mlr session 10 ductile brittle

Upload: sabbeur

Post on 14-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 MLR Session 10 Ductile Brittle

    1/172

    1

    Ductile fractureExamples of applications

    Benot Tanguy

    Department of Nuclear MaterialsCommisariat lEnergie Atomique

    [email protected]

    With the acknowledged contribution ofJ. BessonW. BrocksS. Marie

  • 7/30/2019 MLR Session 10 Ductile Brittle

    2/172

    2

    Motivations

  • 7/30/2019 MLR Session 10 Ductile Brittle

    3/172

    3

    Motivations

    Residual

    strength

    ?!

  • 7/30/2019 MLR Session 10 Ductile Brittle

    4/172

    4

    Ductile fracture

    Ductile fracture mechanisms

  • 7/30/2019 MLR Session 10 Ductile Brittle

    5/172

    5

    Ductile fracture features

    Fracture surface : presence of dimples

    [Luu, PhD, 2006]

    inclusions

  • 7/30/2019 MLR Session 10 Ductile Brittle

    6/172

    6

    Ductile micromechanisms

    Industrial materials : presence of inclusions, precipitates

    Several scales

  • 7/30/2019 MLR Session 10 Ductile Brittle

    7/172

    7

    Ductile micromechanisms

  • 7/30/2019 MLR Session 10 Ductile Brittle

    8/172

    8

    Ductile micromechanisms

  • 7/30/2019 MLR Session 10 Ductile Brittle

    9/172

    9

    Ductile micromechanisms

    Nucleation : cavities creation (mechanisms to be defined!) related to plasticity

    Mechanisms:

    Voids issued form particules:

    Carbides, precipitates, (micron to nanometer scale)

    Iron carbides (Fe3C)[Al-Li] (Turck, 2007)

  • 7/30/2019 MLR Session 10 Ductile Brittle

    10/172

    10

    Ductile micromechanisms

    Dislocations pile-ups

    Deformation localisation (involved in coalescence process)

    [Zener mechanim]

    [Tanguy, 2005][Luu, PhD, 2007]

    Void nucleation : Energetic criteria + stress criteria(Surface creation) (interface separation

    Particle frcature)

  • 7/30/2019 MLR Session 10 Ductile Brittle

    11/172

    11

    Ductile micromechanisms

    Void Coalescence : final stage of the failure process

    Internal necking

    Coalescence in shear (Void sheet : 2nd particules population at lower scale

    involved)

    Internal necking

  • 7/30/2019 MLR Session 10 Ductile Brittle

    12/172

    12

    Ductile micromechanisms

    Void sheet

  • 7/30/2019 MLR Session 10 Ductile Brittle

    13/172

    13

    Short introduction to ductile fracture

    Main features of ductile fracture

    The three main steps of ductile fracture :

    1. Formation of microvoids through decohesion of the metallic matrix around

    inclusions or fracture of the particle,2. Growth of these voids through plastic flow of the matrix

    3. Colaescence of the voids and/or formation of the shear bands

    The plasticity is in general, not confined to the vicinity of the crack tip front

    Focus on macroscopic monotonic loading

  • 7/30/2019 MLR Session 10 Ductile Brittle

    14/172

    14

    Approaches for simulating crack extension

    1. Morphological (Global approach)

    no analysis of microscopic mechanisms mere transposition of the methods andreasonings of LEFM (SSY assumption)

    Node release + fracture mechanics criterion (R-curve)

    No splitting of dissipation into global plasticity and local separation

    Approach widely used in the industry because it is simple, but thetransposition of the results from one situation to another is somewhat

    problematic (size effect, material heterogeneities, anisotropic behavior)

    2. Cohesive surface

    Interface elements with traction-separation law responsible for local separation

    3. Continuum damage mechanics (Local approach)

    Unified constitutive equations for deformation and damage, e.g. porous metalplasticity

    Relies on micro-macro analyses more reliable but still relatively little used

    because of its complexity

    Simplic

    ity

    Complexca

    sesdescrip

    tion

  • 7/30/2019 MLR Session 10 Ductile Brittle

    15/172

    15

    Fracture of brittle material

    el

    c( ) 2a = =G

    elel

    el rel

    (2 ) (2 )

    UU

    B a B a = =

    G

    sep

    c2

    (2 )

