mndrive kumar

Upload: francis-dominic

Post on 14-Oct-2015

30 views

Category:

Documents


0 download

DESCRIPTION

quadcopter

TRANSCRIPT

  • 1!1

    Vijay Kumar!UPS Foundation Professor!

    University of Pennsylvania!

    Aerial Robot Swarms!

    University of Minnesota!April 16, 2014

  • 2!

    Unmanned Aerial Vehicles!

    Mass!0! 1! 10! 100! 1,000! 10,000! 100,000!

    Northrop-Grumman Global Hawk (32,200 lbs)!

    Boeing X-45A UCAV (12,000 lbs)!

    Northrop-Grumman

    Boeing X-45A UCAV (12,000 lbs)lbs)

    Bell Eagle Eye (2,250 lbs) !

    AscTec!Pelican (3.5 lbs)!

    Bell Eagle Eye (2,250 lbs)

    Hummingbird (1 lb)!Hummingbird (1 lb)Hummingbird (1 lb)

    KMel kNanoQuad (0.12 lb)!

    Hummingbird (1 lb)Hummingbird (1 lb)

    KMelKMel kNanoQuadkNanoQuad(0.12 lb)(0.12 lb)

    Gen. Atomics MQ-9 Reaper (10,000 lbs)!

    Gen. Atomics Predator (7,000 lbs)!Gen. Atomics Predator (2,250

    lbs)!

    Images from www.af.mil

    Boeing Scaneagle (40 lbs)!

  • 3!

    Unmanned Aerial Vehicles!

    !!

    !> $10B industry!

    !" Military: Surveillance, force protection, warfare (> 75 countries)!

    !" Civilian commercial: Transportation, agriculture, mining, security!

    !" Civilian private: DIY Drones!

    !!

    !

    !!

    !!

    Increasingly smaller, lower power and inexpensive inertial sensing, GPS, and computing

    1!

    10!

    100!

    1000!

    10000!

    1980! 1990! 2000! 2010!

    Number of UAVs worldwide!

  • 4!

    Search and Rescue!

    Michael, et al, J. Field Robotics, 2012!

  • 5!

    Security and First Response!

  • 6!

    Security and First Response!Flight through building!Flight through building

  • 7!

    Real Time Agrylitics!

  • 8

    Apple Orchards,

    Pennsylvania State University

    Biglerville, PA

  • 9!

  • 10

    Quadrotor

  • 11

    Pico

    11 cm

    20 g,

    6.5 Watts

    Max speed 6m/s

  • 12

    $10M

    $1M

    $100

    $10

    $1

    Global Hawk

    Predator, Reaper

    Scan Eagle, Raven

    Hobby Kits

    Toys

    Chips

    $100K

    $1K-10K? Autonomous, agile micro aerial vehicles

    our focus

    GPS, airbag sensors, processors

    DIY Drones, Kick starter projects

    10s

    100s

    1,000,000s

    100,000s

    10,000s

  • 13!

    Length Scales!

    13

    !"

    !#$"

    !#%"

    !#&"

    !#'"

    !#("

    !#)"

    !#*"

    !#+"

    !" !#!%" !#!'" !#!)" !#!+" !#$" !#$%" !#$'"

    ,-./"012345"

    64078/"92:"

    ;1C"

    B-0

  • 14!

    [Kushleyev, Mellinger and Kumar, RSS 2012]!

    The KMel Nano Quadrotor!

  • 15!

  • 16!

    Size does Matter!

    a 1R, 1

    R2a 1

    R, 1

    R2111

    linear acceleration 11

    angular acceleration

    mass M inertia I

    r

    R

    thrust f

  • 17!17

    1 Dynamics, Control and Planning!2 State Estimation (Autonomy)!

    3 Swarm technology!

    Research Challenges!

  • 18

    Quadrotor

  • 19!

    x

    X

    Y

    Z

    r !1"

    !2"

    !3"

    !4"

    y

    #, yaw!

    $, pitch!%, roll!

    x, y, z position!

    Underactuated

    z Control!

    #, yaw

    $, pitch%, roll

    R

  • 20!

    x

    X

    Y

    Z

    r !1"

    !2"

    !3"

    !4"

    y

    #, yaw!

    $, pitch!%, roll!

    x, y, z position!

    Underactuated

    z Control!

    #, yaw

    $, pitch%, roll

    R

  • 21!

    Differential Flatness!

    [x, y, z, #]!

    A

    B

    A B

    B

    B

    Minimum snap trajectory!

