minimal’susy’su(5)’gut’ inhighscale’susyhomepages.spa.umn.edu/~nagata/20130430.pdf ·...

50
Minimal SUSY SU(5) GUT in Highscale SUSY Natsumi Nagata Based on J. Hisano, T. Kuwahara, N. Nagata, 1302.2194 . J. Hisano, D. Kobayashi,T. Kuwahara, N. Nagata, 1304.3651 . 30 April, 2013 KEK Nagoya University

Upload: others

Post on 14-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Minimal  SUSY  SU(5)  GUT  in  High-­‐scale  SUSY

Natsumi  Nagata    

Based  on    J.  Hisano,  T.  Kuwahara,  N.  Nagata,  1302.2194  .  J.  Hisano,  D.  Kobayashi,  T.  Kuwahara,  N.  Nagata,  1304.3651  .  

30  April,  2013  KEK  

Nagoya  University  

Page 2: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Outline

1.  Introduc6on  

2.  GUT  scale  mass  spectrum  in  high-­‐scale  SUSY  

3.  Proton  decay  in  high-­‐scale  SUSY  

4.  Summary  

Page 3: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

1.  Introduc?on

Page 4: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

SUSY  SM

Supersymmetric  (SUSY)  Standard  Model  (SM)  

scale  

EW  

TeV  

SM  par6cles  

SUSY  par6cles  

Page 5: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

SUSY  SM

Supersymmetric  (SUSY)  Standard  Model  (SM)  

scale  

EW  

TeV  

SM  par6cles  

SUSY  par6cles  

[GeV]0m500 1000 1500 2000 2500 3000 3500 4000

[GeV

]1/

2m

200

300

400

500

600

700

(600)g~

(800)g~

(1000)g~

(1200)g~

(600)q~

(1000)q ~

(1400)q ~

(1800)q ~

>0µ= 0, 0

= 10, A!MSUGRA/CMSSM: tan

=7 TeVs, -1 L dt = 4.7 fb"Combined

ATLAS

Combined)theory

SUSY#1 ±Observed limit (

)exp#1 ±Expected limit (

-1, 1.04 fb710 (2012) 67-85PLB

LSP$%

LEP Chargino

No EWSB

Direct  search  

Page 6: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

SUSY  SM

Supersymmetric  (SUSY)  Standard  Model  (SM)  

scale  

EW  

TeV  

SM  par6cles  

SUSY  par6cles  

Even

ts /

2 G

eV

500

1000

1500

2000

2500

3000

3500 ATLAS

H

DataSig+Bkg FitBkg (4th order polynomial)

-1Ldt=4.8fb=7 TeV, s-1Ldt=5.9fb=8 TeV, s

(a)

=126.5 GeV)H

(m

Even

ts -

Bkg

-200-100

0100200

(b)

wei

ghts

/ 2

GeV

20

40

60

80

100Data S/B WeightedSig+Bkg FitBkg (4th order polynomial)

=126.5 GeV)H

(m

(c)

[GeV]m100 110 120 130 140 150 160

w

eigh

ts -

Bkg

-8-4048

(d)

126  GeV    Higgs  boson  

[GeV]0m500 1000 1500 2000 2500 3000 3500 4000

[GeV

]1/

2m

200

300

400

500

600

700

(600)g~

(800)g~

(1000)g~

(1200)g~

(600)q~

(1000)q ~

(1400)q ~

(1800)q ~

>0µ= 0, 0

= 10, A!MSUGRA/CMSSM: tan

=7 TeVs, -1 L dt = 4.7 fb"Combined

ATLAS

Combined)theory

SUSY#1 ±Observed limit (

)exp#1 ±Expected limit (

-1, 1.04 fb710 (2012) 67-85PLB

LSP$%

LEP Chargino

No EWSB

Direct  search  

Page 7: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

SUSY  SM

Supersymmetric  (SUSY)  Standard  Model  (SM)  

High-­‐scale  SUSY  ??  

scale  

EW  

TeV  

SM  par6cles  

SUSY  par6cles  

Even

ts /

2 G

eV

500

1000

1500

2000

2500

3000

3500 ATLAS

H

DataSig+Bkg FitBkg (4th order polynomial)

-1Ldt=4.8fb=7 TeV, s-1Ldt=5.9fb=8 TeV, s

(a)