    U

    B a

    = =

    ( )elrel sepcrack

    0U UA

    crack extends if

    energy release rate

    separation energy (SE)

    (energy per area)

    fracture criterion

    fracture stress c2E

    a

    =

    A.A. Griffith (1920)

    (to create surfaces)

    (more details in session 1)

  • 7/30/2019 MLR Session 10 Ductile Brittle

    16/172

    16

    Short introduction to ductile fracture

    Typical load-displacement curve of a cracked specimen :

    Small scale yielding

    Large small yielding

    Linear fracturemechanics

    Non-linear fracturemechanics

    Rp

  • 7/30/2019 MLR Session 10 Ductile Brittle

    17/172

    17

    Non linear elasticity: the J-integral

    Assumptions:

    Homogeneous, isotropic material

    Small strains

    Non linear elastic behavior:n

    B 0=Radial loading : no variation of the load trajectory

    No direct extension to cyclic loadings

    x

    y

    n

    T(n)

    ds

    ==== ds

    x

    u).n(TWdyJ

    W : elastic energy density

    T(n) : stress vector (stress acting on the contour)

    x

    u

    : partial derivative of the displacement vector

    ds : path increment on

    J-integral independent on

    J-integral: link between local parameters (near to crack tip) and global loading ->fracture

    parameterJ-integral = G, energy release rate (surface energy: unit J/m2) (Budiansky and Rice,73)

    Path-independant integral(Cherapanov, 1967), (Rice, 1968)

    Crack tip

    = ijij dw

    (more details in session 5)

    Stationnary crack

  • 7/30/2019 MLR Session 10 Ductile Brittle

    18/172

    18

    The J-integral

    x

    y

    n

    T(n)

    ds

    ==== ds

    x

    u).n(TWdyJ

    HRR stress field

    (non linear elastic material) )n,(~rIB

    J

    )n,(~rIB

    J

    ij1n

    n

    n0ij

    ij1n

    1

    n0ij

    ====

    ====

    ++++

    ++++

    ++++

    ==== rd

    x

    uTcosWJ

    r

    1~dx

    uTcosW

    ++++

    lorsque r 0

    r

    1~klij

    1n

    n

    ij1n

    1

    ijn

    0r

    1~

    r

    1~B ++++++++

    ====

    Stress singularity controlled by J-integral

    nB 0= plastic behavior only valid for monotonic loading

    J plays the role of an intensity factor like K in the case of LEFM

    Small strain deformation theory

    Elastic case: n=1

  • 7/30/2019 MLR Session 10 Ductile Brittle

    19/172

    19

    The J-integral

    Fracture criterion : J=Jc, Jc material characteristic

    Practical determination: ASTM standard E1820

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    0 200 400 600 800 1000 1200 1400 1600 1800 2000

    Ouverture (microns)

    Force(

    304L-1

    Size criterion reached for little propagation

    Value of J at initiation: Ji

    Value of J after 0.2 mm crack propagation: JIc

  • 7/30/2019 MLR Session 10 Ductile Brittle

    20/172

    20

    The J-integral: limitation

    For extending crack: -path dependence of J-geometry dependence of J-Da curves

    ( )el plex sepcrack crack

    WU U U

    A A

    = + +

    pl sep pldissc

    crack crack crack

    UU UR R

    A A A = = + = +

    energy balance

    dissipation rate

    commonly: Rpl causes geometry dependence

    Problem: separation of Rpl and c

    c

    plR >>

  • 7/30/2019 MLR Session 10 Ductile Brittle

    21/172

    21

    Global approach: the J-integral

    Size dependance of J

    J increases due to the plasticdissipation taking place in thecrack wake due to theprogressive elastic unloading,due to the nonradial loadingsin the active PZ of apropagating crack, and due to

    change in the crack tipgeometry

    JR very sentitive to sligth

    changes of constraintwhich affect a lot theextrinsic plasticdissipation -> Quantifiedby the so-called Q stress(2 parameters approach,

    needs FE calculations)

  • 7/30/2019 MLR Session 10 Ductile Brittle

    22/172

    22

    Global approach: the J-integral

    Size dependance of J

    E36 Steel (-50C)

    0

    50

    100

    150

    200

    250

    300

    0.00 0.20 0.40 0.60 0.80

    a/W

    JIC(KJ/m)

    SENB 0.03 < a/W < 0.77

    CCP 0.63 < a/W < 0.77

    Sumpter

  • 7/30/2019 MLR Session 10 Ductile Brittle

    23/172

    23

    Ductile fracture

    Continuum modelling of ductile damage

    The so-called local approach

  • 7/30/2019 MLR Session 10 Ductile Brittle

    24/172

    24

    Application : fracture toughness from Charpy tests

    Tanguy and al.