    [Mellinger and Kumar, 2011]!

    26666666666666666664

    xyz xyz

    37777777777777777775min(t)

    Z T0k....r (t)k2 + (t)2dt

    SE(3)

  • 22!

    Control on SE(3)!Specified trajectory!

    (t) : [0, T ] R3 SO(2)

    x

    y

    z

    t t

    Rdese3 =tt

    = desRdes

    #des"

    M = I + I(kReR ke)

    eR(Rdes, R)

    k

    f = m (r+Kver +Kper + g). k

    [Wen and Kreutz-Delgado, 1991; Lee et al, 2011; Mellinger and Kumar, 2011]!

  • 23!

    Software Architecture!

    [Kraft 2003; Mellinger, Michael, and Kumar 2010; Mellinger and Kumar 2011]!

    Rigid body dynamics

    Motor controller Attitude

    controller

    Position controller

    Trajectory Planner

    Rigid body dynamics controller Attitude controller

    Rdes

    &des

    R, '!r, r

    f

    M Attitude

    controller controller RRRdesdesR, , '

    r, r

    M M M

    Basin of attraction almost all of SO(3) !

    ~0.001 s!

    ~0.01 s!

    ~0. 1 s!

  • 24!

    Roll and Pitch!

  • 25!

    Robust, nonlinear controller!

    tr[I (Rdes)TR] < 2 e(0)2 2min(I)

    kR

    1 1

    2trI (Rdes)TR

  • 26!

    Translation!

  • 27!

    [Mellinger and Kumar, ICRA 2011]!

    Minimum Snap Trajectories!

    A

    C

    B

  • 28!

    Minimum Snap Trajectories!

    [Mellinger and Kumar, ICRA 2011]!

  • 29![Thomas et al, ICRA 2014]!

    Aerial Grasping and Manipulation !

  • 30

    motion capture cameras

    reflective markers

    Sensing

  • 31

    Photograph by Joe McNally

  • 32!32

    Unreliable GPS!

  • 33!33

    No GPS!

  • 34!34

    1 Dynamics, Control and Planning!2 State Estimation (Autonomy) !

    3 Swarm technology!

  • 35!

    Microsoft Kinect!

    Hokuyo!Laser Scanner!

    Operation in Unstructured Environments!

  • 36!

    x

    d1d2 d3

    d03d02

    d01

    Pillars!

    Robot!

    (x1, y1) (x3, y3)(x2, y2)

    Concurrently estimate !!Locations of pillars (6)!!Displacement of the robot (2)!

    Simultaneous Localization !And !Mapping!

    New robot position!

    Simultaneous Localization !And !Mapping!

  • 37

    1.8 GHz Core i3 processor, 8 GB RAM

    u- blox LEA-6T GPS module

    Hokuyo UTM-30LX LiDAR

    2 mvBlueFOX-MLC200w grayscale

    HDR cameras

    (fisheye lenses, 752 480, 25 Hz)

    IMU 100 Hz

    [Shen, Mulgaonkar, Michael, and Kumar 2014]

  • 38

    Heterogeneous Sensors

    Proprioceptive Sensors

    Inertial Measurement Unit

    Absolute Sensors

    GPS, Magnetometer

    Altimeter

    Relative Sensors

    Laser scanner

    Cameras

    zt = h(xt) + nt

    zt = h(xt, . . . ,xtk) + nt

    xt = f(xt1,ut1) + nt

  • 39!

    f2!

    f1! f0!f0f0f

    Features in environment!

    x0!

    x1!

    f3! f4!

    x2!

    x3!

    f6!

    f3f3fz00

    z10

    z20 z21z11

    z32z33

    z23

    z43

    z63x1 = f(x0, u01,t01)

    x2 = f(x1, u12,t12) x3 = f(x2, u23,t23)

    Robot!Pose!

    Simultaneous !Localization !And !Mapping!

    Simultaneous !Localization !And !Mapping!

  • 40!

    Map Refine (20 Hz)

    Pose Graph SLAM

    position

    Multi-Sensor Unscented

    Kalman Filter (100 Hz)

    velocity

    Estimation and Control Architecture!

    Trajectory Generator (20 Hz)

    Planner (20 Hz)

    User Interface

    Velocity estimator

    Visual odometry

    Laser odometry

    Altitude estimator

    Downward Camera (30Hz)

    Stereo Camera (25 Hz)

    IMU (100 Hz)

    Pressure Altimeter (20 Hz)

    Laser Scanner (20 Hz)

    GPS (10Hz)

    Controller (100 Hz)

  • 41!