=126.5 GeV)H

(m

Even

ts -

Bkg

-200-100

0100200

(b)

wei

ghts

/ 2

GeV

20

40

60

80

100Data S/B WeightedSig+Bkg FitBkg (4th order polynomial)

=126.5 GeV)H

(m

(c)

[GeV]m100 110 120 130 140 150 160

w

eigh

ts -

Bkg

-8-4048

(d)

126  GeV    Higgs  boson  

[GeV]0m500 1000 1500 2000 2500 3000 3500 4000

[GeV

]1/

2m

200

300

400

500

600

700

(600)g~

(800)g~

(1000)g~

(1200)g~

(600)q~

(1000)q ~

(1400)q ~

(1800)q ~

>0µ= 0, 0

= 10, A!MSUGRA/CMSSM: tan

=7 TeVs, -1 L dt = 4.7 fb"Combined

ATLAS

Combined)theory

SUSY#1 ±Observed limit (

)exp#1 ±Expected limit (

-1, 1.04 fb710 (2012) 67-85PLB

LSP$%

LEP Chargino

No EWSB

Direct  search  

Page 8: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

APrac6ve  features

High-­‐scale  SUSY  scenario  has  a  lot  of  fascina6ng  aspects  from  a  phenomenological  point  of  view.  

  126  GeV  Higgs  boson  can  be  achieved  

  SUSY  flavor  &  CP  problems  are  relaxed  

  Gravi6no  problem  is  avoided  

  DM  candidates  

(sufficient  radia6ve  correc6ons)    

(suppressed  by  sfermion  masses)    

(heavy  gravi6no)    

w/  light  fermions   (chiral  symmetries)    

(wino/higgsino)    

Page 9: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Today’s topic

(i)  Gauge  coupling  unifica6on  is  improved.  

Addi6onal  features  of  high-­‐scale  SUSY  in  the  context  of  grand  unified  theories  (GUTs):  

(ii)  Proton  decay  problem  in  the  minimal  SUSY  SU(5)              GUT  is  avoided.  

Page 10: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Defects in the GUTs with low-scale SUSY

Shortcomings  of  low-­‐scale  SUSY  GUTs:  

(i)  Large  threshold  correc6ons  at  the  GUT  scale  are            required  to  realize  the  gauge  coupling  unifica6on.  

(ii)  Protons  decay  too  fast  (Proton  decay  problem).              Some  addi6onal  mechanism  is  required  to  suppress              the  proton  decay.    

Page 11: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Gauge coupling unification in low-scale SUSY

10 14 10 15 1016

1.8 x 10

1.6 x 10

2.1 x 10

16

16

16

H

GU

T

Colored Higgs Mass vs. GUT Scale

M (GeV)

M

(

GeV

)

C

In  low-­‐energy  SUSY,  the  mass  of  color-­‐triplet  Higgs  mul6plet  is  found  to  be  much  lower  than  the  GUT  scale  (RGE  analysis).  

Errors  are  from  input  parameters.

68%,  90%

H.  Murayama  and  A.  Pierce  (2001)

This  implies  that  the  threshold  correc6ons  to  the  gauge  coupling  constants  are  s6ll  not  small,  even  in  the  SUSY  GUTs.  

Page 12: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Defects in the GUTs with low-scale SUSY

Shortcomings  of  low-­‐scale  SUSY  GUTs:  

(i)  Large  threshold  correc6ons  at  the  GUT  scale  are            required  to  realize  the  gauge  coupling  unifica6on.  

(ii)  Protons  decay  too  fast  (Proton  decay  problem).              Some  addi6onal  mechanism  is  required  to  suppress              the  proton  decay  rate.    

Page 13: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Proton decay in low-scale SUSY Proton  decay  is  induced  by  the  exchanges  of  

  SU(5)  gauge  bosons  (X-­‐bosons)    Color-­‐triplet  Higgs  mul6plets  

Dim-­‐6  operators Dim-­‐5  operators

yield  dominant  decay  modes,  such  as

Predicted  life6me  (in  low-­‐scale  SUSY):

Experimental  constraints:

T.  Goto  and  T.  Nihei  (1999),  H.  Murayama  and  A.  Pierce  (2001).

Super-­‐Kamiokande,  arXiv:  1109.3262.

•  Minimal  SUSY  GUT  is  excluded  

•  needs  some  extensions  to  suppress  the  dim-­‐5  proton  decay  (PQ  symmetry,  higher-­‐dimensional  models,  etc.)