  • 7/30/2019 MLR Session 10 Ductile Brittle

    25/172

    25

    Application : Charpy test modelling

    Objective : simulation of the Charpy transition curve

  • 7/30/2019 MLR Session 10 Ductile Brittle

    26/172

    26

    Application : Charpy test modelling

  • 7/30/2019 MLR Session 10 Ductile Brittle

    27/172

    27

    Application : Charpy test modelling

  • 7/30/2019 MLR Session 10 Ductile Brittle

    28/172

    28

    Application : Charpy test modelling

  • 7/30/2019 MLR Session 10 Ductile Brittle

    29/172

    29

    Ductile failure model

  • 7/30/2019 MLR Session 10 Ductile Brittle

    30/172

    30

    Parameters adjustement

    )]2

    1ln(1[22

    aR

    ra

    zz

    ++=

  • 7/30/2019 MLR Session 10 Ductile Brittle

    31/172

    31

    Parameters adjustement

  • 7/30/2019 MLR Session 10 Ductile Brittle

    32/172

    32

    Mesh size dependance

    In classical approach, mesh size is a compromise:-description of the stress-strain gradients-size of the FE calculations-fracture energy related to mesh size

    Notched specimen

    [Mealor, 2004]

  • 7/30/2019 MLR Session 10 Ductile Brittle

    33/172

    33

    Mesh size dependance

    Compact tension specimen

  • 7/30/2019 MLR Session 10 Ductile Brittle

    34/172

    34

    Mesh size dependance

    Compact tension specimen

  • 7/30/2019 MLR Session 10 Ductile Brittle

    35/172

    35

    Mesh size dependance

    0

    abBVW RR == 00 baBabBSW RR 000 )/()(/ ===

    Interpretation Failure is a consequence of localisation in a strip of thickness b Estimation of the apparent surface energy

    Dissipated energy to fracture

    Characteristic length: b=In standard FE : b~~hSo that

    h00 =h has to be fixed related to microstructure

  • 7/30/2019 MLR Session 10 Ductile Brittle

    36/172

    36

    Modelling of Charpy test

    FE Mesh

  • 7/30/2019 MLR Session 10 Ductile Brittle

    37/172

    37

    Modelling of Charpy test

    Ductile fracture simulation : Load-displacement curve

  • 7/30/2019 MLR Session 10 Ductile Brittle

    38/172

    38

    Charpy test modelling

  • 7/30/2019 MLR Session 10 Ductile Brittle

    39/172

    39

    Charpy test modelling

  • 7/30/2019 MLR Session 10 Ductile Brittle

    40/172

    40

    Charpy test modelling

    DYNVIQS

    Loading rate effectExp.

  • 7/30/2019 MLR Session 10 Ductile Brittle

    41/172

    41

    Towards ductile to brittle transition

  • 7/30/2019 MLR Session 10 Ductile Brittle

    42/172

    42

    Towards ductile to brittle transition

    Constant value of the peak of the maximal principal stress with

    increasing loading

    CVN and CT

    without damage

    modelling:

  • 7/30/2019 MLR Session 10 Ductile Brittle

    43/172

    43

    Towards ductile to brittle transition

    i i i i

  • 7/30/2019 MLR Session 10 Ductile Brittle

    44/172

    44

    Towards ductile to brittle transition

    T d d il b i l i i

  • 7/30/2019 MLR Session 10 Ductile Brittle

    45/172

    45

    Towards ductile to brittle transition

    On-going work

    L l h li ti 2

  • 7/30/2019 MLR Session 10 Ductile Brittle

    46/172

    46

    Local approach- application 2

    Anisotropic plastic models for sheets materials

    Besson and al.

