modelling and simulation of absorption solar air conditioning system

20
MODELLING AND SIMULATION OF ABSORPTION SOLAR AIR CONDITIONING SYSTEM Teclemariam Nemariam Department of Technology, Royal Institiute of Technology, Stockholm, Sweden email: [email protected]

Upload: shadi-karkaba

Post on 27-Apr-2015

50 views

Category:

Documents


7 download

DESCRIPTION

Modeling and Simulation

TRANSCRIPT

Page 1: Modelling and Simulation of Absorption Solar Air Conditioning System

MODELLING AND SIMULATION OF

ABSORPTION SOLAR AIR CONDITIONING SYSTEM

Teclemariam NemariamDepartment of Technology,Royal Institiute of Technology,Stockholm, Sweden

email: [email protected]

Page 2: Modelling and Simulation of Absorption Solar Air Conditioning System

Aim

• To obtain best system performance of a solar assisted absorption cooling system– Solar fraction– Overall system efficiency– Total cost

• Initial cost•Maintenance cost•Operational cost

Page 3: Modelling and Simulation of Absorption Solar Air Conditioning System

Methodology

• TRNSYS simulation program– Transient Systems Simulation Program

• EES– Engineering Equation Solver

Page 4: Modelling and Simulation of Absorption Solar Air Conditioning System

System Description

• Energy source Refrigeration Load cycle

Page 5: Modelling and Simulation of Absorption Solar Air Conditioning System

System Description

• Solar collector• Thermal storage tank• Auxiliary heater • Absorption

refrigeration chiller with cooling tower

• Building• Diverter• Tee-piece• Relief valve• Piping system

relief valve

storagetank

absorptionchiller

building

tee-piece

heater

collector

sun

diverter

pump

pump

Page 6: Modelling and Simulation of Absorption Solar Air Conditioning System

Trnsys Block Diagram

C o llec to rT Y P E 1

T Y P E 7 1

P ressu rere liev e v a lv e

T Y P E 1 3

T h erm a l sto ra g eta n k

T Y P E 3 8

T ee-p ieceT Y P E 1 1 h

A u x ilia ryh ea ter

T Y P E 6

A b so rp tio nch iller

T Y P E 7

B u ild in gT Y P E 1 9

D iv e rte rT Y P E 1 1 b

P u m pT Y P E 3

P u m pT Y P E 3

C o n tro lle rT Y P E 2 b

co o lin gto w er

Page 7: Modelling and Simulation of Absorption Solar Air Conditioning System

Absorption Refrigeration System

g e n e ra to rc o n d e n se r

a b so rb e re v a p o ra to r

h e a t e x c h a n g e r

o u tp u th ea t

in p u th ea t

o u tp u th ea t

in p u th ea t

e x p a n s io nv a lv e

p u m p

s tro n gso lu tio n inre fr ig era n t

w ea k so lu tio nin re fr ig era n t

v a lv e

va p o u rre fr ig era n t

vapourrefrigerantP con

P ev

Tev Tcon, Tab Tg

liq u idre fr ig era n t

Page 8: Modelling and Simulation of Absorption Solar Air Conditioning System

Absorption Refrigeration System

• Refrigerant– water

• Absorbent– Lithium

bromide

• Stages– Single-effect

• G. temp 80 – 100 C• COP 0.6 – 0.8

– Double-effect• Gen. Temp 100 – 160 C• COP 1.0 – 1.2

– Triple-effect• Gen. Temp 160 – 240 C• COP ABOUT 1.7

Page 9: Modelling and Simulation of Absorption Solar Air Conditioning System

Absorption Refrigeration System

pure

refri

gera

nt (x

=1)

pure

refri

gera

nt (x r

)

pure

refri

gera

nt (x p

)Pressure

P 1

P 2

t2 tabs=t1 tgen

evaporator absorber

condenser generator

crys ta llisa tion

Strong refrigerant Poor refrigerant

Page 10: Modelling and Simulation of Absorption Solar Air Conditioning System

Absorption Refrigeration System

• Drawbacks– Water

• Temperature greater than zero• High water vapour pressure

– Large volume

– Lithium bromide• Precipitate at low temperature

Page 11: Modelling and Simulation of Absorption Solar Air Conditioning System

Building

• Details of a building are:– Location: latitude, longitude, altitude– Type: Office, recidential, hospital,...– Size: volume, area of walls, roof, floor,

windows, door, ..etc – Types of construction materials– Outside design conditions– Inside design conditions– Internal gains

Page 12: Modelling and Simulation of Absorption Solar Air Conditioning System

Work done so far

• More than 75% course work• More than 80% literature survey• Modelling and simulation of a

complete system using standard TRNSYS components

Page 13: Modelling and Simulation of Absorption Solar Air Conditioning System

Sample Simulation Results

• Solar collectors:– Evacuated collector, high quality flat plate

collector and ordinary flat plate colector

• Storage tank: cylinderical, vertical stand• Heater: gas fired• Single-effect absorption machine

– Refrigerant water and absorbent lithium bromide

– Capacity 24.44 kW

Page 14: Modelling and Simulation of Absorption Solar Air Conditioning System

Sample Simulation Results

• Building:– Location: Assab, Eritrea. Latitude 13.07

N, longitude 42.6 E, altitude sea level– Type: two storey office – Size: volume, area of walls, roof, floor,

windows, door, ..etc are given in detail– Types of construction materials– Outside design conditions– Inside design conditions– Internal gains

• Every detail is given

Page 15: Modelling and Simulation of Absorption Solar Air Conditioning System

Sample Simulation Results

• System Optimization– e.g. collector slope

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

0 10 20 30 40 50 60

collector slope (degree)

sola

r en

erg

y g

ain

(kJ

)

ESC DGC SGC

Page 16: Modelling and Simulation of Absorption Solar Air Conditioning System

Sample Simulation ResultsSolar fraction as a function of colector area and storage volumee.g. using evacuated collector

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80

collector area (m 2)

so

lar

fracti

on

(%

)

V1=1.0m3

V2=2.0m3

V3=3.0 m3

V4=4.0m3

V5=5.0m3

Page 17: Modelling and Simulation of Absorption Solar Air Conditioning System

Sample Simulation Results• System efficiency as a function of

colector area and storage volume– e.g. using evacuated collector

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80

collector area (m2)

syst

em e

ffic

ien

cy (

%)

V1=1.0m3 V2=2.0m3V3=3.0 m3 V4=4.0m3V5=5.0m3

Page 18: Modelling and Simulation of Absorption Solar Air Conditioning System

Sample Simulation Results

• Solar fraction and system efficiency as function of collector area for a given storage volume

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80

solar collector (m 2)

eff

icie

ncy

ESC syseff ESC solfr DGC syseffDGC solfr SGC syseff SGC solfr

Page 19: Modelling and Simulation of Absorption Solar Air Conditioning System

Sample Simulation Results

• Yearly insolation energy, max possible solar heat gain and cooling load

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

4.00E+07

1 3 5 7 9 11

time (month)

en

erg

y (

kJ)

QIRT ESC DGC

SGC QLOAD

Page 20: Modelling and Simulation of Absorption Solar Air Conditioning System

Notice

• The sample simulation result is extracted from a paper presented in the ISES Conference June 14-19 2003 in Götemberg, Sweden.

• If you have more interest please refer the paper.

• Thank you.