mode atlas for the tesla 1.3 ghz structure · 2015. 6. 19. · mode atlas for the tesla 1.3 ghz...

27
Mode Atlas for the TESLA 1.3 GHz Structure W. Ackermann, H. De Gersem, C. Liu, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting June 15, 2015 DESY, Hamburg June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 1

Upload: others

Post on 20-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Mode Atlas for theTESLA 1.3 GHz Structure

    W. Ackermann, H. De Gersem, C. Liu, T. WeilandInstitut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt

    Status MeetingJune 15, 2015

    DESY, Hamburg

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 1

  • Outline

    ▪ Motivation▪ Computational model

    - Geometry information concerning the cavity and the couplers

    (number and location of ports)

    - Numerical problem formulation

    ▪ Numerical examples- 1.3 GHz structure (single cavity)

    Summary of all modes up to the 5th dipole passband

    ▪ Summary / Outlook

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 2

  • Outline

    ▪ Motivation▪ Computational model

    - Geometry information concerning the cavity and the couplers

    (number and location of ports)

    - Numerical problem formulation

    ▪ Numerical examples- 1.3 GHz structure (single cavity)

    Summary of all modes up to the 5th dipole passband

    ▪ Summary / Outlook

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 3

  • Motivation

    ▪ TESLA 1.3 GHz Cavity- Photograph

    - Numerical modelhttp://newsline.linearcollider.org

    CST Studio Suite 2015

    upstream downstream

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 4

  • Motivation

    ▪Superconducting resonator9-cell cavity

    Downstreamhigher order mode coupler

    Input coupler

    Upstreamhigher order mode coupler

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 5

  • Motivation

    ▪Simulation study based on 2D structures availableRainer Wanzenberg,TESLA 2001-33- Monopole, dipole and quadrupolemodes of a TESLA cavity

    - “Obtained data intended to be usedin further beam dynamics studiesand in the interpretation of HOMmeasurements” (f, R/Q, …)

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 6

    Simulation study based on 3D structuresusing port boundary conditions (Q, R)

  • Outline

    ▪ Motivation▪ Computational model

    - Geometry information concerning the cavity and the couplers

    (number and location of ports)

    - Numerical problem formulation

    ▪ Numerical examples- 1.3 GHz structure (single cavity)

    Summary of all modes up to the 5th dipole passband

    ▪ Summary / Outlook

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 7

  • Computational Model

    ▪Geometrical model

    9-cell cavity

    Beamtube

    DownstreamHOMcoupler

    Input coupler

    UpstreamHOMcoupler

    High precision cavity simulations using FEM

    on tetrahedral mesh

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 8

  • Computational Model

    ▪Port boundary condition

    Port face, fundamental coupler

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 9

  • Computational Model

    ▪Port boundary condition

    Port face, HOM coupler

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 10

  • ▪Problem definition- Geometry

    - Task

    Computational Model

    TESLA 9-cell cavity

    PECboundary condition

    Search for the field distribution, resonance frequency and quality factor

    Portboundaryconditions

    Port boundary conditions

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 11

  • Computational Model

    ▪Main Coupler Penetration Depth9-cell cavity

    Downstreamhigher order mode coupler

    Input coupler

    Upstreamhigher order mode coupler

    Penetration depth = 8 mm

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 12

  • Computational Model

    ▪Problem formulation- Local Ritz approach

    continuous eigenvalue problem

    + boundary conditions

    vectorial function

    global index

    number of DOFs

    scalar coefficient

    discrete eigenvalue problem

    Galerkin

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 13

  • Computational Model

    ▪Eigenvalue calculation- Improved search space expansion

    • Davidson:

    • Jacobi-Davidson:

    works well for diagonaldominant matrices

    withdue to projection alsoapplicable to non-diagonaldominant matrices

    correction equation

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 14

  • Computational Model

    ▪ Jacobi-Davidson method- Important properties

    • Direct solution difficult because of dense matrix in correction equation.• Iterative solution not immediately applicable because vectors

    with are not mapped back onto again.

    - Preconditioning• The JD - preconditioner

    retains the property for any preconditioner .