  • 7/30/2019 MLR Session 10 Ductile Brittle

    47/172

    T t i

  • 7/30/2019 MLR Session 10 Ductile Brittle

    48/172

    48

    Test specimens

    Test specimens

  • 7/30/2019 MLR Session 10 Ductile Brittle

    49/172

    49

    Test specimens

    Plastic anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    50/172

    50

    Plastic anisotropy

    Modelling plastic anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    51/172

    51

    Modelling plastic anisotropy

    New model for plastic anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    52/172

    52

    New model for plastic anisotropy

    New model for plastic anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    53/172

    53

    New model for plastic anisotropy

    Yield surface shape

  • 7/30/2019 MLR Session 10 Ductile Brittle

    54/172

    54

    Yield surface shape

    (biaxial loading)

    1E

    Yield surface shape

  • 7/30/2019 MLR Session 10 Ductile Brittle

    55/172

    55

    Yield surface shape

    New model for plastic anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    56/172

    56

    New model for plastic anisotropy

    Introducing plastic anisotropy in the GTN model

  • 7/30/2019 MLR Session 10 Ductile Brittle

    57/172

    57

    g p py

    Ductile tearing of pipeline steel

  • 7/30/2019 MLR Session 10 Ductile Brittle

    58/172

    58

    g p p

    Motivations

  • 7/30/2019 MLR Session 10 Ductile Brittle

    59/172

    59

    Motivations

  • 7/30/2019 MLR Session 10 Ductile Brittle

    60/172

    60

    Ductile tearing of pipeline steel

  • 7/30/2019 MLR Session 10 Ductile Brittle

    61/172

    61

    g p p

    Outline

  • 7/30/2019 MLR Session 10 Ductile Brittle

    62/172

    62

    Sheet materials

  • 7/30/2019 MLR Session 10 Ductile Brittle

    63/172

    63

    Test specimens

  • 7/30/2019 MLR Session 10 Ductile Brittle

    64/172

    64

    Large facility at Arcelor-Mittal

  • 7/30/2019 MLR Session 10 Ductile Brittle

    65/172

    65

    Plastic anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    66/172

    66

    Modelling plastic anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    67/172

    67

    Modelling plastic anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    68/172

    68

    Example : Fit for X100 steel

  • 7/30/2019 MLR Session 10 Ductile Brittle

    69/172

    69

    Application : limit load of a pressurized pipe under bending

  • 7/30/2019 MLR Session 10 Ductile Brittle

    70/172

    70

    compression

    buckling

    Ductile rupture modified GTN model

  • 7/30/2019 MLR Session 10 Ductile Brittle

    71/172

    71

    parameters

    X70 steel

  • 7/30/2019 MLR Session 10 Ductile Brittle

    72/172

    72

    Wide plate test

  • 7/30/2019 MLR Session 10 Ductile Brittle

    73/172

    73

    Wide plate test: measurements

  • 7/30/2019 MLR Session 10 Ductile Brittle

    74/172

    74

    sudden propagation

    Parameters adjustement

  • 7/30/2019 MLR Session 10 Ductile Brittle

    75/172

    75

    Characteristic length, mesh size

  • 7/30/2019 MLR Session 10 Ductile Brittle

    76/172

    76

    Simulation

  • 7/30/2019 MLR Session 10 Ductile Brittle

    77/172

    77

    Plate thickness

    Crack tunneling

  • 7/30/2019 MLR Session 10 Ductile Brittle

    78/172

    78

    Plate thickness effect on Z

  • 7/30/2019 MLR Session 10 Ductile Brittle

    79/172

    79

    Through-thickness hardness gradient

  • 7/30/2019 MLR Session 10 Ductile Brittle

    80/172

    80

    X100 Europipe -- Plate

  • 7/30/2019 MLR Session 10 Ductile Brittle

    81/172

    81

    X100 ?

  • 7/30/2019 MLR Session 10 Ductile Brittle

    82/172

    82

    Plastic anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    83/172

    83

    Fracture surface : two void populations

  • 7/30/2019 MLR Session 10 Ductile Brittle

    84/172

    84

    Same observations on Charpy specimens

  • 7/30/2019 MLR Session 10 Ductile Brittle

    85/172

    85

    Delamination on CT specimens

  • 7/30/2019 MLR Session 10 Ductile Brittle

    86/172

    86

    Results of mechanicals tests

  • 7/30/2019 MLR Session 10 Ductile Brittle

    87/172

    87

    Local approach

  • 7/30/2019 MLR Session 10 Ductile Brittle

    88/172

    88

    Local approach

  • 7/30/2019 MLR Session 10 Ductile Brittle

    89/172

    89

    Model

  • 7/30/2019 MLR Session 10 Ductile Brittle

    90/172

    90

    FE meshes

  • 7/30/2019 MLR Session 10 Ductile Brittle

    91/172

    91

    Elastoplastic anisotropic behevior

  • 7/30/2019 MLR Session 10 Ductile Brittle

    92/172

    92

    FE results for notched bars

  • 7/30/2019 MLR Session 10 Ductile Brittle

    93/172

    93

    FE results for plane strain specimens

  • 7/30/2019 MLR Session 10 Ductile Brittle

    94/172

    94

    FE results for Charpy specimens (static and dynamic)