Page 14: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Today’s topic

(i)  Gauge  coupling  unifica6on  is  improved  

Addi6onal  features  of  high-­‐scale  SUSY:  

(ii)  Proton  decay  problem  in  the  minimal  SUSY  SU(5)              GUT  is  avoided  

All  of  the  superheavy  par6cles  in  the  minimal  SUSY  GUT  can  lie  around  the  GUT  scale.    

Small  threshold  correc6ons  are  required.  

Simple  solu6on.  No  need  for  addi6onal  mechanism.  

Decoupling  can  revive  the  minimal  SUSY  SU(5)  GUT  

Page 15: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Assump6on

A  chiral  supermul6plet  X  responsible  for  SUSY  is  charged    under  some  symmetry.

SUSY  is  transferred  via  operators  involving  X†  X

Soi  masses  of  the  scalar  par6cles  arise  from

(MPl:  the  reduced  Planck  scale)

VEV  of  X  field Scalar/gravi6no  mass

Page 16: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Gaugino  mass

Anomaly  media6on   L. Randall and R. Sundrum (1998) G.F. Giudice, M.A. Luty, H. Murayama, R. Rattazzi (1998)

Wino  is  the  lightest  in  the  gaugino  sector  

Since  the  field  X  is  charged  under  some  symmetry,  the  gaugino  mass  terms  are  not  given  by  the  X  field  linear  terms.  

In  this  case,  the  gaugino  masses  are  generated  by    

Page 17: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Higgsinos

We  regard  the  higgsino  mass  as  a  free  parameter  in  the  following  discussion.

(e.g.,  Peccei-­‐Quinn  symmetry)    

Origin  of  Higgsino  mass  is  somewhat  model-­‐dependent.  

  On  the  assump6on  of  a  generic  Kahler  poten6al  

  It  can  be  suppressed  by  some  symmetry.  

Higgsinos  can  be  much  lighter  than  the  gravi6no.  

Page 18: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Gravi!noScalar Par!cles Higgsinos

Gauginos

Gluino

BinoWino

Mass  spectrum

MS  =  10(2-­‐3)  TeV

Thermal  relic  (2.7-­‐3TeV)

Higgsinos  can  be  light (addi6onal  symmetries)    

(Loop  suppressed)

J.  Hisano,  S.  Matsumoto,  M.  Nagai,  O.  Saito,  M.  Senami  (2006).

Page 19: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Higgs  mass

The  126  GeV  Higgs  boson  mass  is  easily  accounted.  

mt=  173.2  ±  0.9  GeV M.  Ibe,  T.T.  Yanagida  (2012).

tan�50

tan�5

tan�2

tanΒ�1 ΜH � MSUSY

10 100 1000 104110

115

120

125

130

135

140

MSUSY�TeV

mh�GeV

Small  tanβ  is  favored

126GeV

Page 20: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

2.  GUT  scale  mass  spectrum  in  high-­‐scale  SUSY

Page 21: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Minimal  SUSY  SU(5)  GUT

MSSM  maPer  fields  are  embedded  in  a                              representa6on    

MSSM  Higgs  fields  are  embedded  into    

Color-­‐triplet  Higgs  mul6plets induce  the  baryon  #    viola6ng  interac6ons  

MSSM  Higgs  superfields   (MHC  :  mass  of  color-­‐triplet  Higgs)

S.  Dimopoulos  and  H.  Georgi  (1981)  N.  Sakai  (1981)

Page 22: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Minimal  SUSY  SU(5)  GUT

Gauge  superfields  

X  bosons  (mass:  MX)   MSSM  gauge  superfields  

Adjoint  Higgs  superfields  

induce  baryon  #  viola6ng  interac6ons

Adjoint  Higgs  (mass:  MΣ)   Longitudinal  mode  of  X  mul6plets SM  singlet

SU(5)  →  SU(3)C  ×  SU(2)L  ×  U(1)Y  

Page 23: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

RGE  analysis

The  superheavy  par6cles  yield  threshold  correc6ons  to  the  SM  gauge  couplings  at  the  GUT  scale  (μGUT)  

αi-­‐1(μGUT)  =  αG

-­‐1(μGUT)  +  threshold  correc6ons

depending  on  the  masses  of  superheavy  par6cles  

Unified  gauge  coupling

obtained  through  the  renormaliza6on  group  equa6ons  (RGEs)

By  using  the  rela6on,  we  can  es6mate  the  masses  of  superheavy  par6cles  at  the  GUT  scale.  