    Onboard State Estimation!

    [Shen, Michael, and Kumar 2011]!

    IMU, Laser scanner, and camera!

    Auton Robot

    Lee, T. (2011). Geometric tracking control of the attitude dynamics ofa rigid body on SO 3 . In Proc. of the Amer. control conf., SanFrancisco, CA.

    Lee, T., Leok, M., & McClamroch, N. H. (2010). Geometric trackingcontrol of a quadrotor UAV on SE 3 . In Proc. of the IEEE conf.on decision and control, Atlanta, GA.

    Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory genera-tion and control for quadrotors. In Proc. of the IEEE intl. conf. onrobot. and autom., Shanghai, China.

    Mellinger, D., Michael, N., & Kumar, V. (2010). Trajectory generationand control for precise aggressive maneuvers with quadrotors. InProc. of the intl. sym. on exp. robot., Delhi, India.

    Mesbahi, M. (2005). On state-dependent dynamic graphs and theircontrollability properties. IEEE Transactions on Automatic Con-trol, 50(3), 387392.

    Michael, N., Mellinger, D., Lindsey, Q., & Kumar, V. (2010). TheGRASP multiple micro UAV testbed. IEEE Robotics & Automa-tion Magazine, 17(3), 5665.

    Nieuwstadt, M. J. V., & Murray, R. M. (1998). Real-time trajectorygeneration for differentially flat systems. International Journal ofRobust and Nonlinear Control, 8(11), 9951020.

    Ogren, P., Fiorelli, E., & Leonard, N. (2002). Formations with a mis-sion: stable coordination of vehicle group maneuvers. In Proc.of intl. sym. on mathematical theory networks and syst., NotreDame, IN.

    Olfati-Saber, R., & Murray, R. M. (2002). Distributed cooperative con-trol of multiple vehicle formations using structural potential func-tions. In Proc. of the IFAC world congress, Barcelona, Spain.

    Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in net-works of agents with switching topology and time-delays. IEEETransactions on Automatic Control, 49(9), 15201533.

    Shim, D., Kim, H., & Sastry, S. (2003). Decentralized nonlinear modelpredictive control of multiple flying robots. In Decision andcontrol, 2003. Proceedings. 42nd IEEE conference on (Vol. 4,pp. 36213626). New York: IEEE.

    Tabuada, P., Pappas, G. J., & Lima, P. (2001). Feasible formations ofmulti-agent systems. In Proc. of the Amer. control conf., Arling-ton, VA (pp. 5661).

    Tanner, H., Pappas, G. J., & Kumar, V. (2002). Input-to-state stabilityon formation graphs. In Proc. of the IEEE intl. conf. on robot. andautom., Las Vegas, NV (pp. 24392444).

    Turpin, M., Michael, N., & Kumar, V. (2011). Trajectory design andcontrol for aggressive formation flight with quadrotors. In Proc.of the intl. sym. of robotics research, Flagstaff, AZ.

    Vicsek, T., Czirk, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995).Novel type of phase transition in a system of self-driven particles.Physical Review Letters, 75(6), 12261229.

    Matthew Turpin is a Ph.D. candi-date in the Department of Mechan-ical Engineering and Applied Me-chanics at the University of Penn-sylvania. He works on formation de-sign and control of micro-aerial ve-hicles.

    Nathan Michael is a Research As-sistant Professor in the Departmentof Mechanical Engineering and Ap-plied Mechanics at the University ofPennsylvania. He received his Ph.D.in Mechanical Engineering from theUniversity of Pennsylvania in 2008.He works in the areas of dynamics,estimation, and control for groundand aerial robot systems.

    Vijay Kumar is the UPS Founda-tion Professor and the Deputy Deanfor Education in the School of En-gineering and Applied Science atthe University of Pennsylvania. Hereceived his Ph.D. in MechanicalEngineering from The Ohio StateUniversity in 1987. He has beenon the Faculty in the Departmentof Mechanical Engineering and Ap-plied Mechanics with a secondaryappointment in the Department ofComputer and Information Scienceat the University of Pennsylvaniasince 1987. He is a Fellow of the

    American Society of Mechanical Engineers (ASME) and the Institu-tion of Electrical and Electronic Engineers (IEEE).

  • 42!

    Autonomous Exploration!IMU, Laser scanner, and RGBD camera!

