mj2412 seu through tes feb 3 2010

Upload: akatew-haile-mebrahtu

Post on 02-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    1/25

    integrated thermal energy storage

    Viktoria Martin, Ph.D.

    Renewable Energy Technology Advanced Course, 2010

    1

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    2/25

    pp ca ons or ens e eyon o wa er s orage ,Latent Heat TES, and using Chemical Reactions

    Underground Thermal Energy Storage

    Storage in District Energy Systems

    Storage for Solar Thermal Power

    Overheating in the Greenhouse Sector

    etc

    2Department of Energy Technology

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    3/25

    Thermal Energy Storage the Hunt forNe awatt hours

    The IEA has recently identifiedthe cost of CO2 reductions forvarious measures working onend-use efficiency is estimated toactuall have a ne ative cost!

    Thermal Energy Storage (TES) isthe storage of heat and/or cold. It

    s a ey componen or en -useefficiency.

    TES enables the Rational Use of

    EnergyMinimize part load operation of

    e ui ment for heatin and coolin . From the IEA 2008 Ener Technolo Pers ectives

    Peak Shaving in the Electrical EnergySystem

    Increased use of natural sources for

    TES facilitates DistributedCo eneration of Power Heat and

    heating and cooling, e.g. storenighttime cold for use duringdaytime.

    Cold

    TES enables increased use of

    storage as well as seasonalstorage.

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    4/25

    Underground Thermal EnergyStorage (UTES)

    4

    IEA/ECES Annex 14 State-of-the-Art Report

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    5/25

    A lar e invisible isolated stora e volume.

    For seasonal or daily storage applications.

    Aquifer Thermal Energy Storage (ATES)

    .

    possibilities for large, invisible storage with high capacity and

    power properties.,

    level.

    Borehole Thermal Energy Storage (BTES)

    single plastic u-tube with circulating heat transferred fluid(glycol solution)

    means that the conductivity of the ground, and groundwater flow around the borehole site are important.

    5

    response.

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    6/25

    6

    IEA/ECES Annex 14 State-of-the-Art Report

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    7/25

    BTES Systems example:

    Karlstad

    Photo: Sweco FFNS

    101 boreholes

    Geotech120 m deep5.5 m apart

    7

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    8/25

    ,

    seasonal storage of solar heat

    50 single family homes

    summer: storing excess heat in the ground

    winter: heating wo heat pumpore o es, m eep

    Solar fraction: 70%Source: Prof. Hellstrm, Lund University

    8

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    9/25

    9

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    10/25

    Hot Water Storage in DistrictHeating Systems

    Contacts:

    [email protected]

    [email protected]

    10

    Vxj Energi AB, 40000 m3, 2700 MWh heat

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    11/25

    s r c oo ng e wor oc o m

    ree- oo ng rom e a cSea

    Waste Cooling from Electrical

    Heat Pum s300 MW

    380 GWh/yearConventional Compression

    Chillers

    11

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    12/25

    District Cooling Storage Hornsberg, Stockholm

    5 C water pumped Cold water

    through a heatexchanger and cool

    the DC network

    e vere to t e eman .

    Because of cold TES, more

    customers can be connected.

    District

    Cooling Net

    Heat

    Exchanger

    Mechanical chillers make sure that

    o

    www.fortum.se

    the water temperature is stable.

    12

    Contact person: [email protected]

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    13/25

    Snow Storage CoolingSundsvall Hospital

    Contact: K ell.sko sber snow ower.se

    13

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    14/25

    Storage for Solar ThermalPower Necessar for continuous o eration alternativel for ra id

    start-up in the morning. Molten salt (sensible heat storage only)

    Sensible storage in solid material (Sand, Concrete etc)

    Emerging technology:High Temp. PCM storage

    Chemical reactions

    14

    Sou r c e : NREL , USA

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    15/25

    Storage in Solar ThermalPower Applications

    15

    W a r e r k a r e t a l ., I EA / ECES A n n e x 1 8 4 t h W o r k s h o p

    w w w .w e b f o r u m . co m / a n n ex 1 8

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    16/25

    Solar Power with molten saltstorage

    16

    So u r c e : Sa n d i a N a t i o n a l L ab o r a t o r y

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    17/25

    Advanced TES fortransportation

    reeoptions Chemical ReactionsHeat of Reaction

    orpt onTransporting dry sorbent.

    Heat is discharged as water

    PCMMaking use of the heat

    involved in phase changevapor s a sor e on

    surfaceprocess of suitable material,

    like sodium acetate.

    17Department of Energy Technology

    Ny Teknik, May 2007

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    18/25

    Energy Transportation using

    advanced TES-technology.

    10 MWh/m3 cost-effective!

    Regional (~ 1000 km) transportation ofbiomass 0.8-3 MWh/m cost-effective!

    Local transportation of heat ( order of 10 3 -effective!

    So, with TES technology 200W m t s ou e poss e to

    reach cost-effective transportation ofwaste heat for some distance!

    18Department of Energy Technology

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    19/25

    Feasibility Study Mobile TESin District Heating System

    19

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    20/25

    Weilong Wang, Mlardalen University, 2009

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    21/25

    -

    TABLE37MELTINGTEMPERATURE AN DSTORAGECAPACITYOF TH EINVESTIGATEDPC MS

    PCMChoice

    , 3 2

    MeltingTemp.[C] 58 89 120

    TransportedHeat(45

    120C)pertransport

    [MWh]

    4.3 3.3 4.5

    a en ea

    [kWh/tonne]

    Martin et al IEA/ECES Annex 18 2010

    Alfred Schneider Conce t

    21

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    22/25

    Ulriksdals Castle will make use of itsown reen ouse E ect

    Seasonal store of summertime

    excess heat in Greenhouse

    A greenhouse typically collects 3

    t mes ts own annua energy

    consumption.

    Case study: Slottstrdgrden

    Ulriksdal and Royal Castle in the

    area:

    There is theoretically enough

    excess to also heat the castle

    22Department of Energy Technology

    fl l d hfl l d hfl l d hfl l d h

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    23/25

    Energy flows closed greenhouseEnergy flows closed greenhouseEnergy flows closed greenhouseEnergy flows closed greenhouse

    Aart Snijders, If Technology, Annex 22 preliminary Workshop, Ankara, 2007

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    24/25

    Solar Thermal Cooling withBuilt-in Storage Function

    condenser/(evaporator)

    Heat of condensation

    Vapor

    Reactor

    as e ea

    Supply

    Salt t rap/

    crystals

    24

    . .

  • 7/27/2019 MJ2412 SEU Through TES Feb 3 2010

    25/25

    Thermal Energy Storage Concepts exists,

    wSensible storage being commercially available,-

    PCM-technology being a merging technology,

    close to commercial9Material development needed

    9 System Integration Know-How needed

    Chemical Reactions at basic research stage with afew systems being close to commercial (e.g.,

    matewe or coo ng

    As an Energy Engineer, consider the

    25