model dependent and model independent considerations on two photon exchange model dependent and...

58
Model dependent and model independent considerations on two photon exchange Egle Tomasi-Gustafsson IRFU, SPhN-Saclay, and IN2P3- IPN Orsay France Egle Tomasi-Gustafsson Gatchina, July 10, 2012

Upload: maria-may

Post on 02-Jan-2016

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Model dependent and model independent considerations

on two photon exchange

Egle Tomasi-GustafssonIRFU SPhN-Saclay

and IN2P3- IPN Orsay France

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Plan

bull Introduction bull Generalities

bull Model independent considerationsbull Space-likebull Time-like

bull What do data saybull Which alternative for GEp problem

bull Conclusions

bull Model dependent considerations

Egle Tomasi-Gustafsson Gatchina July 10 2012

Two-Photon exchange

bull 1g-2g interference is of the order of a=e24p=1137 (in

usual calculations of radiative corrections one photon is lsquohardrsquo and one is lsquosoftrsquo)

bull ldquoInvent a mechanismrdquo to enhance this contribution

bull In the 70rsquos it was shown [J Gunion and L Stodolsky V

Franco FM Lev VN Boitsov L Kondratyuk and VB

Kopeliovich R Blankenbecker and J Gunion] that at

large momentum transfer due to the sharp decrease of

the FFs if the momentum is shared between the two

photons the 2g- contribution can become very large

bull The 2g amplitude is expected to be mostly imaginary

bull In this case the 1g-2g interference is more important in

time-like region as the Born amplitude is complex

Egle Tomasi-Gustafsson Gatchina July 10 2012

Qualitative estimation of 2g exchange

From quark counting rules Fd ~ t-5 and FN~t-2 At t = 4 GeV2

For d 3He 4He 2g effect should appear at ~1 GeV2for protons ~ 10 GeV2

q2 q2

For ed elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Two-Photon exchange in ed-scatterng

bull Discrepancy between the results from

ndash Hall A [LC Alexa et al PRL 82 1374 (1999)]

ndash Hall C [D Abbott et al PRL 82 1379 (1999)]

bull Model-independent parametrization of the

2g- contribution

bull Applied to ed-elastic scattering data

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Crossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables

p2 rarr ndash p1

k2 rarr ndash k2

- which scan different kinematical regions

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g

1g-2g interference

2g1g

M P Rekalo E T-G and D Prout Phys Rev C (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The 1g-2g interference destroys the linearity

of the Rosenbluth plot

What about data

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g-2g interference

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 2: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Plan

bull Introduction bull Generalities

bull Model independent considerationsbull Space-likebull Time-like

bull What do data saybull Which alternative for GEp problem

bull Conclusions

bull Model dependent considerations

Egle Tomasi-Gustafsson Gatchina July 10 2012

Two-Photon exchange

bull 1g-2g interference is of the order of a=e24p=1137 (in

usual calculations of radiative corrections one photon is lsquohardrsquo and one is lsquosoftrsquo)

bull ldquoInvent a mechanismrdquo to enhance this contribution

bull In the 70rsquos it was shown [J Gunion and L Stodolsky V

Franco FM Lev VN Boitsov L Kondratyuk and VB

Kopeliovich R Blankenbecker and J Gunion] that at

large momentum transfer due to the sharp decrease of

the FFs if the momentum is shared between the two

photons the 2g- contribution can become very large

bull The 2g amplitude is expected to be mostly imaginary

bull In this case the 1g-2g interference is more important in

time-like region as the Born amplitude is complex

Egle Tomasi-Gustafsson Gatchina July 10 2012

Qualitative estimation of 2g exchange

From quark counting rules Fd ~ t-5 and FN~t-2 At t = 4 GeV2

For d 3He 4He 2g effect should appear at ~1 GeV2for protons ~ 10 GeV2

q2 q2

For ed elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Two-Photon exchange in ed-scatterng

bull Discrepancy between the results from

ndash Hall A [LC Alexa et al PRL 82 1374 (1999)]

ndash Hall C [D Abbott et al PRL 82 1379 (1999)]

bull Model-independent parametrization of the

2g- contribution

bull Applied to ed-elastic scattering data

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Crossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables

