modelling multicomponent precipitation kinetics with calphad … · thermo-calc software modelling...

24
Thermo-Calc Software www.thermocalc.com Modelling Multicomponent Precipitation Kinetics with CALPHAD-Based Tools Kaisheng Wu 1 , Gustaf Sterner 2 , Qing Chen 2 , Åke Jansson 2 , Paul Mason 1 , Johan Bratberg 2 and Anders Engström 2 1 Thermo-Calc Software Inc., 2 Thermo-Calc Software AB EUROMAT2013, September 8-13, 2013 Sevilla, Spain

Upload: others

Post on 01-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Thermo-Calc Software

    www.thermocalc.com

    Modelling Multicomponent Precipitation Kinetics

    with CALPHAD-Based Tools

    Kaisheng Wu 1, Gustaf Sterner 2, Qing Chen2, Åke Jansson2,

    Paul Mason1, Johan Bratberg 2 and Anders Engström 2

    1Thermo-Calc Software Inc., 2Thermo-Calc Software AB

    EUROMAT2013, September 8-13, 2013 Sevilla, Spain

  • Thermo-Calc Software Introduction: CALPHAD

    CALPHAD method and CALPHAD-based tools play a

    central role in materials design

    Thermodynamics: Gibbs energy

    Diffusion: Mobility

    Phase Field Method

    Langer-Schwartz

    First Principles Calculation

    CALPHAD f(r)

    r

    Interfacial energy & Volume & Elastic constants

    CALPHAD-type databases where each phase is described

    separately using models based on physical principles and

    model parameters assessed from experimental and ab initio

    data provide fundamental inputs for predicting microstructure

    evolution and materials properties.

    t

    H or S

  • Thermo-Calc Software

    A general computational tool for simulating kinetics of diffusion

    controlled multi-particle precipitation process in multi-component and

    multi-phase alloy systems.

    TC-PRISMA is based on Langer-Schwartz theory [1], and it adopts

    Kampmann-Wagner numerical (KWN) method [2] to compute the

    concurrent nucleation, growth, and coarsening of dispersed phase(s).

    [1] Langer J, Schwartz A. Phys. Rev. A 1980;21:948-958.

    [2] Wagner R, Kampmann R. Homogeneous Second Phase Precipitation. In: Haasen

    P, editor. Materials Science and Technology: A Comprehensive Treatment. Weinheim:

    Wiley-VCH, 1991. p. 213.

    Introduction: TC-PRISMA

  • Thermo-Calc Software

    Output

    • Particle Size Distribution

    • Number Density

    • Average Particle Radius

    • Volume Fraction

    • Matrix composition

    • Precipitate composition

    • Nucleation rate

    • Critical radius

    • TTP

    Input

    • Thermodynamic data

    • Kinetic data

    • Alloy composition

    • Temperature - Time

    • Simulation time

    • Property data (Interfacial

    energy, volume, etc.)

    • Nucleation sites and

    related microstructure

    information

    TC-PRISMA

    Introduction: In and Output

  • Thermo-Calc Software Introduction: Example of results

    All above simulations made under isothermal conditions.

  • Thermo-Calc Software

    g/g’ Microstructure in U720 Li

    Continuous cooling at 0.0167 K/s

    R. Radis et al., Acta Materialia, 57(2009)5739-5747

    Non-Isothermal Conditions

  • Thermo-Calc Software Ni-8Al-8Cr and Ni-10Al-10Cr

  • Thermo-Calc Software Ni-8Al-8Cr and Ni-10Al-10Cr

    Exp

    Continuous cooling from 1150 to 380 °C with a cooling rate of 14 °C/min.

  • Thermo-Calc Software Ni-8Al-8Cr and Ni-10Al-10Cr

    Exp

    s = 0.023 J/m2

    Ni-8Al-8Cr have larger misfit between g and g compared to Ni-10Al-10Cr.

    This will give an elastic energy contribution which has not been considered in the simulation.

