mitochondrial studies in a novel disorder associated with ...€¦ · mitochondrial studies in a...

1
Mitochondrial studies in a novel disorder associated with NUBPLassociated mitochondrial Complex I deficiency in patients with global developmental delays, ataxia, cerebellar and pons hypoplasia Virginia Kimonis 1 , Peggy S. Eis 2 , Kathy Hall 1 , Sumit Parikh 3 , Daryl A. Scott 4 , Mary Kay Koenig 5 , Andrew Maclean 6 , Sha Tang 7 , Anton N. Hasso 8 , Janneke Balk 6 , Elizabeth Chao 1,7 , Eli Hatchwell 2 ABSTRACT The NUBPL gene (MIM 613621) was first reported as a cause of mitochondrial Complex I deficiency syndrome (MIM 252010) in 2010, and only seven families have been reported worldwide. We now report clinical features of 5 patients in 4 families, representing the largest number of patients diagnosed worldwide with NUBPL Complex I deficiency (CID). Patients were diagnosed using Whole Exome Sequencing (WES) and all were found to be compound heterozygous for a NUBPL (NM_025152) splicing mutation (c.81527T>C) that is common in the population (~1% frequency), plus a rarer nonsynonymous or splicing mutation (in trans) as follows: c.311T>C (p.L104P) in families 1 (cases 1 and 2) and 4 (case 5), c.693+1G>A in family 2 (case 3), and c.545T>C (p.V182A) in family 3 (case 4). We note that in 3 of 4 families (all except family 1), the c.81527T>C mutation is present in cis with c.166G>A (p.G56R), whose pathogenicity remains in question. Primary clinical features of the CID patients, who are presently ages 319 years, include onset of neurological symptoms at ages 318 months, global developmental delay, ataxia, nystagmus, speech articulation difficulties, and cerebellar dysfunction (brain MRIs show progressive cerebellar and pons hypoplasia) and Leigh like phenotype in one individual. Importantly, despite having a diagnosis of CID, most of the patients tested normal in an electron transport chain assay (fibroblast or muscle), including for Complex I activity. Functional studies in yeast (Yarrowia lipolytica) were performed and confirmed the pathogenicity of the nonsynonymous NUBPL mutation leading to the L104P substitution. Biochemical assays in patient fibroblasts showed mitochondrial functional differences, and differentiated neurons are being utilized to screen for and identify novel therapies for these patients. In summary we present clinical features of a unique new NUBPLassociated mitochondrial complex 1 disorder identified by WES and promising treatment studies in yeast and patient fibroblasts. CLINICAL FINDINGS IN PATIENTS WITH NUBPL DISEASE Cases 1 and 2 (Family 1) CLINICAL HISTORY: Case 1 is a 16yearold girl with ataxia, developmental delay, and cerebellar abnormalities. She developed tremulousness and increased rigidity at age 3 months. A brain MRI at 9 months of age revealed cerebellar atrophy. A cerebellar biopsy at age 1 year showed enlarged Purkinje cells, non diagnostic. Followup brain MRIs show progressive cerebellar abnormalities (Figure 1). ETC analysis on a skeletal muscle biopsy sample tested normal for complexes IIV although an elevated citrate synthase level was noted. Her sibling, Case 2, is a 6yearold girl with similar clinical features (ataxia, developmental delay, and cerebellar abnormalities) developing at age 3 months. Her brain MRI at age one year showed similar cerebellar abnormalities (Figure 1). MOLECULAR DIAGNOSIS: Diagnostic exome sequencing confirmed compound heterozygosity of two alterations in the NUBPL gene, c.81527T>C and c.311T>C (p.L104P), in both affected siblings. Variant c.81527T>C (father) is a branch site splicing mutation that was previously reported in Complex I deficiency patients (Calvo et al. 2010; Kevelam et al. 2013); it is present at ~1% frequency in European ancestry subjects (Lek et al. 2016). Both patients are currently on a mitochondrial cocktail therapy (coenzyme