modelling internal corrosion of high temperature · pdf filemodelling internal corrosion of...

30
Modelling Internal Corrosion of High Temperature Alloys Ulrich Krupp Institute of Materials Design and Structural Integrity GTT Annual Workshop and User Meeting 2-4 July 2014

Upload: ngocong

Post on 05-Mar-2018

229 views

Category:

Documents


6 download

TRANSCRIPT

Modelling Internal Corrosion of High Temperature Alloys

Ulrich Krupp

Institute of

Materials Design and

Structural Integrity

GTT Annual Workshop and User Meeting 2-4 July 2014

Acknowledgment Katrin Jahns Institute of Materials Design and Structural Integrity Martin Landwehr, Prof. Dr. Jürgen Wübbelmann Institute of Computer Engineering University of Applied Sciences Osnabrück, Germany Dr. S.-Y. Chang, Dr. Robert Orosz, Dr. Vicente Trindade, Prof. H.-J. Christ University of Siegen, Germany Financial Support: German Science Foundation DFG German Ministry of Education and Research (BMBF),

European Fonds for Regional Development (EFRE) GTT Technologies, Herzogenrath, Germany

Outline

What is Internal Corrosion?

Wagner's Theory of Internal Oxidation

Limitations of the Classical Theory

Numerical Treatment of Internal Oxidation and Nitridation

- Finite Difference

- Cellular Automata

What is Internal Corrosion?

high-temperature corrosion:

superficial scale

alloy AB

gas phase (O,N,S,C..)

metal oxide (AO) DO/A

DO

internal oxide (BO)

+ internal oxidation

alloy AB

gas phase (O,N,S,C..)

metal oxide (BO)

selective oxidation

DO

DB

Transition from Internal to External Oxidation Oxidation of Ni-Cr Alloys (100h, 1000°C, air)

Cr2O3

NiO

5%Cr

Cr2O3

20%Cr

50µm depends on:

cCr/DCr/T

Material Degradation by Internal Corrosion

30µm internal AlN

internal Al2O3

superficial Cr2O3

500µm

internal nitridation (AlN)

(Natural Gas Burner Tube, alloy 601)

gas and steam turbines, heat exchangers, chemical reactors,

exhaust systems, metallurgy, heat treatment …

Material Degradation during Cyclic Oxidation at 1100°C

20µm cracks

Al2O3 spallation

Al depletion

transition to

non-protective NiO

internal

Al2O3/Cr2O3

internal

AlN/TiN

Wedge-Shaped Specimen CMSX-4 at 1100°C

Carl Wagner's Theory of Internal Oxidation

Depth of the Internal Precipitation Zone x

C. Wagner, Z. Elektrochemie, 21 (1959) 773

alloy AB

c

cB

cO

BOn

c

x

10s

OB BO ccDD

cO s

cB 0

for

Carl W. Wagner (1901-1977)

DO

tc

Dc0

B

O

s

O2 2

nx

Carl Wagner's Theory of Internal Oxidation

Depth of the Internal Precipitation Zone x

alloy AB

c

cB

cO

BOn

c

x

tc

c

D

D2

0

B

s

O

B

2

O2

nx 11

B

O D

D

cO s

cB 0

for

DO DB

erf

2erf1

O

0O

tDxcc s

)( erfc

)2erfc(1

BO

B0

BBDD

tDxcc

xx

n

xx x

cD

x

cD B

BO

O

Diffusion of O and B:

Mass Balance at x:

C. Wagner, Z. Elektrochemie, 21 (1959) 773

Carl Wagner's Theory of Internal Oxidation

Transition from Internal to External Oxidation

alloy AB

c

cB

cO

BOn

c

x

cO s

cB 0

DO DB

dtx

c

V

AD

V

fAd

mm

BBx

Mass Balance: Mole fraction BOn

B flux to reaction front

C. Wagner, Z. Elektrochemie, 21 (1959) 773

OxB

mOs

O

*0

B2 VD

VDc

gc

n

with g*: crit. volume fraction

of oxide

Limitations of Wagner's Analytical Approach

One type of precipitates of high thermodynamic stability

(solubility product )

0OB nNNKSP

Constant boundary conditions - no changes in

temperature, gas composition etc. possible

One-dimensional - nucleation and growth kinetics / changes

in the diffusion path are neglected

Effective diffusivity - through complex microstructure,

e.g.,DGB>Dbulk

Nucleation and Growth of Internal Precipitates (TiN and AlN in NiCr20Al2Ti2, 1000°C, 150h, N2)

Energy Balance: interface energy

free energy change DG

strain energy DGs

(defect site annilhilation energy)

G. Böhm, M. Kahlweit, Acta Met., 12 (1964) 641

D. J. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier 2008

i

i

isV AGGVG DDD

Supersaturation

AlN

TiN

Finite-Difference Treatment of Diffusion

2

2

x

cD

t

c

t

txcttxc

t

c

tx D

D

,,

,

2

,

2

2

,,2,

x

txxctxctxxcD

t

c

tx

D

DD

Dx Dxx

t

t+ tDc( + )x,t tD

txxctxctxxcx

tDtxcttxci ,,2,,,

2DD

D

DD

Finite-Difference Treatment of Diffusion

txxctxctxxcx

tDtxcttxc ,,2,,,

2DD

D

DD

m

j

jjjj GGGcG1

idnon,id,pure,

= min !