p2 rarr ndash p1

k2 rarr ndash k2

- which scan different kinematical regions

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g

1g-2g interference

2g1g

M P Rekalo E T-G and D Prout Phys Rev C (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The 1g-2g interference destroys the linearity

of the Rosenbluth plot

What about data

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g-2g interference

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 3: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Two-Photon exchange

bull 1g-2g interference is of the order of a=e24p=1137 (in

usual calculations of radiative corrections one photon is lsquohardrsquo and one is lsquosoftrsquo)

bull ldquoInvent a mechanismrdquo to enhance this contribution

bull In the 70rsquos it was shown [J Gunion and L Stodolsky V

Franco FM Lev VN Boitsov L Kondratyuk and VB

Kopeliovich R Blankenbecker and J Gunion] that at

large momentum transfer due to the sharp decrease of

the FFs if the momentum is shared between the two

photons the 2g- contribution can become very large

bull The 2g amplitude is expected to be mostly imaginary

bull In this case the 1g-2g interference is more important in

time-like region as the Born amplitude is complex

Egle Tomasi-Gustafsson Gatchina July 10 2012

Qualitative estimation of 2g exchange

From quark counting rules Fd ~ t-5 and FN~t-2 At t = 4 GeV2

For d 3He 4He 2g effect should appear at ~1 GeV2for protons ~ 10 GeV2

q2 q2

For ed elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Two-Photon exchange in ed-scatterng

bull Discrepancy between the results from

ndash Hall A [LC Alexa et al PRL 82 1374 (1999)]

ndash Hall C [D Abbott et al PRL 82 1379 (1999)]

bull Model-independent parametrization of the

2g- contribution

bull Applied to ed-elastic scattering data

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Crossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables

p2 rarr ndash p1

k2 rarr ndash k2

- which scan different kinematical regions

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g

1g-2g interference

2g1g

M P Rekalo E T-G and D Prout Phys Rev C (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The 1g-2g interference destroys the linearity

of the Rosenbluth plot

What about data

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g-2g interference

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 4: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Qualitative estimation of 2g exchange

From quark counting rules Fd ~ t-5 and FN~t-2 At t = 4 GeV2

For d 3He 4He 2g effect should appear at ~1 GeV2for protons ~ 10 GeV2

q2 q2

For ed elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Two-Photon exchange in ed-scatterng

bull Discrepancy between the results from

ndash Hall A [LC Alexa et al PRL 82 1374 (1999)]

ndash Hall C [D Abbott et al PRL 82 1379 (1999)]

bull Model-independent parametrization of the

2g- contribution

bull Applied to ed-elastic scattering data

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Crossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables

p2 rarr ndash p1

k2 rarr ndash k2

- which scan different kinematical regions

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g

1g-2g interference

2g1g

M P Rekalo E T-G and D Prout Phys Rev C (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The 1g-2g interference destroys the linearity

of the Rosenbluth plot

What about data

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g-2g interference

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 5: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Two-Photon exchange in ed-scatterng

bull Discrepancy between the results from

ndash Hall A [LC Alexa et al PRL 82 1374 (1999)]

ndash Hall C [D Abbott et al PRL 82 1379 (1999)]

bull Model-independent parametrization of the

2g- contribution

bull Applied to ed-elastic scattering data

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Crossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables

p2 rarr ndash p1

k2 rarr ndash k2

- which scan different kinematical regions

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g

1g-2g interference

2g1g

M P Rekalo E T-G and D Prout Phys Rev C (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The 1g-2g interference destroys the linearity

of the Rosenbluth plot

What about data

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g-2g interference

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 6: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Crossing Symmetry

Scattering and annihilation channels

- Described by the same amplitude

- function of two kinematical variables

p2 rarr ndash p1

k2 rarr ndash k2

- which scan different kinematical regions

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g

1g-2g interference

2g1g

M P Rekalo E T-G and D Prout Phys Rev C (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The 1g-2g interference destroys the linearity

of the Rosenbluth plot

What about data

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g-2g interference

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 7: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g

1g-2g interference

2g1g

M P Rekalo E T-G and D Prout Phys Rev C (1999)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The 1g-2g interference destroys the linearity

of the Rosenbluth plot

What about data

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g-2g interference

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 8: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