  • 7/30/2019 MLR Session 10 Ductile Brittle

    95/172

    95

    FE results for CT specimens

  • 7/30/2019 MLR Session 10 Ductile Brittle

    96/172

    96

    Parametric study : yield surface

  • 7/30/2019 MLR Session 10 Ductile Brittle

    97/172

    97

    X100 NSC Plate & Prestrain

  • 7/30/2019 MLR Session 10 Ductile Brittle

    98/172

    98

    Prestrain at NSC

  • 7/30/2019 MLR Session 10 Ductile Brittle

    99/172

    99

    Application : toughness after UOE forming or ground movement

  • 7/30/2019 MLR Session 10 Ductile Brittle

    100/172

    100

    Similar characterization program as for the Europipe material

  • 7/30/2019 MLR Session 10 Ductile Brittle

    101/172

    101

    Cyclic behavior

  • 7/30/2019 MLR Session 10 Ductile Brittle

    102/172

    102

    Rupture anisotropy : notched bars

  • 7/30/2019 MLR Session 10 Ductile Brittle

    103/172

    103

    Rupture anisotropy : CT specimens

  • 7/30/2019 MLR Session 10 Ductile Brittle

    104/172

    104

    Prestraining reduces ductility

  • 7/30/2019 MLR Session 10 Ductile Brittle

    105/172

    105

    and crack growth resistance

  • 7/30/2019 MLR Session 10 Ductile Brittle

    106/172

    106

    CODLoad for 0% and 6% prestrain

  • 7/30/2019 MLR Session 10 Ductile Brittle

    107/172

    107

    Damage model with kinematic hardening

  • 7/30/2019 MLR Session 10 Ductile Brittle

    108/172

    108

    FE simulation of crack advance

  • 7/30/2019 MLR Session 10 Ductile Brittle

    109/172

    109

    Simulation of rupture anisotropy

  • 7/30/2019 MLR Session 10 Ductile Brittle

    110/172

    110

    Conclusions : main characteristics for ductile rupture of pipeline steels

  • 7/30/2019 MLR Session 10 Ductile Brittle

    111/172

    111

    Local approach

  • 7/30/2019 MLR Session 10 Ductile Brittle

    112/172

    112

    On-going work

    Cohesive model

  • 7/30/2019 MLR Session 10 Ductile Brittle

    113/172

    113W. Brocks and al.

    Use of cohesive elements for thesimulation of ductile tearing

    Cohesive model

    W. Brocks and al.

  • 7/30/2019 MLR Session 10 Ductile Brittle

    114/172

    114

    a

    crackLigament

    Separation of thecohesive elements

    Phenomenological representationof various failure mechanisms

    by cohesive interfaces

    Implementation:

    structure is divided into

    material with elastic-plastic

    properties(continuum elements)

    interface with damageproperties(cohesive elements)

    Cohesive law

    two material parameters:

    TractionTraction--Separation Law (TSL)Separation Law (TSL)

  • 7/30/2019 MLR Session 10 Ductile Brittle

    115/172

    115

    CrackLigament

    c

    c n n n

    0

    ( )d

    =

    Cohesive stress, c (MPa) (maximumstress carrying capacity of the

    interface)

    Critical separation, c (mm)

    Separation energy, c (J/mm2), defined by

    ( ) ( )

    ( ) ( )

    n n

    1 1

    n 2 n 2

    0 2 0 2

    2

    n 1

    n n c n c 1 n 2

    3 2

    2 n c

    2

    ( ) ( ) 1

    2 3 1

    set A

    SET A will be used for pipe tests FE calculations

    Application: cracked pipe

    Common assumptions to F.E. analyses

    Geometry definition : 1 quarter of the pipe, straight crack front

    Initial crack size : =50 (correspond to the fatigue defect)