  • 43

  • 44!

    Lithium Polymer Batteries!

    0!

    200!

    400!

    600!

    800!

    1000!

    1200!

    1400!

    0! 50! 100! 150! 200! 250! 300! 350! 400! 450! 500!

    Spec

    ific

    Pow

    er (W

    /kg)

    !

    Specific Energy (Whr/kg)!

    Quadrotors with 10-20 min endurance!

    [B. Morgan, ARL and Y. Mulgaonkar, Penn]!

    Bolt (10 secs)!

    Armstrong (20 mins)!

    350

    Specific Energy (Whr/kg)[B. Morgan, ARL and Y.

    350

    Specific Energy (Whr/kg)[B. Morgan, ARL and Y.

    1000

    Spec

    ific

    Pow

    er (W

    /kg)

    1000

    Spec

    ific

    Pow

    er (W

    /kg) Loose

    weight!!

  • 45!

    Power!

    0!

    200!

    400!

    600!

    800!

    1000!

    1200!

    1400!

    0! 50! 100! 150! 200! 250! 300! 350! 400! 450! 500!

    Spec

    ific

    Pow

    er (W

    /kg)

    !

    Specific Energy (Whr/kg)!

    10,000 Whr/kg

    Lithium Polymer Batteries!

    Quadrotors with 10-20 min endurance!

    [B. Morgan, ARL and Y. Mulgaonkar, Penn]!

    Bolt (10 secs)!

    Armstrong (20 mins)!

    350

    Specific Energy (Whr/kg)[B. Morgan, ARL and Y.

    350

    Specific Energy (Whr/kg)[B. Morgan, ARL and Y.

    1000

    Spec

    ific

    Pow

    er (W

    /kg)

    1000

    Spec

    ific

    Pow

    er (W

    /kg) Loose

    weight!!

  • 46

    Reducing the Payload

    CPU: Intel Atom Processor, 1.6 GHz, 1 GB Ram

    Sensing: 2 grayscale Matrix Vision cameras,

    376x240 + IMU

    Weight: 740gram

    Power: ~120 W

    2012 [Shen, Mulgaonkar, Michael, and Kumar 2013]

  • 47

    Vision + IMU State Estimation

    Estimate rotations by tracking features

    Assuming features are known, estimate position

    Estimate scale with second camera

    Assuming pose is known, map features

  • 48!

    Vision + IMU State Estimation!

  • 49![Shen, Mulgaonkar, Michael, and Kumar, 2013]!

    Fast (4 m/s), Indoor Outdoor, foliage

    Indoor, 3-D Indoor/outdoor, visual SLAM

  • 50!

  • 51!51

    1 Dynamics, Control and Planning!2 State Estimation !

    3 Swarm technology!

  • 52!

    Collaboration in Small Teams!

    [Lindsey, Mellinger, and Kumar, 2012]

  • 53!

    1 Act independently

    2 Require only local information

    3 Anonymous behavior

  • 54!

    robot i

    robot j

    g(t) 2 SO(2)R3

    si,j(t) = xj(t) xi(t)

    Leader-Follower Networks!

    [Desai, Ostrowski, and Kumar, 1999; Turpin, Michael and Kumar, 2011]

  • 57!

    Control of Formation Shape and Group Motion!

    (Turpin, Michael, and Kumar, 2013)!

  • 58!

    [Kushleyev, Mellinger and Kumar 2012]

    Control of Formation Shape and Group Motion!

  • 59!

    Search and Rescue!

    [Michael et al, 2012]!

    N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, and S. Tadokoro, Collaborative mapping of an earthquake-damaged building via ground and aerial robots, J. Field Robotics, vol. 29, no. 5, pp. 832841, 2012.!

  • 60!7th, 8th, and 9th floors!

  • 61!

  • Thank you! The contributions and collaborations of the fo l low ing co l leagues are g race fu l l y acknowledged: A. Wolisz, K. Pister, R. Brodersen, E. Alon, G. Kelson, A. Niknejad, B. Nikolic, J. Wawrzynek, P. Wright, D. Tse, M. Maharbiz, J. Carmena, R. Knight, L. Van de Perre, and B. Gyselinckx, R. Muller, M. Mark, D. Chen, A. Parsha, S. Gambini, and all my current and past graduate students. Contributions by the BWRC member companies and the MuSyC and GSRC consortia are truly appreciated. Many thanks to V. Vinge, N. Stephenson, I. Asimov, and C. Stross for providing the true visions!