    Simplest case:

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 15

  • Outline

    ▪ Motivation▪ Computational model

    - Geometry information concerning the cavity and the couplers

    (number and location of ports)

    - Numerical problem formulation

    ▪ Numerical examples- 1.3 GHz structure (single cavity)

    Summary of all modes up to the 5th dipole passband

    ▪ Summary / Outlook

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 16

  • Numerical Examples

    100

    200

    500 100020005000

    ���

    ��

    � � � � � � � � � � � � � � � � � � � � � � � � ��

    �� � � �� � � � � ���

    ������� � � � � � �� � � � ������ �� �

    � �� ������� ���� � ������������ ������������ �

    �� ��������� �������� ������ �� ���������������� �� ��� �� ��������������� �

    �� ��������� �������� ������ �� ��������� � ������������ ��������������� �� ��� �� ��������

    Monopole

    Dipole

    Quadrupole

    Sextupole

    2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.600.00

    0.01

    0.02

    0.03

    0.04

    Real

    Imag

    inar

    y

    ▪Controlling the Jacobi-Davidson eigenvalue solver- Evaluation in the complex frequency plane- Select best suited eigenvalues in circular region around user-specified complex target

    Real and imaginary part of the complex frequency

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 17

  • Numerical Examples

    ▪Quality factor versus frequency

    Calculations kindly performed by Cong Liu

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 18

  • Numerical Examples

    ▪Shunt Impedance Calculations - Longitudinal Voltage

    - Stored Energy and Loss Parameter

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 19

  • Numerical Examples

    ▪Shunt Impedance Calculations - Normalized Shunt Impedance

    - Evaluation of the integralat lines parallel to the z-axis

    x

    y

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 20

  • Numerical Examples

    ▪Simulation study based on mesh density variations- Grid 1

    - Grid 2

    - Grid 3

    315.885 tetrahedrons1.932.746 complex DOF

    1.008.189 tetrahedrons6.238.328 complex DOF

    3.081.614 tetrahedrons19.177.820 complex DOF

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 21

  • Numerical Examples

    ▪Simulation study based on mesh density variations

    Band 1

    Band 2

    Band 3

    Band 4

    Individual pagesavailable for

    • fres,Q

    • Rx/Q, Rx

    • Ry/Q, Ry

    • Rz/Q, Rz

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 22

  • Numerical Examples

    ▪Collection of the first 194 modes (selected page)

    Magnitude of the electric field strength(longitudinal cut)

    Magnitude of the magnetic flux density(longitudinal cut)

    Magnitude of the electric field and themagnetic flux density (transverse cut)

    Resonance frequency, quality factorand shunt impedances

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 23

  • Numerical Examples

    ▪Comparison to MAFIA calculations (fres monopole)

    Ref

    eren

    ce: (

    TES

    LA 2

    001-

    33)

    Mon

    opol

    e, D

    ipol

    e an

    d Q

    uadr

    upol

    eP

    assb

    ands

    of th

    e TE

    SLA

    9-c

    ell C

    avity

    , R

    . Wan

    zenb

    erg,

    Sep

    tem

    ber 1

    4, 2

    001

    Mod

    e In

    dex

    Mod

    e In

    dex

    TE modes

    MAFIA:step size 1mm12.000 grid points

    Different monopole passband numbering!

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 24

  • Outline

    ▪ Motivation▪ Computational model

    - Geometry information concerning the cavity and the couplers

    (number and location of ports)

    - Numerical problem formulation

    ▪ Numerical examples- 1.3 GHz structure (single cavity)

    Summary of all modes up to the 5th dipole passband

    ▪ Summary / Outlook

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 25

  • Summary / Outlook

    ▪Summary:Accurate complex eigenmode solver available- Higher order FEM including port boundary conditions(geometric modeling with curved 2D and 3D elements)

    - Application to the 1.3 GHz structure(calculation of all modes up the 5th dipole passband)

    - Quality factor and field polarizations intrinsically available

    ▪Outlook:- Application and further development of the available code

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 26

  • Outlook

    ▪Application of the available eigenvalue solver- PETRA cavities

    • PMC, PEC and port boundary conditions sufficient?

    • Apply power-loss method to consider lossy metal effects?

    • Surface impedance boundary condition (SIBC) required?

    ▪Further eigenvalue-solver development- Implement SIBC- Increase computational efficiency

    • Replace LU based preconditioner by numerically cheaper variant

    June 18, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 27