    Modelling

  • 7/30/2019 MLR Session 10 Ductile Brittle

    158/172

    158

    ( p g )

    At the end of the pipe, thin rigid ring to take into account the embedded section

    Application: cracked pipe

    40

    60

    80

    100

    120

    140

    M(

    kN.m

    )

    Test 1

    J-Da approach

    J-a approach :

    &&

    Maximum moment well predicted but

    conservative prediction of the global

    behaviour :

  • 7/30/2019 MLR Session 10 Ductile Brittle

    159/172

    159

    0

    20

    40

    60

    80

    100

    120

    140

    0 1 2 3 4 5 6CMOD (mm)

    M(

    kN.m

    )

    Test 1

    J-Da approach

    020

    0 1 2 3 4 5 6rotation ()

    expmax,MaJmax,M

    expmax,MaJmax,M

    expaJ

    rotationrotation

    CMODCMODaa

    >>

    >>>

    &&

    0

    20

    40

    60

    80

    100

    120

    140

    0 5 10 15 20 25 30 a (mm)

    M(

    kN.m

    )

    Test 1

    J-Da approachc

    Application: cracked pipe

    40

    60

    80

    100

    120

    140

    M(

    kN.m

    )

    Test 1

    J-Da approach

    Ji-Gfr approach

    Energetic approach :

    Ji-Gfrapproach

  • 7/30/2019 MLR Session 10 Ductile Brittle

    160/172

    160

    020

    40

    60

    80

    100

    120140

    0 2 4 6 8 10CMOD (mm)

    M(

    kN.m

    )

    Test 1

    J-Da approach

    Ji-Gfr approach

    0

    20

    40

    0 1 2 3 4 5rotation ()

    Ji Gfr approach

    020

    40

    60

    80

    100

    120

    140

    0 5 10 15 20 25 30 a (mm)

    M(

    kN.m

    )

    Test 1

    J-Da approach

    Ji-Gfr approachc

    Application: cracked pipe

    120

    140

    120

    140

    Energetic approach :

    Ji-Gfrapproach

  • 7/30/2019 MLR Session 10 Ductile Brittle

    161/172

    161

    0

    20

    40

    60

    80

    100

    120

    -1.2 -1 -0.8 -0.6 -0.4 -0.2 0strain gage J2 (%)

    M(

    kN.m

    )

    Test 1

    Ji-Gfr approach

    0

    20

    40

    60

    80

    100

    120

    0 2 4 6 8ovalisation ov2 (mm)

    M(

    kN.m

    )

    Test 1

    Ji-Gfr approach

    O-2J-3

    J-2

    Application: cracked pipe

    Local approach : Rousselier model

    Geometry definition : 1 quarter of the pipe, straight crack front

    Initial crack size : =50 (correspond to the fatigue defect)

    27 elements along the crack front : average length = 0.55 mm

  • 7/30/2019 MLR Session 10 Ductile Brittle

    162/172

    162

    Application: cracked pipe

    Local approach : Rousselier model

    Early convergence problems, located at the inner surface crack front element due tonecking

    140

  • 7/30/2019 MLR Session 10 Ductile Brittle

    163/172

    163

    none influence of 1) the element length in the trough-thickness direction 2) a pre-damaged crack front elements

    020

    40

    60

    80

    100120

    0 1 2 3 4CMOD (mm)

    M(

    kN.m)

    Test 1

    Rousselier model

    Application: cracked pipe

    Local approach : Rousselier model

    Early convergence problems, located at the inner surface crack front element due tonecking

    140

  • 7/30/2019 MLR Session 10 Ductile Brittle

    164/172

    164

    none influence of 1) the element length in the trough-thickness direction 2) a pre-damaged crack front elements

    020

    40

    60

    80

    100120

    0 1 2 3 4CMOD (mm)

    M(

    kN.m)

    Test 1

    Rousselier model

    Application: cracked pipe

    Local approach : Rousselier model

    mesh size influence of the convergence study : meshes with = 0.3 and 0.45 mm

  • 7/30/2019 MLR Session 10 Ductile Brittle

    165/172

    165

    convergence problems appears later when the mesh size increase.

