modeling of laser micromachining

Upload: debkalpa-goswami

Post on 07-Jul-2018

219 views

Category:

Documents


7 download

TRANSCRIPT

  • 8/18/2019 Modeling of Laser Micromachining

    1/25

    Modeling of LASER

    Micromachining Process

    Debkalpa GoswamiDepartment of Production

    Engineering Jadapur !niersit"

    #$ Prod$ E$ %%%

    Roll& ''('(()'('33

  • 8/18/2019 Modeling of Laser Micromachining

    2/25

    2

    Light

    Amplification by

    Stimulated

    Emission of

    Radiation

    •Population

    Inversion

    •Stimulated

    Emission

    • Amplification

     Albert Einstein

    T. H. Maiman

  • 8/18/2019 Modeling of Laser Micromachining

    3/25

    3

    Population Inversion

    Boltzmann Distribution Law

    (Thermal Equilibrium)

    2 1

    2 1

     E E 

    kT  N N e

    −  − ÷  =

  • 8/18/2019 Modeling of Laser Micromachining

    4/25

    4

    Stimulated Emission

    2 1h E E ν  = −

  • 8/18/2019 Modeling of Laser Micromachining

    5/25

    5

     Amplification

    ( )21 1 2 0

    k L I r r I e

      γ  −=

    ( )21 2   1

    thk Lr r e   γ  − =

    1 2

    1 1

    ln2thk   L r r γ  

       = +   ÷  

  • 8/18/2019 Modeling of Laser Micromachining

    6/25

    6

    Properties of Laser Radiation

    • Monochromaticity

    • Collimation

    • Beam Coherence

    • Temporal Modes

    • Frequency

    Multiplication

  • 8/18/2019 Modeling of Laser Micromachining

    7/25

    7

    Types of Industrial Lasers

    Solid-state Lasers

    • Gas Lasers

    • Semiconductor Lasers

    • Liquid dye Lasers

    Nd:YAG (1064 nm)

    Ruby (694 nm)

    Nd:glass (1062 nm)

    HeNe (632.8 nm)

    CO2 (10,600 nm)

     Argon (488, 514.5 nm)

    InGaAs (980 nm)

    Rhodamine 6G (570-640 nm)

    Coumarin 102 (460-515 nm)

    Stilbene (403-428 nm)

    Kumar Patel

  • 8/18/2019 Modeling of Laser Micromachining

    8/25

    8

    Laser Materials Interactions

    Laser Parameters Material Parameters

    • intensity

    • wavelength

    • spatial and

    temporal coherence

    •angle of incidence

    • polarization

    • illumination time

    • absorptivity

    • thermal

    conductivity

    • specific heat

    •density

    • latent heat

  • 8/18/2019 Modeling of Laser Micromachining

    9/25

    9

    Thermal Effects

    ; for( ) ( )

    2

    2, ,T z t T z t  

    t z α ∂ ∂=∂ ∂   ( )

      0,0T z T =   0   z ≤ ≤ ∞

    ( )0,T t k H 

     z δ 

    ∂− =

    1 0

    0

     p

     p

    t t 

    t t 

    δ ≤ ≤

    = >

    ( )

    ( )( )

    ( )   ( ) ( )( )

    1 2

    1 2

    1 21 2

    1 2

    1 2 1 2

    4 ierfc 0 heating4

    ,

    2

    ierfc ierfc cooling4   4

     p

     p p

     p

     H z t t t 

    k    t 

    T z t 

     H z z 

    t t t t t  k    t    t t 

    α α 

    α 

    α    α 

          ≤ ≤ ÷

    ÷  ∆ =          ÷− − > ÷   ÷ ÷ ÷−      

    ( )   ( )   ( )( ){ }

    ( )

      2

    2

    0

    1ierfc exp 1 erf  

    2

    where erf .

     x

     x x x x

     x e d 

    ξ 

    π 

    ξ π 

    = − − −

    = ∫ 

  • 8/18/2019 Modeling of Laser Micromachining

    10/25

    10

    a

  • 8/18/2019 Modeling of Laser Micromachining

    11/25

    11maxierfc   m

    b b

     Hz T 

    kT T π π 

     = ÷ ÷

     

  • 8/18/2019 Modeling of Laser Micromachining

    12/25

    12

  • 8/18/2019 Modeling of Laser Micromachining

    13/25

    13

    Important Practical Considerations

    • Beam Shapes

    ( )2

    0   2

    2exp

      r  I r I 

    w

    −=  

    ( ) ( ) ( ) ( )2 2 2

    2 2 2

    , , , , , , , , , , , ,T x y z t T x y z t T x y z t T x y z t  

    t x y z  α 

      ∂ ∂ ∂ ∂= + + ∂ ∂ ∂ ∂

  • 8/18/2019 Modeling of Laser Micromachining

    14/25

    14

    • Pulse Shapes

  • 8/18/2019 Modeling of Laser Micromachining

    15/25

    15

    • Moving Source of Heat

    (quasi-stationary heat flow)