Indirect  method  

J.  Hisano,  H.  Murayama,  T.  Yanagida  (1992).

Page 24: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Threshold  correc6ons  @  GUT  scale

Threshold  correc6ons  (1-­‐loop  in  DR  scheme)  

Then,  we  have  two  rela6ons,  

By  using  the  rela6ons,  we  evaluate  MHC  and  MGUT  in  the  following  analysis.  

The  GUT  scale  

Page 25: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

1-­‐loop  results

First,  we  derive  simpler  formulae  by  using  

  1-­‐loop  RGEs  for  gauge  couplings    1-­‐loop  threshold  correc6ons  

Results  

Features   (MS  :  scalar  mass,  μH  =  MS)

  MHC  gets  larger  as  MS  is  taken  to  be  higher.  

It  originates  from  the  mass  difference  among  the  components  of  the  fundamental  Higgs  mul6plets.  

  MHC  depends  only  on  the  ra6o  of  M2  and  M3.  

Page 26: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

1-­‐loop  results

  MGUT  is  independent  of  MS  

  MGUT  is  dependent  on  the  scale  of  the  gauginos  

Since  it  results  from  the  mass  difference  in  the  gauge  vector  mul6plets  and  the  adjoint  Higgs  mul6plet.    

(A  part  of  which  is  included  as  the  longitudinal  mode  of  the  gauge  mul6plets)  

  MGUT  decreases  when  gaugino  masses  get  larger  

Owing  to  the  opposite  sign  of  the  contribu6ons  of  the  gauge  fields  to  those  of  maPer  fields.  

c.f.)  1-­‐loop  gauge  coupling  beta  func6on

Page 27: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

MHC  vs.  SUSY  scale

1015

1016

1017

1018

102 103

M Hc

MS (TeV)

M2 = 3TeV

M 3/M 2 = 3

M 3/M 2 = 9

M 3/M 2 = 30

tan! = 3

(MS  :  sfermion  mass)

Errors  come  from  the  strong  coupling  constant  

Low-­‐energy  SUSY  case  

J.  Hisano,  T.  Kuwahara,  N.  Nagata  (2013).

•  MHC  increases  as  MS  grows  while  it  decreases  when  M3/M2  becomes  large  

•  MHC  can  be  around  ~1016  GeV  in  high-­‐scale  SUSY  scenario  

μH  =  MS

Page 28: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Interes6ng  features

MHC  can  be  around  the  GUT  scale  in  the  high-­‐scale  SUSY  scenario.  

Small  threshold  correc6ons  are  required    to  realize  gauge  coupling  unifica6on.  

Gauge  coupling  unifica6on  is  improved  !!  

10

20

30

40

50

106 108 1010 1012 1014 1016

!"1

Scale (GeV)

25

26

27

28

1016

!"1

Scale (GeV)Zoom

U(1)

SU(2)

SU(3) Low-­‐scale  SUSY  

High-­‐scale  SUSY  

Page 29: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

MGUT  vs.  gluino  mass

1016

101

M GUT

M3 (TeV)

M2 = 300GeV

M2 = 3TeV

MS = 103TeVtan! = 3

Errors  come  from    

Low-­‐energy  SUSY  case  

J.  Hisano,  T.  Kuwahara,  N.  Nagata  (2013).

•  The  GUT  scale  MGUT  has  liPle  dependence  on  the  gaugino  masses.  

•  MGUT  gets  lower  when  the  gaugino  masses  become  larger.  

μH  =  MS

Page 30: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Interes6ng  features

The  GUT  scale  becomes  lower  in  the  high-­‐scale  SUSY  scenario.  