Q10, carnitine, biotin, alpha lipoic acid, and vitamins E, C, and B complex) and this has resulted in improvement, particularly in the younger sibling. Case 1, age 3 yrs Case 1, age 16 yrs Case 2, age 2 yrs Case 2, age 5 yrs Figure 1: Progressive brain MRI images for Cases 1 and 2 Left panels: Brain anatomy of Case 1 at ages 3 and 16 years showing cerebral atrophy. Most of the cerebellar white matter has been lost with stable diffuse atrophy. Right panels: Case 2 at ages 2 and 5 years also showing cerebral atrophy and partial absence of the inferior portion of the cerebellar vermis. Case 3 (Family 2) CLINICAL HISTORY: Case 3 is a 4year old girl presenting with ataxia, developmental delay, and cerebellar abnormalities. Regression in motor skills were noted at age 1314 months. She lost ability to stand without support and became clumsier. Hypotonia and speech articulation difficulties were also noted, but she has normal cognition. ETC analysis (skin fibroblasts) was essentially normal. Her brain MRI is shown in Figure 2. Neuroimaging (image not shown) also showed stable largely symmetric punctate areas of signal abnormality and restricted diffusion of the genu of the corpus callosum. MR spectroscopy revealed a lactate peak within the cerebellum. Figure 2: Brain MRI image for Case 3 Sagittal image shows loss of cerebellar volume, with most notable atrophy in the inferior vermis. We were unable to establish if the two families are related (Kevelam et al. family did not wish to participate in further research at this time). She is currently on a mitochondrial cocktail. Her fibroblasts showed a clinical response to EPI743 (Edison Pharmaceuticals). MOLECULAR DIAGNOSIS: She was initially diagnosed with Infantile Neuroaxonal Dystrophy (INAD, MIM 256600) because of her MRI findings; however, genetic testing for PLA2G6 mutations was negative. Clinical exome sequencing was ordered by the Cleveland Clinic and she was found to be a compound heterozygote: c.81527T>C and c.166G>A (in cis) from her mother and c.693+1G>A from her father, a combination previously reported in a case from the US (Kevelam et al. 2013). Case 4 (Family 3) CLINICAL HISTORY: Case 4 is a 4year old boy with global developmental delay, abnormal movements, nystagmus and lactic acidemia. After birth, he was noted to have generalized hypertonia, clonus, a weak cry, and poor feeding. He is nonverbal and has mild dysmorphic features. His brain MRI is shown in Figure 3. Figure 3: Brain MRI image for Case 4, age 12 months Reported as normal except for slightly prominent Sylvian fissures/subarachnoid spaces. MOLECULAR DIAGNOSIS: Clinical exome sequencing was ordered by the Baylor College of Medicine and he was found to be a compound heterozygote: c.81527T>C from his mother and c.545T>C (p.V182A) from his father. Array CGH (CMAHR+SNP, v. 9.1.1) also revealed a 16p12.2 microdeletion (see Girirajan et al.), which may be contributing to the patient’s symptoms. Case 5 (Family 4) CLINICAL HISTORY: Case 5 is a 19year old young man who was healthy until age 18 months. Following an acute episode he became spastic, wheelchair bound and severely dysarthric. He had an elevated CSF lactate and was diagnosed with a Leighlike a mitochondrial disorder. His IQ has tested in the “mild mental retardation range”. His brain MRI is shown in Figure 4. A repeat brain MRI (image not shown) at age 14 years showed severe atrophy and abnormal flair signal in the pons and cerebellum, with normal cerebral volume. Figure 4: Brain MRI image for Case 5 Showed cerebellar encephalomalacia with severe atrophy of the cerebellum and pons. MOLECULAR DIAGNOSIS: Clinical exome sequencing was ordered by the University of Texas Medical School and he was found to be a compound heterozygote: c.81527T>C and c.166G>A (in cis) from his mother and c.311T>C (p.L104P) from his father, the same missense mutation found in