    (trial function)

     x vt ξ  = −

    ( ) ( ) ( ) ( ) ( )2 2 2

    2 2 2

    , , , , , , , , , , , , , , ,T y z t T y z t T y z t T y z t T y z t  v

    t y z 

    ξ ξ ξ ξ ξ  α 

    ξ ξ 

    ∂ ∂ ∂ ∂ ∂− + = + +

    ∂ ∂ ∂ ∂ ∂

    ( ), , ,0

    T y z t  

    ξ ∂=

    ( )0   , ,vT T e y z  λ ξ ϕ ξ −= +

    ( )  ( ) ( ) ( )

    2   2 2 2

    2 2 2

    , , , , , ,, ,

    2

     y z y z y z v y z 

     y z 

    ϕ ξ ϕ ξ ϕ ξ  ϕ ξ 

    α ξ 

    ∂ ∂ ∂  − = + + ÷ ∂ ∂ ∂   

  • 8/18/2019 Modeling of Laser Micromachining

    16/25

    16

    • Temperature dependent properties

    • Thermal conductivity

    Thermal diffusivity

    • Absorptivity

    Etc.

     f(T)

  • 8/18/2019 Modeling of Laser Micromachining

    17/25

    17

    Laser Micromachining Mechanisms

    • Laser Ablation   • Laser AssistedChemical Etching

    material removal processes

    by photo-thermal or photo-

    chemical interactions.

    multiphoton

    mechanism: even

    though the energy

    associated with each

    photon is less than thedissociation energy of

    bond, the bond breaking

    is achieved by

    simultaneous absorption

    of two or photons.

    carried out by using

    suitable etchant

    (precursors).

    gaseous precursors:

    Cl2 and Br2(dry etching)

    liquid precursors: HCl,

    HNO3, H2SO4, NaCl,

    and K2SO4(wet

    etching)

  • 8/18/2019 Modeling of Laser Micromachining

    18/25

    18

    Laser Micromachining Applications

    MicroviaDrilling

    • Drilling of

    Inkjet

    NozzleHoles

  • 8/18/2019 Modeling of Laser Micromachining

    19/25

    19

    • Fuel

    Injector

    Drillin

    g

    • Laser

    Scribing

    Bio-medical applications:

  • 8/18/2019 Modeling of Laser Micromachining

    20/25

    20

    Relevant Research and Recent Trends

    ExperimentalModels

    • Semi-analytical

    Models

    • Numerical or

    Computer Models

    Kuar et. al (2006)

    Gospavic et. al(2004)

    Ding et. al (2012)

    Kuar, A. S., B. Doloi and B. Bhattacharyya (2006). "Modelling and analysis of pulsed Nd:YAG laser machining

    characteristics during micro-drilling of zirconia (ZrO2)." International Journal of Machine Tools and Manufacture46(12-

    13): 1301-1310.

    Gospavic, R., M. Sreckovic and V. Popov (2004). "Modelling of laser-material interaction using semi-analytical approach."

    Mathematics and Computers in Simulation65(3): 211-219.

    Ding, H., N. Shen and Y. C. Shin (2012). "Thermal and mechanical modeling analysis of laser-assisted micro-milling ofdifficult-to-machine alloys." Journal of Materials Processing Technology212(3): 601-613.

  • 8/18/2019 Modeling of Laser Micromachining

    21/25

    21

    • Kuar et. al

    (2006)

  • 8/18/2019 Modeling of Laser Micromachining

    22/25

    22

    • Gospavic et.

    al (2004)

    Semi-analytical model

    Particular cases with

    cylindrical geometry

    Laplace Transform and

    Fourier Method of

     Variable Separation

    PDE ODE

     Alternative

    method

    Differential

    Transform

    Mukherjee, S.,D. Goswami and B. Roy (2012). "Solution of Higher-Order

     Abel Equations by Differential Transform Method." International Journal ofModern Physics C23(09): 1250056.

  • 8/18/2019 Modeling of Laser Micromachining

    23/25

    23

    • Ding et. al

    (2012)

  • 8/18/2019 Modeling of Laser Micromachining

    24/25

    24

    Laser Thermal Lab, UC Berkeley

    Laser-Assisted Nano-wire Growth and Harvest

    Nanoplasians harvesting their nanowires selectively grown on a field by a laser-

    assisted method. (SEM image)

  • 8/18/2019 Modeling of Laser Micromachining

    25/25

    25

    Thank You