page 23: Modelling SN Type II: microphysics
Page 24: Modelling SN Type II: microphysics
Page 25: Modelling SN Type II: microphysics
Page 26: Modelling SN Type II: microphysics

Implication: The Chandrasekhar mass will be relevant to the late evolution of the core

Page 27: Modelling SN Type II: microphysics
Page 28: Modelling SN Type II: microphysics

Iben (1985; Ql. J. RAS 26, 1)

Page 29: Modelling SN Type II: microphysics
Page 30: Modelling SN Type II: microphysics

3T

Woosley et al (2002; RMP 74, 1015)

Page 31: Modelling SN Type II: microphysics

Burning Stages in the Life of a Massive Star

0

Woosley et al (2002; RMP 74, 1015)

11,000

Page 32: Modelling SN Type II: microphysics

Stellar Neutrino Energy Losses

(see Clayton p. 259ff, especially 272ff)

and and in

comparable amounts

22 2

2 2

2 2 4 2 2 2 2 4

49 -3

2

45 22

21

3

1.41 10 erg cm

21.42 1 10 cm

W e

e

e e

W

e

G c m E

v m c

E m c p c m c

G

c E

v m c

1) Pair annihilation

2910% (especially 0.5)e

e e

kT m c T

e e radiation

Page 33: Modelling SN Type II: microphysics

Want energy loss per cm3 per second. Integrate over thermal distributionof e+ and e- velocities. These have, in general, a Fermi-Dirac distribution.

-

3 2

2

2

9 2

-

1 ( 1)

exp( ) 1

5.93/ c/m energy

= Chemical potential/kT

(determined by the condition that

n (matter) =

e e

e

e

e

e

P n n vE

m c W W dWn

W

m c ET W

kT m c

n n

A N )eY

Fermi Integral

Page 34: Modelling SN Type II: microphysics

Clayton (Sect. 3.6) and Lang in Astrophysical Formulae give some approximations (not corrected for neutral currents)

18 3 -3 -19 9

2e

15 9 -3 -19

15

9

( ) 4.9 10 exp ( 11.86 / ) erg cm s

2m /

( ) 4.2 10 erg cm s

(better is 3.2 10 )

Note origin of T :

If n is relativistic

NDNR P T T

c kT

NDR P T

3

2 2

, n (like radiation)

< v> E ( )

energy carried per reaction ~ kT

T

kT

6 2 9P T T T T

n n v E

9 3T

v cancels v-1 in

T9 < 2

Page 35: Modelling SN Type II: microphysics

More frequently we use the energy loss rate per gram per second

-1 -1 erg gm sP

-1

In the non-degenerate limit from pair annihilation

declines as .

In degenerate situations, the filling of phase space

suppresses the creation of electron-positron pairs

and the loss rate plummets.

Page 36: Modelling SN Type II: microphysics

Beaudet et al. (1967; ApJ 150, 979)

Page 37: Modelling SN Type II: microphysics

e-

e-

W-

2) Photoneutrino process: (Clayton p. 280)

Analogue of Compton scattering with the outgoing photonreplaced by a neutrino pair. The electron absorbs the extramomentum. This process is only of marginal significance in stellar evolution – a little during helium and carbon burning.

e e

When non-degenerate and non-relativistic Pphoto is proportional to the density (because it dependson the electron abundance)and ,photo is independent of the density. At high density, degeneracy blocks the phase space for the outgoing electron.

Page 38: Modelling SN Type II: microphysics

Beaudet et al. (1967; ApJ 150, 979)

Page 39: Modelling SN Type II: microphysics

3) Plasma Neutrino Process: (Clayton 275ff)

plasma

This process is important at high densities where the

plasma frequency is high and can be comparable

to or greater than kT. This limits its applicability to

essentially white dwarfs, and to a le

sser extent, the evolved

cores of massive stars. It is favored in degenerate environments.

Page 40: Modelling SN Type II: microphysics

A photon of any energy in a vacuum cannot decay into e+ ande- because such a decay would not simultaneously satisfy the conservation of energy and momentum (e.g., a photon that hadenergy just equal to 2 electron masses, h = 2 mec2, would also havemomentum h/c = 2mec, but the electron and positron that are created,at threshold, would have no kinetic energy, hence no momentum.Such a decay is only allowed when the photon couples to matter that can absorb the excess momentum.