Family 1. Case 3, age 3 yrs Case 4, age 3 yrs Case 5, age 6 yrs CLINICAL SUMMARY OF 5 CASES WITH NUBPL CI DEFICIENCY Case No. Family No. Age (yr) Sex Mutation 1 Mutation 2 Devel. delay Ataxia/ nystagmus Cerebellar atrophy (MRI) Lactic acidemia Mito Px Other 1 1 16 F c.81527T>C c.311T>C [p.L104P] + + + + 2 1 6 F + + + + 3 2 4 F c.81527T>C c.166G>A [p.G56R] c.693+1G>A + + + 4 3 4 M c.81527T>C c.545T>C [p.V182A] + + + + 16p12.2 deletion 5 4 19 M c.81527T>C c.166G>A [p.G56R] c.311T>C [p.L104P] + + + + + Leigh syndrome Mito Px = Mitochondrial supplements (coenzyme Q10, carnitine, vitamins) FUNCTIONAL ANALYSIS OF MISSENSE NUBPL MUTATIONS Figure 5: Tests for pathogenicity of NUBPL mutations in a yeast model (Y. lipolytica) Yarrowia lipolytica is a haploid yeast model, therefore the effect of individual mutant alleles in compound heterozygote cases are tested separately. The c.81527T>C mutation, found in all 4 families (see Table), results in a misspliced transcript lacking exon 10, which causes a frameshift and truncation via a premature stop codon. Lower transcript levels were found in the first reported case (15% compared to control) and for a heterozygous carrier (Calvo et al. 2010; Tucker et al. 2012). Left gel images: In yeast (Wydro & Balk, 2013), the shorter polypeptide N271QfsX31 [in humans, p.D273QfsX31] is less stable and severely affects Complex I. The L102P substitution (in humans, L104P, present in families 1 and 4) changes a highly conserved amino acid and also severely affects Complex I. Right gel images: The V180A substitution (in humans, V182A, found in family 3] had no effect on Complex I, but this residue is only semiconserved in yeast (M180, M180A was compared to M180V). 1 Division of Genetics and Metabolism, Department of Pediatrics, University of California, Irvine, Children’s Hospital of Orange County, Orange, CA; 2 Population Diagnostics, Inc., Melville, NY; 3 Center for Pediatric Neurology, Cleveland Clinic, Cleveland, OH; 4 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; 5 Departments of Pediatrics and Neurology, The University of Texas Medical School at Houston, Houston, TX; 6 John Innes Centre, Norwich, UK; 7 Ambry Genetics, Aliso Viejo, CA; 8 Radiological Sciences, School of Medicine, University of California, Irvine, CA CONCLUSIONS Clinical presentation in these 5 cases is consistent with previously reported NUBPL Complex I deficiency cases that had pathognomonic MRI findings (Calvo et al., 2010; Kevelam et al. 2013; Tenisch et al. 2012). Branch point mutation c.81527T>C (~1% frequency, European ancestry) is seen in all families, possibly due to recurrent mutation vs. founder haplotype. Missense variant c.166G>A [p.G56R] is present in cis with c.81527T>C in all previous/current cases, except newly reported Cases 1, 2, and 4. Its contribution to the disease remains in question (Tucker et al. 2012). Mutant NUBPL protein is nonfunctional in a yeast model for L102P (human L104P). No effect was found for M180V (human V182A), but experiments in a mammalian model may be informative. We also note that Case 4 may have a milder version of the disease (see Figure 3, brain MRI was normal). Mitochondrial cocktail therapy may have resulted in clinical improvements. REFERENCES: Calvo SE et al. Nat. Genet. (2010) 42(10):8518 Girirajan S et al. (2015) In: Pagon RA et al. GeneReviews®. Seattle (WA): Univ. of Wash., Seattle 19932016. Kevelam SH et al. Neurology (2013) 80(17):15771583 Lek M. et al. Nature (2016) 536(7616):28591. Tenisch EV et al. Neurology. 2012. ;79(4):391. Tucker EJ et al. Hum. Mutat. (2012) 33(2):4118 Wydro MM and Balk J. Dis. Model Mech. (2013) 6(5):127984 ACKNOWLEDGEMENTS: We wish to thank the families for their permission to present their medical history. CONTACT: Virginia Kimonis, MD [email protected] See also ASHG 2016 poster 1403/T: NUBPL link to lateonset movement disorders