The 1g-2g interference destroys the linearity

of the Rosenbluth plot

What about data

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g-2g interference

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 9: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

1g-2g interference

M P Rekalo E T-G and D Prout Phys Rev C60 042202 (1999)

CA DA

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 10: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

From the data

deviation from linearity

ltlt 1

Parametrization of 2g-contribution for e+p

E T-G G Gakh Phys Rev C 72 015209 (2005)

)(1

1)( 2)(2 QfQF a

2222

22

]1[ a

Dγ(a)

m[GeV]Q

GC)(Qf

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 11: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

e+4He scattering

Spin 0 particle F(q2) in Born approximation

2 g exchange F1(sq2)F2(sq2)=F(q2) +f(sq2)

F(q2)~a0 F1(sq2)~a

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 12: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Linear fit to e+4He elastic scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

GI Gakh and E T-G NuclPhys A838 (2010) 50-60

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 13: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull One-photon exchange - Two form factors (real in SL complex in TL) - Functions of one variable (t)

16 amplitudes in the general caseP- and T-invariance of EM interaction

helicity conservation

Interaction of 4 spin frac12 fermions

bullTwo-photon exchange

- Three (complex) amplitudes - Functions of two variables (st)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 14: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Space-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2g exchange

Possible but difficult

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 15: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Determination of EM form factors in presence of 2g exchange

-electron and positron beams

- longitudinally polarized - in identical kinematical

conditions

M P Rekalo E T-G EPJA (2004) Nucl Phys A (2003)

Model independent considerations foreplusmn N scattering

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 16: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Model independent considerations foreplusmn N scattering

Determination of EM form factors in presence of 2g exchange- electron and positron beams

- longitudinally polarized - in identical kinematical conditions

Generalization of the polarization method (A Akhiezer and MP Rekalo)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 17: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

bull Ay unpolarized leptons transversally polarized target or Py outgoing nucleon polarization with unpolarized leptons unpolarized target

bull Depolarization tensor (Dab) dependence of the

b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 18: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellip

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 19: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Very difficult experimentsThree T-odd polarization observableshellipExpected small of the order of a triple spin correlations buthellip Model independent way

This ratio contains the lsquoTRUE lsquoform factors

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 20: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

If no positron beamhellip

Either three T-odd polarization observableshellipor five T-even polarization observableshellip among dsdW Px(le) Pz(le) Dxx Dyy Dzz Dxz

Again very difficult experiments

Only Model independent ways (without positron beams)

M P Rekalo and E T-G Nucl Phys A740 (2004) 271 M P Rekalo and E T-G Nucl Phys A742 (2004) 322

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 21: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Time-like region

Is it still possible to extract the laquo real raquo FFs in presence of 2 g exchange

much easier

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 22: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Time-like observables | GE| 2 and | GM| 2

As in SL region- Dependence on q2 contained in FFs- Even dependence on cos2 q (1g exchange)- No dependence on sign of FFs- Enhancement of magnetic term

but TL form factors are complex

A Zichichi S M Berman N Cabibbo R Gatto Il Nuovo Cimento XXIV 170 (1962)B Bilenkii C Giunti V Wataghin Z Phys C 59 475 (1993)G Gakh ET-G Nucl Phys A761120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 23: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Unpolarized cross section

bull Induces four new termsbull Odd function of qbull Does not contribute at q =90deg

Two Photon Exchange

MP Rekalo and E T-G EPJA 22 331 (2004)GI Gakh and E T-G NPA761 120 (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 24: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullProperties of the TPE amplitudes with respect to the transformation cos = - cos ie -

(equivalent to non-linearity in Rosenbluth fit)

bullBased on these properties one can remove or single out TPE contribution

Symmetry relations

E T-G G Gakh NPA (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 25: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

bullDifferential cross section at complementary angles

Symmetry relations (annihilation)

The DIFFERENCE enhances the 2 g contribution

The SUM cancels the 2 gcontribution

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 26: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

What do data say

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 27: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Return (ISR)

s

m

x

sin

xx

x)xs(W

s

m

s

Ex)m)(ppee()xs(W

s

m

cosddm

)ppee(d

e

2

22

122

2

2

2

2

e+ +e- p + p +

B Aubert ( BABAR Collaboration) Phys Rev D73 012005 (2006)