Proton  decay  via  the  X-­‐boson  exchange  is  enhanced.  e+

d

X

uc

u

e+

u

Y

uc

dsensi6ve  to  the  X-­‐boson  mass  

1.0

1.2

1.4

1.6

1.8

2.0

103 104 105 106

Lifet

ime

(1035

year

s) 1 TeV3 TeV

10 TeV

M (GeV)S

gaugino threshold

M = 1.0 ! 10 (GeV)X 16

J.  Hisano,  D.  Kobayashi,  N.  Nagata  (2013).

Life6me  

(MX  =  1.0  ×  1016  GeV)

(MX  =  0.8  ×  1016  GeV) c.f.)  Hyper-­‐Kamiokande  with  10  years  exposure  

[arXiv:  1109.3262]

Page 31: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

3.  Proton  decay  in  high-­‐scale  SUSY

Page 32: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Yukawa  interac6ons

Yukawa  coupling  terms  in  superpoten6al  

(i,j:  genera6ons,  a,b,…:  SU(5)  indices)

D.O.F.   Field  re-­‐defini6ons  

2  ×  6  +  2  ×  9  −  9  ×  2  =  6  +  4  +  2 quark  masses CKM extra  phases

(Real  D.O.F.)

Parameteriza6on  

(Vij:  CKM  matrix) Constraint  

(Two  of  them  are  independent)

Page 33: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Dim-­‐5  effec6ve  operators

HC HC

Qi

Qi

Qk

Ll

U i

Ej

Uk

Dl

HC HC

Exchanges  of  color-­‐triplet  Higgs  mul6plets  induce  the  dimension-­‐five  baryon-­‐number  viola6ng  operators. Effec6ve  superpoten6al  

LLLL

LLLL

RRRR

RRRR

Page 34: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Dim-­‐5  effec6ve  operators

Effec6ve  Lagrangian  (dim-­‐5)  

LLLL RRRR

Sfermions  are  integrated  out  below  the  SUSY  breaking  scale  (MS)  

•  LLLL  operator  

•  RRRR  operator   Charged  higgsino  exchange Charged  wino  exchange

Other  contribu6ons  (e.g.,  neutral  wino,  neutral  higgsino,  gluino…)    are    found  to  be  negligible  in  our  scenario.  

Page 35: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Dim-­‐5  effec6ve  operators

(a)

qL

qL

qL (lL)

lL (qL)

q̃L l̃L (q̃L)

(b)

uRdR (sR)

(!!)L

"̃Rt̃R

sL (dL)

H̃u H̃d

LLLL RRRR

Although  it  is  induced  in  the  flavor  changing  process,  its  contribu6on  is  sizable  because  of  the  large  Yukawa  couplings  of  the  third  genera6on  fermions  

T.  Goto  and  T.  Nihei  (1999)  V.  Lucas  and  S.  Raby  (1997)

Loop  func6on  

Chiral  flip   [M  =  wino  mass  (M2)  or  higgsino  mass  (μH)]

Suppressed  by  sfermion  mass  (decoupling)  

In  the  case  of  μH  >>  M2,  the  higgsino  exchange  contribu6on  dominates  the  wino  exchange  one.    

Page 36: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Proton  decay  life6me

For  μH  =  MS,  the  proton  life6me  is  approximately  given  as  

Renormaliza6on  factors

The  proton  life6me  is  significantly  reduced  with  large  tanβ.  

The  life6me  can  be  well  above  the  current  experimental  limit:  

Decoupling  can  revive  the  minimal  SUSY  SU(5)  GUT  !  

MHC  can  be  around  1016  GeV  (as  discussed  above)  

Page 37: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Results

1033

1034

1035

1036

102 103 104 105

lifetim

e (ye

ars)

MS (TeV)tan! =

50

tan! =

3 tan! =

5 tan! =

10

tan! =

30

M = "S HM = 3 TeV2 M = 1.0 # 10 GeVHc 16

Experimental  limit  

J.  Hisano,  D.  Kobayashi,  T.  Kuwahara,  N.  Nagata  (2013).

Proton  decay  life6me  in  high-­‐scale  SUSY  scenario  can  evade  the  experimental  constraints,  especially  for  small  tanβ.  

Page 38: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Results

Experimental  limit  

J.  Hisano,  D.  Kobayashi,  T.  Kuwahara,  N.  Nagata  (2013).

1033

1034

1035

1036

101 102 103

lifetim

e (ye

ars)

tan! = 10 tan! = 30

tan! = 50

tan! = 5

(TeV)"H

M = 10 TeVS 3

M = 3 TeV2 M = 1.0 # 10 GeVHc 16

We  take  the  new  phases  so  that  they  yield  the  maximal  amplitude  for  the  proton  decay  rate.  