Upload: others

Post on 18-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mitochondrial studies in a novel disorder associated with ...€¦ · Mitochondrial studies in a novel disorder associated with NUBPL‐associated mitochondrial Complex I deficiency

Mitochondrial studies in a novel disorder associated with NUBPL‐associated mitochondrial Complex I deficiency in patients with global developmental delays, ataxia, cerebellar and pons hypoplasia

Virginia Kimonis1, Peggy S. Eis2, Kathy Hall1, Sumit Parikh3, Daryl A. Scott4, Mary Kay Koenig5, Andrew Maclean6, Sha Tang7, Anton N. Hasso8, Janneke Balk6, Elizabeth Chao1,7, Eli Hatchwell2

ABSTRACTThe NUBPL gene (MIM 613621) was first reported as a cause of mitochondrial Complex I deficiency syndrome (MIM 252010) in 2010, and only seven families have been reported worldwide. We now report clinical features of 5 patients in 4 families, representing the largest number of patients diagnosed worldwide with NUBPL Complex I deficiency (CID). Patients were diagnosed using Whole Exome Sequencing (WES) and all were found to be compound heterozygous for a NUBPL (NM_025152) splicing mutation (c.815‐27T>C) that is common in the population (~1% frequency), plus a rarer non‐synonymous or splicing mutation (in trans) as follows: c.311T>C (p.L104P) in families 1 (cases 1 and 2) and 4 (case 5), c.693+1G>A in family 2 (case 3), and c.545T>C (p.V182A) in family 3 (case 4). We note that in 3 of 4 families (all except family 1), the c.815‐27T>C mutation is present in cis with c.166G>A (p.G56R), whose pathogenicity remains in question. Primary clinical features of the CID patients, who are presently ages 3‐19 years, include onset of neurological symptoms at ages 3‐18 months, global developmental delay, ataxia, nystagmus, speech articulation difficulties, and cerebellar dysfunction (brain MRIs show progressive cerebellar and pons hypoplasia) and Leigh like phenotype in one individual. Importantly, despite having a diagnosis of CID, most of the patients tested normal in an electron transport chain assay (fibroblast or muscle), including for Complex I activity. Functional studies in yeast (Yarrowia lipolytica) were performed and confirmed the pathogenicity of the non‐synonymous NUBPLmutation leading to the L104P substitution. Biochemical assays in patient fibroblasts showed mitochondrial functional differences, and differentiated neurons are being utilized to screen for and identify novel therapies for these patients. In summary we present clinical features of a unique new NUBPL‐associated mitochondrial complex 1 disorder identified by WES and promising treatment studies in yeast and patient fibroblasts. 

CLINICAL FINDINGS IN PATIENTS WITH NUBPL DISEASE

Cases 1 and 2 (Family 1)CLINICAL HISTORY: Case 1 is a 16‐year‐old girl with ataxia, developmental delay, and cerebellar abnormalities. She developed tremulousness and increased rigidity at age 3 months. A brain MRI at 9 months of age revealed cerebellar atrophy. A cerebellar biopsy at age 1 year showed enlarged Purkinje cells, non diagnostic. Follow‐up brain MRIs show progressive cerebellar abnormalities (Figure 1). ETC analysis on a skeletal muscle biopsy sample tested normal for complexes I‐IV although an elevated citrate synthase level was noted. Her sibling, Case 2, is a 6‐year‐old girl with similar clinical features (ataxia, developmental delay, and cerebellar abnormalities) developing at age 3 months. Her brain MRI at age one year showed similar cerebellar abnormalities (Figure 1).

MOLECULAR DIAGNOSIS: Diagnostic exome sequencing confirmed compound heterozygosity of two alterations in the NUBPL gene, c.815‐27T>C  and c.311T>C (p.L104P), in both affected siblings. Variant c.815‐27T>C (father) is a branch site splicing mutation that was previously reported in Complex I deficiency patients (Calvo et al. 2010; Kevelam et al. 2013); it is present at ~1% frequency in European ancestry subjects (Lek et al. 2016). Both patients are currently on a mitochondrial cocktail therapy (coenzyme Q10, carnitine, biotin, alpha lipoic acid, and vitamins E, C, and B complex) and this has resulted in improvement, particularly in the younger sibling.