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 28: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

1877divide1950

Angular distribution

Eve

nts

02

vs

cos

q

2400divide30002200divide24002100divide2200

2025divide21001950divide2025

2 -g exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 29: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Angular Asymmetry

Mpp=1877-19

A=001plusmn002

Mpp=24-3

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 30: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Structure Function method

e+ +e- p + p +

DE=005

E T-G EA Kuraev S Bakmaev S Pacetti Phys Lett B (2008)

EA Kuraev V Meledin Nucl Phys B

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 31: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

Cross section at 900 Angular asymmetry

The form of the differential cross section

is equivalent to

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 32: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Fitting the angular distributions

E T-G and M P Rekalo Phys Lett B 504 291 (2001)

1 g exchange

Linear Fit in cos2q

2 g exchange Quadratic Fit in x=cosq

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 33: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 0

Fitting the angular distributions

Forward

Backward

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 34: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 002

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 35: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 005

Fitting the angular distributions

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 36: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

q2=54 GeV2

2 g 020

Fitting the angular distributionshellip

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 37: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Which alternative for Gep

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 38: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Polarization experiments - JlabAI Akhiezer and MP Rekalo 1967

GEp collaboration1) standard dipole function

for the nucleon magnetic FFs GMp and GMn

2) linear deviation from the dipole function for the electric proton FF Gep

3) QCD scaling not reached3) Zero crossing of Gep4) contradiction between

polarized and unpolarized measurements

AJR Puckett et al PRL (2010)

PRC85 (2012) 045203

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 39: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

WHY these points are aligned

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 40: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Rosenbluth separation

=05=02

=08

Contribution of the electric term

hellipto be compared to the absolute value of the error on s and to the size and e dependence of RC

ET-G Phys Part Nucl Lett 4 281 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 41: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Reduced cross section and RCData from L Andivahis et al Phys Rev D50 5491 (1994)

Q2=175 GeV2

Q2=5 GeV2

Q2=325 GeV2

Q2=4 GeV2

Q2=25 GeV2

Q2=7 GeV2

Q2=6 GeV2

Radiative Corrected data

Raw data without RC

Slope from P M

E T-G G Gakh Phys Rev C (2005)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 42: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Radiative Corrections (ep)

RC to the cross section- large (may reach 40)- e and Q2 dependent- calculated at first order

May change the slope of sR

(and even the sign )Q2=5 GeV2

Q2=375 GeV2

Q2=175 GeV2

Andivahis et al PRD50 5491 (1994)

2MG2

EGR

CF Perdrisat Progr Part Nucl Phys 59694 (2007)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 43: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Experimental correlation

sel=smeas RC

Q2 gt 2 GeV2

Q2 lt 2 GeV2

RC(e)only published values

Correlation (ltRCbull gte )

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 44: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Scattered electron energy

All orders of PT needed beyond Mo amp Tsai approximation

Initial state emission

final state emission

Quasi-elastic scattering

3

Y0

Not so smallShift to LOWER Q2

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 45: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Polarization ratio (e-dependence)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull DATA No evidence of e-dependence at 1 level

bull MODELS large correction (opposite sign) at small ε

bullTheory corrections to the Born approximation at Q2= 25 GeV2 Y Bystritskiy EA Kuraev and ET-G PhysRevC75 015207 (2007) P Blunden et al Phys Rev C72034612 (2005) (mainly GM) A Afanasev et al Phys Rev D72013008 (2005) (mainly GE) NKivel and MVanderhaeghen Phys Rev Lett103092004 (2009) (high Q2)

bull SF method e-independent corrections

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 46: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

SummaryOur Suggestion for search of 2g effectsbull Search for model independent statements (MP Rekalo G Gakh)

bull Exact calculation in frame of QED (p~m)bull Prove that QED box is upper limit of QCD box diagrambull Study analytical properties of the Compton amplitudebull Compare to experimental data

Our Conclusions for elastic ep scatteringbull Two photon contribution is negligible (real part) (EA Kuraev)bull Radiative corrections are huge take into account higher order effects (Structure Functions method) ) (Yu Bystricky)