    0

    2040

    60

    80

    100

    120140

    0 1 2 3 4CMOD (mm)

    M(

    kN.m)

    Test 1

    l = 0.45mm

    l = 0.3 mml = 0.15 mm

    Application: cracked pipe

    Local approach : Rousselier model

    crack initiation prediction : which criterion ?1) initiation when one integration point reaches the critical voids fraction fc

    2) initiation when at least one element is fully failed

  • 7/30/2019 MLR Session 10 Ductile Brittle

    166/172

    166

    Test1 (from DDP) : Mini = 74.8 kN.m & Jini = 97.5 kJ/m

    From CT12.5 tests : Jini = 100 kJ/m

    criterion 1 criterion 2

    M (kN.m) J (kJ/m) M (kN.m) J (kJ/m)

    = 0.15 mm 61.0 58.3 75.7 100.7

    = 0.3 mm 60.4 56.8 86.9 146.2

    = 0.45 mm 101.8 230.4 109.1 284.3

    = 0.3 mm + notch 102.4 234.2 106.3 262.4

    Remark : J values are deduced from the F.E. calculation conducted for the J-a analysis

    Application: cracked pipe

    Choice of the new element shape :

    The convergence of the calculation could be improved by decreasing the height h of the

    elements in the crack growth area :

  • 7/30/2019 MLR Session 10 Ductile Brittle

    167/172

    167

    h = Lc / 2

    Application: cracked pipe

    New calibration of the parameters :

    pre-identification :D = 2 f 0 = 1,4.10

    -3 ( Franklin relation)

    fc = 0,05 1 = flow = 450 MPa

  • 7/30/2019 MLR Session 10 Ductile Brittle

    168/172

    168

    CT test calculation : Lc = 0,4 mm

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 1 2 3 4 5

    Da (mm)

    CMOD

    (mm)

    CT2 test

    Rousselier model

    0

    5000

    10000

    15000

    20000

    25000

    30000

    0 1 2 3 4 5

    CMOD (mm)

    F(N)

    CT2 test

    Rousselier model

    Application: cracked pipe

    Pipe test analysis

    Geometry definition : 1 quarter of the pipe, straight crack front

    Initial crack size : =50 (correspond to the fatigue defect)

    27 elements along the crack front : average length = 0.55 mm

  • 7/30/2019 MLR Session 10 Ductile Brittle

    169/172

    169

    Application: cracked pipe

    Pipe test analysis

    60

    80

    100

    120

    140

    (kN.m

    )

    Test 1

    J-Da approach 40

    60

    80

    100

    120

    140

    M(

    kN.m

    )

    Test 1

    Ji-Gfr approach

  • 7/30/2019 MLR Session 10 Ductile Brittle

    170/172

    170

    0

    20

    40

    0 2 4 6 8 10

    CMOD (mm)

    M Ji-Gfr approach

    Rousselier model

    0

    20

    40

    60

    80

    100

    120

    140

    -1 0 1 2 3 4 5 6 7

    ov2 (mm)

    M(

    kN.m

    )

    Test 1

    Ji-Gfr approach

    Rousselier model

    0

    20

    -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

    J2 (%)

    Rousselier model

    O-2J-3

    J-2

    Application: cracked pipe

    Pipe test analysis

    Crack initiation : 1 element fully damaged (all integration points closed to the crack plan have reached fc)

    Crack growth calculation : a = Area of fully damaged elements / Thickness

  • 7/30/2019 MLR Session 10 Ductile Brittle

    171/172

    171

    0

    20

    4060

    80

    100

    120

    140

    0 5 10 15 20 25 30

    a (mm)

    M(

    kN.m

    )

    Test 1

    J-Da approach

    Ji-Gfr approach

    Rousselier model

    Application: cracked pipe

    Conclusions

    3 approaches have been considered : J-a, Ji-Gfr and Rousselier model

    initiation Values at the maximum bending moment

    M (kN.m) J (kJ/m) M (kN.m) Rotation () CMOD (mm) ( )

  • 7/30/2019 MLR Session 10 Ductile Brittle

    172/172

    172

    The 3 approaches give good initiation prediction

    J-a approach leads to a good estimation of the maximum endurable moment but underestimate displacements (rotation,

    CMOD,.)

    Ji-Gfr approach gives a good prediction of the complete behaviour of the pipe

    a (mm)Test 1 74.8 97.5 124.6 2.47 >4 6

    J-a 75.5 100 119.5 1.08 2.87 6

    Ji-Gfr 75.5 100 126.8 2.25 6 11

    Rousselier 75.7 100.7 - - - -