Case 1, age 3 yrs Case 1, age 16 yrs Case 2, age 2 yrs Case 2, age 5 yrs

Figure 1: Progressive brain MRI images for Cases 1 and 2Left panels: Brain anatomy of Case 1 at ages 3 and 16 years showing  cerebral atrophy. Most of the cerebellar white matter has been lost with stable diffuse atrophy. Right panels: Case 2 at ages 2 and 5 years also showing cerebral atrophy and partial absence of the inferior portion of the cerebellar vermis. 

Case 3 (Family 2)CLINICAL HISTORY: Case 3 is a 4‐year old girl presenting with ataxia, developmental delay, and cerebellar abnormalities. Regression in motor skills were noted at age 13‐14 months. She lost ability to stand without support and became clumsier. Hypotonia and speech articulation difficulties were also noted, but she has normal cognition. ETC analysis (skin fibroblasts) was essentially normal. Her brain MRI is shown in Figure 2. Neuroimaging (image not shown) also showed stable largely symmetric punctate areas of signal abnormality and restricted diffusion of the genu of the corpus callosum. MR spectroscopy revealed a lactate peak within the cerebellum.

Figure 2: Brain MRI image for Case 3Sagittal image shows loss of cerebellar volume, with most notable atrophy in the inferior vermis.

We were unable to establish if the two families are related (Kevelam et al. family did not wish to participate in further research at this time). She is currently on a mitochondrial cocktail. Her fibroblasts showed a clinical response to EPI‐743 (Edison Pharmaceuticals).

MOLECULAR DIAGNOSIS: She was initially diagnosed with Infantile Neuroaxonal Dystrophy (INAD, MIM 256600) because of her MRI findings; however, genetic testing for PLA2G6mutations was negative. Clinical exome sequencing was ordered by the Cleveland Clinic and she was found to be a compound heterozygote: c.815‐27T>C and c.166G>A (in cis) from her mother and c.693+1G>A from her father, a combination previously reported in a case from the US (Kevelam et al. 2013).

Case 4 (Family 3)CLINICAL HISTORY: Case 4 is a 4‐year old boy with global developmental delay, abnormal movements, nystagmus and lactic acidemia. After birth, he was noted to have generalized hypertonia, clonus, a weak cry, and poor feeding.He is non‐verbal and has mild dysmorphic features. His brain MRI is shown in Figure 3. 

Figure 3: Brain MRI image for Case 4, age 12 monthsReported as normal except for slightly prominent Sylvian fissures/subarachnoid spaces.

MOLECULAR DIAGNOSIS: Clinical exome sequencing was ordered by the Baylor College of Medicine and he was found to be a compound heterozygote: c.815‐27T>C from his mother and c.545T>C (p.V182A) from his father. Array CGH (CMA‐HR+SNP, v. 9.1.1) also revealed a 16p12.2 microdeletion (see Girirajan et al.), which may be contributing to the patient’s symptoms.

Case 5 (Family 4)CLINICAL HISTORY: Case 5 is a 19‐year old young man who was healthy until age 18 months. Following an acute episode he became spastic, wheelchair bound and severely dysarthric. He had an elevated CSF lactate and was diagnosed with a Leigh‐like a mitochondrial disorder. His IQ has tested in the “mild mental retardation range”. His brain MRI is shown in Figure 4. A repeat brain MRI (image not shown) at age 14 years showed severe atrophy and abnormal flair signal in the pons and cerebellum, with normal cerebral volume.

Figure 4: Brain MRI image for Case 5Showed cerebellar encephalomalacia with severe atrophy of the cerebellum and pons. 

MOLECULAR DIAGNOSIS: Clinical exome sequencing was ordered by the University of Texas Medical School and he was found to be a compound heterozygote: c.815‐27T>C and c.166G>A (in cis) from his mother and c.311T>C (p.L104P) from his father, the same missense mutation found in Family 1.

Case 3, age 3 yrs

Case 4, age 3 yrs

Case 5, age 6 yrs

CLINICAL SUMMARY OF 5 CASES WITH NUBPL CI DEFICIENCY 

CaseNo.

Family No.