The common case is a -ray passing of over 1.02 MeV passing neara nucleus, but the photon can also acquire an effective mass by propagating through a plasma.

plasmon e e

Page 41: Modelling SN Type II: microphysics

Plasma frequency

Page 42: Modelling SN Type II: microphysics

Plasmon dynamics

An electromagnetic wave propagating through a plasma has an excess energy above that implied by its momentum. This excess is available for decay

Page 43: Modelling SN Type II: microphysics

A”plasmon” is a quantized collective charge oscillation in an ionized gas. For our purposes it behaves like a photon with restmass. The frequency of these oscillations is given by the plasmafrequency:

24 1/ 2

p

222

p

2

1/2

1/22/3

1/2

4ND 5.6 10

4D 1 3

/2

ee

e

ee

e e

F e

n en

m

n en

m m c

m c

suppression for degeneracy

increases with density

Plasmon dynamics

Page 44: Modelling SN Type II: microphysics

6 3221 -3 -1

2

7.5 3/ 2221 -3 -1

2

)

7.4 10 erg cm s

)

3.3 10 exp( / ) erg cm s

p

p eplasma

e

p

p eplasma p

e

a kT

m cP

m c kT

b kT

m cP kT

m c kT

For moderate values of temperature and density, raising the densityimplies more energy in the plasmon and raising the temperature excitesmore plasmons. Hence the loss rate increases with temperature and density.

p

However, once the density becomes so high that,

for a given temperature , raising the density

still further freezes out the oscillations. The thermal plasma

no longer has enough energy to exite t

kT

hem. The loss rate

plummets exponentially.

Page 45: Modelling SN Type II: microphysics

This is a relevant temperaturefor Type Ia supernovae

Beaudet et al. (1967; ApJ 150, 979)

Page 46: Modelling SN Type II: microphysics

A

4) Neutrino bremsstrahlung - of minor significance

in Type Ia supernova ignition

+ Ae Z Z

Festa and Ruderman (1969)Itoh et al (1996)

5) Neutral current excited state decay – not very important. maybe assists in white dwarf cooling. Crawford et al. ApJ, 206, 208 (1976)

Page 47: Modelling SN Type II: microphysics

Neutrino loss mechanisms

Itoh et al. (1989; ApJ 339, 354)

= 10 T93

Page 48: Modelling SN Type II: microphysics
Page 49: Modelling SN Type II: microphysics
Page 50: Modelling SN Type II: microphysics
Page 51: Modelling SN Type II: microphysics
Page 52: Modelling SN Type II: microphysics
Page 53: Modelling SN Type II: microphysics

net nuclear energy generation (burning + neutrino losses)

net nuclear energy loss (burning + neutrino losses)

convection semiconvectiontotal mass of star(reduces by mass loss)ra

dia

tiv

e e

nv

elo

pe

(blu

e g

ian

t)

convective envelope (red giant)

H b

urn

ing

He

bu

rnin

g

C b

urn

ing

(rad

iati

ve)

C s

hel

lb

urn

ing

Ne O

burning

C shell burning

OO O O shell burning

Si

Si

erg/g/sec

erg/g/sec

-1014 -107 -100

100 107 1014

Heger (2002)

Page 54: Modelling SN Type II: microphysics

Woosley et al (2002; RMP 74, 1015)

= 10 T93

Page 55: Modelling SN Type II: microphysics
Page 56: Modelling SN Type II: microphysics

Burning Stages in the Life of a Massive Star

0

Woosley et al (2002; RMP 74, 1015)

11,000

Page 57: Modelling SN Type II: microphysics

Woosley et al (2002; RMP 74, 1015)

Page 58: Modelling SN Type II: microphysics

Helium burning

Page 59: Modelling SN Type II: microphysics

Woosley et al (2002; RMP 74, 1015)

Page 60: Modelling SN Type II: microphysics

25 M¯, end of helium burning, wind and matter outside mass cut (including fall-back)

Woosley et al (2002; RMP 74, 1015)

Nuclear production, end of He burning

16O § 0.3 dex