  • Thermo-Calc Software Ni-8Al-8Cr and Ni-10Al-10Cr

    Vertical Section Ni-xAl-xCr Thermodynamic driving force

  • Thermo-Calc Software Ni-8Al-8Cr and Ni-10Al-10Cr

    Nucleation rate Thermodynamic driving force

  • Thermo-Calc Software U720Li

    Databases: TTNI8+MOBNI1

    Precipitation Kinetics during Continuous Cooling

    * Radis et al., Superalloys 2008 ** Mao et al., Metall. Mater. Trans. A, 32A(10) 2441(2001)

    wt.% 1* 2**

    Al 2.53 2.46

    B 0.014

    C 0.014 0.025

    Co 14.43 14.75

    Cr 15.92 16.35

    Fe 0.09 0.06

    Mo 2.96 3.02

    Ti 4.96 4.99

    W 1.26 1.3

    Zr 0.035

    Ni Bal Bal

    g g

  • Thermo-Calc Software U720Li : Cooling Rate Effect

    Size Distribution

    Particle Radius (nm)

    0.1 1 10 100

    Siz

    e D

    istr

    ibu

    tio

    n (

    1/m

    4)

    1e+18

    1e+19

    1e+20

    1e+21

    1e+22

    1e+23

    1e+24

    1e+25

    1e+26

    1e+27

    1e+28

    1e+29

    1e+30

    1e+31

    1e+32

    1e+33

    1e+34

    78 oC/s

    1.625 oC/s

    0.217 oC/s

    Cooling Rate (oC/s)

    0.1 1 10 100 1000

    Part

    icle

    Siz

    e (

    nm

    )

    10

    100

    1000

    Mao et al.

    Radis et al.

    Regression line for calculated results

    Calculated using Radis et al.'s composition

    Calculated using Mao et al.'s composition

    Mean Particle Size

    s = 0.025 J/m2

    Alloy 1 Alloy 1 & 2

  • Thermo-Calc Software U720Li

    No primary g is considered, but g matrix concentration is adjusted due to primary g

    formation at 1105oC (based on equilibrium calculation)

    Secondary/Tertiary g during Cooling + Aging

    * M.P.Jackson and R.C.Reed, Mater. Sci. Eng. A259(1999)85-97

    wt.%*

    Al 2.51

    B 0.014

    C 0.011

    Co 14.66

    Cr 16.14

    Mo 2.98

    Si 0.05

    Ti 5.08

    W 1.23

    Ni Bal

    g g

    Heat Treatment: cooling from 1105oC to 400 oC, followed by aging at 700oC for 24hrs

    Time

  • Thermo-Calc Software U720Li

    Secondary g Size After Cooling + Aging

    Cooling Rate (oC/min)

    0 50 100 150 200 250 300

    Avera

    ge S

    ize o

    f S

    ec

    on

    da

    ry

    ' (n

    m)

    0

    100

    200

    300

    400

    500

    Jackson and Reed

    Calculated

    Simulations are good for large to intermediate cooling rate ( > 1oC/s)

    Future model improvements include multiple nucleation sites, mean field deviation, loss

    of coherency, interfacial energy variation, interface mobility, morphology change ….

    s = 0.025 J/m2

  • Thermo-Calc Software

    Classic or non-classic

    thermodynamics

    Atomistic modeling -

    molecular dynamics

    and Monte Carlo

    method

    First principles

    Estimation of interfacial energy

    1999Noble, Mater Sci Engr, A266, 80-85

    Distribution of Al-Li a/d’ interfacial

    energy value found in literature

  • Thermo-Calc Software Our first approximation

    s s sc solA l

    N ZE

    N Z )

    2 sol P ME X X

    For a binary matrix and precipitate of the same structure that

    can be described by a regular solution model*

    Misciblity gap of non-regular solution phase

    Matrix and precipitate of different structure

    Multicomponent system

    solE

    * Based on Becker R. Ann Phys 1938;424:128

  • Thermo-Calc Software Some example results

    System Phases Estimation (J/m2) Literature (J/m2)