Age(yr)

Sex Mutation 1 Mutation 2 Devel. delay

Ataxia/ nystagmus

Cerebellar atrophy (MRI)

Lactic acidemia

Mito Px

Other

1 1 16 F c.815‐27T>C c.311T>C[p.L104P]

+ + + ⎼ +

2 1 6 F + + + ⎼ +

3 2 4 F c.815‐27T>C c.166G>A[p.G56R] 

c.693+1G>A + + ⎼ ⎼ +

4 3 4 M c.815‐27T>C c.545T>C[p.V182A] 

+ + + ⎼ + 16p12.2  deletion

5 4 19 M c.815‐27T>C c.166G>A[p.G56R] 

c.311T>C [p.L104P]

+ + + + + Leigh

syndrome

Mito Px = Mitochondrial supplements (coenzyme Q10, carnitine, vitamins)

FUNCTIONAL ANALYSIS OF MISSENSE NUBPLMUTATIONS

Figure 5: Tests for pathogenicity of NUBPLmutations in a yeast model (Y. lipolytica)Yarrowia lipolytica is a haploid yeast model, therefore the effect of individual mutant alleles in compound heterozygote cases are tested separately. The c.815‐27T>C mutation, found in all 4 families (see Table), results in a mis‐spliced transcript lacking exon 10, which causes a frameshift and truncation via a premature stop codon. Lower transcript levels were found in the first reported case (15%  compared to control) and for a heterozygous carrier (Calvo et al. 2010; Tucker et al. 2012). Left gel images: In yeast (Wydro & Balk, 2013), the shorter polypeptide N271QfsX31 [in humans, p.D273QfsX31] is less stable and severely affects Complex I. The L102P substitution (in humans, L104P, present in families 1 and 4) changes a highly conserved amino acid and also severely affects Complex I. Right gel images: The V180A substitution (in humans, V182A, found in family 3] had no effect on Complex I, but this residue is only semi‐conserved in yeast (M180, M180A was compared to M180V).

1Division of Genetics and Metabolism, Department of Pediatrics, University of California, Irvine, Children’s Hospital of Orange County, Orange, CA; 2Population Diagnostics, Inc., Melville, NY; 3Center for Pediatric Neurology, Cleveland Clinic, Cleveland, OH; 4Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; 5Departments of Pediatrics and Neurology, The University of Texas Medical School at Houston, Houston, TX; 6John Innes Centre, Norwich, UK;7Ambry Genetics, Aliso Viejo, CA; 8Radiological Sciences, School of Medicine, University of California, Irvine, CA

CONCLUSIONS• Clinical presentation in these 5 cases is consistent with previously reported NUBPL Complex I deficiency cases that had pathognomonic MRI findings (Calvo et al., 2010; Kevelam et al. 2013; Tenisch et al. 2012). 

• Branch point mutation c.815‐27T>C (~1% frequency, European ancestry) is seen in all families, possibly due to recurrent mutation vs. founder haplotype.

• Missense variant c.166G>A [p.G56R] is present in cis with c.815‐27T>C in all previous/current cases, except newly reported Cases 1, 2, and 4. Its contribution to the disease remains in question (Tucker et al. 2012).

• Mutant NUBPL protein is non‐functional in a yeast model for L102P (human L104P). No effect was found for M180V (human V182A), but experiments in a mammalian model may be informative. We also note that Case 4 may have a milder version of the disease (see Figure 3, brain MRI was normal).

• Mitochondrial cocktail therapy may have resulted in clinical improvements.

REFERENCES:Calvo SE et al. Nat. Genet. (2010) 42(10):851‐8

Girirajan S et al. (2015) In: Pagon RA et al. GeneReviews®. Seattle (WA): Univ. of Wash., Seattle 1993‐2016.

Kevelam SH et al. Neurology (2013) 80(17):1577‐1583

Lek M. et al. Nature (2016) 536(7616):285‐91.

Tenisch EV et al. Neurology. 2012. ;79(4):391. 

Tucker EJ et al. Hum. Mutat. (2012) 33(2):411‐8 

Wydro MM and Balk J. Dis. Model Mech. (2013) 6(5):1279‐84

ACKNOWLEDGEMENTS:We wish to thank the families for their permission to present their medical history.

CONTACT:Virginia Kimonis, [email protected]

See also ASHG 2016 poster 1403/T:NUBPL link to late‐onset movement disorders