We  are  to  obtain  severe  limits  on  the  parameters  

We  have  found  that  the  higgsino  contribu6on  is  dominant  in  a  wide  range  of  parameter  region.  

Page 39: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

5.  Summary

Page 40: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Summary

•  We  discuss  the  minimal  SUSY  SU(5)  GUT  in  the  high-­‐scale  SUSY  scenario  

•  The  gauge  coupling  unifica6on  can  be  improved  with  high  SUSY  breaking  scale  

•  The  GUT  scale  is  slightly  reduced,  and  thus  the  dimension-­‐6  proton  decay  might  be  promising  

•  Dimension-­‐5  proton  decay  can  evade  the  current  experimental  limits  

•  We  look  forward  to  future  proton  decay  experiments  

Page 41: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Backup

Page 42: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Yukawa  interac6ons

Yukawa  coupling  terms  in  superpoten6al  

Mass  and  gauge  eigenstates  

where  primes  represent  the  mass  eigenstates.

Page 43: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Superheavy  masses

Superpoten6al  of  Higgs  sector  

VEV  of  adjoint  Higgs  

Doublet-­‐triplet  mass  spli�ng  

mH  is  fine-­‐tuned  as Superheavy  masses  

Page 44: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

MHC  vs.  gluino  mass

Errors  come  from  the  strong  coupling  constant  

Low-­‐energy  SUSY  case  

J.  Hisano,  T.  Kuwahara,  N.  Nagata  (2013).

•  MHC  decreases  when  M3/M2  becomes  large  

•  MHC  can  be  around  ~1016  GeV  in  high-­‐scale  SUSY  scenario  

1015

1016

1017

1018

101

M Hc

M3 (TeV)

M2 = 300GeV

M2 = 3TeV

MS = 103TeVtan! = 3

Page 45: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Effec6ve  4-­‐Fermi  operators

(AR(i,j),  AR  :  renormaliza6on  factors)

Loop  func6on  

Page 46: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Renormaliza6on  factors

0.3

0.32

0.34

0.36

0.38

0.4

102 103 104 105

tan! = 3

(i,j)=(2,2)(i,j)=(2,3)(i,j)=(3,2)(i,j)=(3,3)

M = !S HM = 3 TeV2 M = 1.0 " 10 GeVHc 16

MS (TeV)

A(i, j)

R

0.3

0.32

0.34

0.36

0.38

0.4

102 103 104 105

A(2,2

)R

MS (TeV)

M = !S HM = 3 TeV2 M = 1.0 " 10 GeVHc 16

tan! =3tan! =5

tan! =10tan! =30tan! =50

0.09

0.1

0.11

0.12

0.13

0.14

0.15

102 103 104 105

tan! =3tan! =5

tan! =10tan! =30tan! =50

M = !S HM = 3 TeV2 M = 1.0 " 10 GeVHc 16

MS (TeV)

A R Renormaliza6on  factors  are  reduced  as  the  SUSY  scale  gets  higher.  

Page 47: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Hadron  matrix  elements

(MB  :  baryon  mass  parameter)

Low-­‐energy  constants  

(@  μ  =  2  GeV)

Y.  Aoki  et  al.  [RBC-­‐UKQCD  Collabora6on]  (2008).

Page 48: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Decay  width

Page 49: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Results

Experimental  limit  

J.  Hisano,  D.  Kobayashi,  T.  Kuwahara,  N.  Nagata  (2013).

1033

1034

1035

1036

102 103 104 105

lifetim

e (ye

ars)

MS (TeV)tan! =

10

tan! =

5 tan! =

3

tan! =

30

M = "S HM = 3 TeV2 M = 1.0 # 10 GeVHc 15

Page 50: Minimal’SUSY’SU(5)’GUT’ inHighscale’SUSYhomepages.spa.umn.edu/~nagata/20130430.pdf · SUSY#par6cles# Events / 2 GeV 500 1000 1500 2000 2500 3000 3500 ATLAS HAaa Data Sig+Bkg

Results

Experimental  limit  

J.  Hisano,  D.  Kobayashi,  T.  Kuwahara,  N.  Nagata  (2013).

1033

1034

1035

1036

100 101 102

lifetim

e (ye

ars)

tan! = 10

tan! = 30

tan! = 5

tan! = 3

(TeV)"H

M = 10 TeVS 2

M = 300 GeV2 M = 1.0 # 10 GeVHc 16