    Al-Li a/d’ 0.011 0.004 to 0.115

    Cu-Ti Cu/Cu4Ti 0.035 0.067, 0.031

    Ni-Al-Cr g/g’ 0.022 0.023

    Co-W-C Co/WC 0.68 0.44 to 1.09

    System Phases Estimation (J/m2) Used (J/m2)

    Ni-Al-Cr g/g’ 0.022 0.023

    Ni-Superalloys(Bulk) g/g’ 0.03~ 0.06 0.025

    Ni-Superalloys(GB) g/g’ ~ 0.06 0.06

    Used in Current Calculations

    Interfacial energy shows composition and temperature independence

    Estimated value seems better for grain boundary precipitation in multi-component alloys

    Further developments include diffusiveness of interface, incoherency, size effect, grain

    boundary energy…

  • Thermo-Calc Software Alloy 282

    Cooling Rate ( oF/min )

    0 400 800 1200 1600 2000 2400

    Me

    an

    ' S

    ize

    (n

    m)

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    constant (0.025 J/m2)

    model

    experimental data

    Cooling Rate ( oF/min)

    0 400 800 1200 1600 2000 2400

    Te

    mp

    era

    ture

    (oC

    )

    840

    860

    880

    900

    920

    940

    960

    980

    1000

    constant (0.025 J/m2)

    model

    experimental data

    Mean Particle Size (Bulk) CCT Starting Temperature

    * Experimental data from B. Alexandrov et al., “Continuous heating and cooling transformation diagram in Ni-base superalloy

    282”, TMS 2011

    Databases: TCNI5+MOBNI2

    Al Co Cr Fe Mo Ti Ni

    wt.% 1.5 10.0 19.0 1.5 8.5 2.1 Bal.

  • Thermo-Calc Software Summary

    A non-isothermal model has been developed in TC-PRISMA

    and has been successfully applied to simulate multi-modal

    particle size distribution of g precipitates in Ni-base superalloys

    More GUI outputs have been provided to facilitate separate

    analyses of particle size distribution, mean size, volume

    fraction, and number density

    A model has been implemented to estimate the interfacial

    energy between matrix and precipitate phases

  • Thermo-Calc Software

    www.thermocalc.com E-mail: info@thermocalc.

    Thank You!

  • Thermo-Calc Software Theory: Conservation laws

    T

    XB B A

    Liq

    a

    b

    LS (Langer-Schwartz) and KWN (Kampmann and Wagner Numerical) Approach

    ) ),(),(),(

    ,tRjtRftR

    Rt

    tRf

    ) ) dRRtRfCCCC 30

    0 ,3

    4

    abaa

    0

    ),( dRtRfN

    0

    ),(1

    RdRtRfN

    R

    0

    3),(3

    4dRRtRf

    Continuity equation

    Mass balance

  • Thermo-Calc Software Models: Multicomponent Nucleation

    kT

    GNZJ s

    ** expb )

    tJtJ S

    exp

    2/1

    2

    2

    *2

    1

    n

    n

    n

    G

    kTZ

    *22

    1

    b

    Z

    *2*

    4

    4 r

    a

    b

    )1

    1/

    2//

    n

    i ii

    ii

    DX

    XXba

    baab

    2

    23*

    3

    16

    m

    m

    G

    VG

    s

    Interfacial energy Volume

    Classic Nucleation Theory Grain size, dislocation density, etc

  • Thermo-Calc Software Models: Multicomponent Growth Rate

    ) ) rMccc iiiiiii baababaab ///// r

    Vmii

    babba s

    2//

    Q. C

    hen

    , J.

    Jep

    pss

    on,

    J. Å

    gre

    n, A

    cta

    Mat

    er. 56(2

    00

    8)1

    890-1

    89

    6

    Advanced – Analytical Flux-balance Approximation

    2 mm

    VKG

    r r

    s

    Simplified – Pseudo-steady state Approximation

    Pseudo-binary dilute solution Approximation

    r

    D

    XX

    XXbab

    baa

    /

    /

    / 1 2exp( )e m

    e e

    X VX

    X X X RTr

    a ba b

    a b a

    s

    Cross diffusion

    high supersaturation