computational thermodynamics

ChemApp + system data

(GTT technologies)

Dx Dxx

t

t+ tDc( + )x,t tD

ChemAppprocessor

Dx Dxx

t

t+ tD

c( +2 )x,t tDChemAppprocessor

Krupp et al., Mater. Corr., 57 (2006) 263

U. Buschmann , Dissertation, Univ. Siegen 2008

2D Finite-Difference Treatment of Diffusion (Crank Nicolson implicit approach)

Dxl

Dyl

Dxr

Dyr

x

y

t

t+ tD

master

slaves

1 2 3 4 5 6

C – Main program

Parallelization (e.g. PVM, GPU/CUDA)

FD diffusion calculation

ChemApp / system

data base initialisation

distributed equilibrium

calculations

user interface

(individual CPUs)

Krupp et al., Mater. Corr., 57 (2006) 263

D=f(x,y) (e.g. PVM)

bulk and gb diffusion

Finite-Difference Simulation of Internal Precipitation of Cr-Nitrides of Moderate Stability (NiCr20, 800°C, N2)

10µm 0

5

10

15

20

25

0 10 20 30 40 50

0,0000

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

CrN

Cr

N

cCr/CrN [at.%] cN [at.%]

distance from surface [µm]

Oxidation of Low-Cr Steels (X60)

(1.43wt% Cr, 550°C, air)

Fe2O3

Fe3O4

Fe3O4

FeCr2O4

gold marker

inner

scale

outer

scale

intergranular

Cr2O3 V. Trindade, PhD thesis 2006

2D Simulation of Internal Oxidation

FeCr2O4

Fe3O4/

y [m·10-5]

y [m·10-5] x [m·10-5]

x [m·10-5]

original surface inner oxide scale thickness

grain boundaries

FeCr2O4

Inner Oxide-Scale Growth (X60)

(1.43wt% Cr, 550°C, air)

time [h]

inner oxide-scale thickness [µm]

0 10 20 30 40 50 60 70 800

5

10

15

20

25

experiment (d=10µm)

simulated (d=10µm)

simulated (d=30µm)

simulated (d=100µm)

inner

oxid

e sc

ale

thic

knes

s [µ

m]

time [h]

experiment

simulation (grain size 10µm)

(grain size 30µm)

(grain size 100µm)

The Cellular Automata Approach

Dividing Space into Lattice

cf. Rapaz, Bellet, Deville: Numerical Modeling in MSE, Springer 1998

Defining a Neighbourhood

(von Neumann, Moore)

0

Defining State Variables

(e.g.: 0,1)

1

0 0 0

0 0 0

0 0

0 0 0 0 0

0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0

0 0

0

0

0

0

Defining Transition Rules (applied simultaneously to all cells)

1

1

The Cellular Automata Approach (Chopard and Droz)

Probabilities

Chopard and Droz, Cellular Automata Modeling of Physical Problems, Cambridge Univ. Press 1998

0

0

2

2

2

N144

1

4

1

pp

pp

ppD

ballistic

movement reflection

deflection

deflection

incoming nitrogen

p1

p2

p3

p0

ppp 31

12 20 pppDiffusion Coefficient

tx n

T

n

X ,with

Diffusion Profile (Chopard and Droz)

concentration

location x

cellular automata

analytical solution

tD

xctxc s

2erf1,

The Cellular Automata Approach for Internal Precipitation (Zhou and Wei)

Initialization

Zhou and Wei, Scripta Mater., 37 (1997) 1483

solvent: inert (I)

solute: active element (B)

nitride (BN)

nitrogen (N)

Transition: B+N=>BN:

(Implementation ChemApp possible)

Diffusion: N stepwise to the right

B every 20th iteration to the left

Stable state (AN)

Zhou and Wei, Scripta Mater., 37 (1997) 1483

Transition pT: pT

Transition pTr: pT

r

The Cellular Automata Approach for Internal Precipitation (Zhou and Wei)

Internal Precipitation (Zhou and Wei) + N- Diffusion (Chopard and Droz)

location y (arbitrary units)

location x (arbitrary units)

location y (arbitrary units)

location x (arbitrary units) 512 x 512 cells

20000 iterations

(increased B counter diffusion)

512 x 512 cells

1500 iterations

Precipitation + N Diffusion (Chopard and Droz) + B Diffusion in the Internal Precipitation Zone

solvent (inert)

active element B

nitride (BN)

0

0

nitride sink (min 5 nitrides within R=5cells)

Precipitation + B Diffusion in the Internal Precipiation Zone – Concentration Profile

concentration (cells / 512cells)

location x

active

element B

nitride

BN

Precipitation + B Diffusion in the Internal Precipitation Zone – Penetration Depth

square root of exp. time [h-0.5]

incubation

time: non-stable

precipitates

penetration

depth x [µm]

(Ni-20Cr-6Ti

1000°C, N2)

Grain boundary diffusion

location y (arbitrary units)

512 x 512 cells

3000 iterations Ttot=100h, T=800°C

location x (arbitrary units)

DGB>Dbulk

Conclusions and Future Aspects

Classical Wagner theory is limited to special scenarios

Finite Difference: easy combination with ChemApp

Cellular Automata:

-nucleation and growth

-3D effects: various diffusion paths (e.g., GB/bulk diffusion

Problems to be solved:

-combination of small and large concentrations

-implementation of ChemApp

more info: [email protected]