Look for Multiple Photon Exchange in e-A scatteringbull Small angle e or p or pbar - Heavy ion scatteringEA Kuraev M Shatnev ET-G PRC80 (2009) 018201

2g effects are expected to be larger in TL region (complex nature)

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 47: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

The Pauli and Dirac Form Factors

Normalization

F1p(0)=1 F2p(0)= κp

GEp(0)=1 GMp(0)=μp=279

The electromagnetic current in terms of the Pauli and Dirac FFs

Related to the Sachs FFs

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 48: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Systematics

Egle Tomasi-Gustafsson Gatchina July 10 2012

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 49: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Differential cross section (SF)

Egle Tomasi-Gustafsson Gatchina July 10 2012

bull The structure function of the lepton

Energy fractions of the leptons

Partition function

Odd term

K-factor

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 50: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Charge Asymmetry

Egle Tomasi-Gustafsson Gatchina July 10 2012

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 51: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

K-factor (hard)

1 of the order of one2 from the even part of the cross section

cos q

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 52: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Radiative correction factor

Egle Tomasi-Gustafsson Gatchina July 10 2012

s=10 GeV2

cos q

Ncorr=Nraw(1+ )d

d

Integrated in all phase space for gProton structureless

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 53: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Imaginary part of the 2g amplitude

electronproton

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 54: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

QED versus QCD

Q2=005 GeV2

Q2=12 GeV2

Q2=2 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 55: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Interference of 1 2 exchange

bullExplicit calculation for structureless proton ndash The contribution is small for unpolarized

and polarized ep scatteringndash Does not contain the enhancement factor

L ndash The relevant contribution to K is ~ 1

bull em (elastic) scattering is upper limit for epEAKuraev V Bytev Yu Bystricky ET-G Phys Rev D74 013003 (1076)

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 56: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

Simulations

Approximationsbull Neglect contributions to GEGMbull Consider only real part

Main effect odd cos -qdistribution

2003 MGF

0203 MGF

03 MGF

0503 MGF

q2=5482138 GeV2

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 57: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

002

q2=54 GeV2

q2= 82 GeV2

q2=138 GeV2

005 0201g 2g

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58
Page 58: Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson Gatchina July 10 2012

N=a0+a2cos q sinq +a1 cos2q a2~2g

  • Model dependent and model independent considerations on two
  • Slide 2
  • Two-Photon exchange
  • Qualitative estimation of 2g exchange
  • Two-Photon exchange in ed-scatterng
  • Crossing Symmetry
  • 1g-2g interference
  • The 1g-2g interference destroys the linearity of the Rosenblu
  • 1g-2g interference (2)
  • Slide 10
  • e+4He scattering
  • Linear fit to e+4He elastic scattering
  • Slide 13
  • Slide 14
  • Slide 15
  • Model independent considerations for eplusmn N scattering
  • If no positron beamhellip
  • If no positron beamhellip (2)
  • If no positron beamhellip (3)
  • If no positron beamhellip (4)
  • Slide 21
  • Time-like observables | GE| 2 and | GM| 2
  • Unpolarized cross section
  • Symmetry relations
  • Symmetry relations (annihilation)
  • What do data say
  • Radiative Return (ISR)
  • Angular distribution
  • Angular Asymmetry
  • Structure Function method
  • Fitting the angular distributions
  • Fitting the angular distributions (2)
  • Fitting the angular distributions (3)
  • Fitting the angular distributions (4)
  • Fitting the angular distributions (5)
  • Fitting the angular distributionshellip
  • Which alternative for Gep
  • Slide 38
  • Slide 39
  • Rosenbluth separation
  • Reduced cross section and RC
  • Radiative Corrections (ep)
  • Experimental correlation
  • Scattered electron energy
  • Polarization ratio (e-dependence)
  • Summary
  • The Pauli and Dirac Form Factors
  • Systematics
  • Differential cross section (SF)
  • Charge Asymmetry
  • K-factor (hard)
  • Radiative correction factor
  • QED versus QCD
  • QED versus QCD (2)
  • Interference of 1 2 exchange
  • Simulations
  • Slide 57
  • Slide 58