mimo radar: resolution, performance, and waveforms · mimo radar: resolution, performance, and...

22
MIT Lincoln Laboratory asap06Radar-1 Bliss/Forsythe/Fawcett MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss Keith Forsythe Glenn Fawcett MIT Lincoln Laboratory This work was sponsored by the United States Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Upload: phungthuan

Post on 27-Apr-2018

262 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-1

Bliss/Forsythe/Fawcett

MIMO Radar:Resolution, Performance, and Waveforms

Dan BlissKeith ForsytheGlenn Fawcett

MIT Lincoln Laboratory

This work was sponsored by the United States Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and

recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Page 2: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-2

Bliss/Forsythe/Fawcett

Topics

• MIMO radar introduction

• MIMO resolution improvement

• Waveform optimization for improved SINR

• Waveform optimization for angle estimation

Page 3: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-3

Bliss/Forsythe/Fawcett

Static MIMO Radar

• Simultaneously transmit different (but possibly correlated) signals from each antenna

• Use transmitted and received signals to produce virtual MIMO response

• Translate MIMO response to bearing-range image

TransmitAntenna

Array

ReceiveAntenna

Array

Scatterers

Range

Bea

ring

Page 4: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-4

Bliss/Forsythe/Fawcett

MIMO versus Traditional Radar

TransmitArray

ReceiveArray

TraditionalRadar

Illuminated Area

TransmitArray

Illuminated AreaReceiveArray

MIMORadar

IndependentSignals

Range

Bea

ring

Range

Bea

ring

Multi-BeamMIMORadar

TransmitArray

ReceiveArray

Illuminated Area

IndependentSignals

ASNRAng

le E

rror

Page 5: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-5

Bliss/Forsythe/Fawcett

-d

0

d

MIMO Radar Channel

TransmitArray

ReceiveArray

ReceivedSignals

ChannelMatrices

TransmittedSignals

Notional Model

-d

0

d

Array Responses

MIMOVirtualArray

-d

0

d

2d

-2d

x 2

x 3

x 2

• Channel estimate provides estimate of MIMO virtual array

• Virtual array may over-represented elements

– Convolution of real arrays produces produces virtual array

– Suggesting sparse arraysx 1

x 1

Page 6: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-6

Bliss/Forsythe/Fawcett

MIMO Virtual Array Geometry

• MIMO virtual array positions are convolution of traditional transmit and receive array element positions

Real ReceiveArray

Element Weighting On Regular Array

MIMO Virtual ArrayReal TransmitArray

MIMO Virtual Array

• Sparse real arrays can produce filled virtual arrayReal Transmit Array Real Receive Array

Page 7: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-7

Bliss/Forsythe/Fawcett

Topics

• MIMO radar introduction

• MIMO resolution improvement

• Waveform optimization for improved SINR

• Waveform optimization for angle estimation

APERTURE

Page 8: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-8

Bliss/Forsythe/Fawcett

MIMO Sidelobe Bounds

• MIMO enables use of sparse arrays while maintaining sidelobe levels

• Difficult to compare arrays– Resolution vs. sidelobe tradeoff– Optimization problem dependent

• Use regular filled array for comparison

• Indirect bound

• Maximum virtual contiguous region

MIMO Virtual Array

Consider Only Contiguous Region Real Sparse Array

Real Filled Array

Beam Pattern

Bearing (filled beamwidths)

Rel

ativ

e Po

wer

(dB

) SIMO

MIMO

SparseFilled

*

Page 9: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-9

Bliss/Forsythe/Fawcett

“Monostatic” MIMO Filled-Aperture

MIMO Aperture Bounds

Con

tiguo

us V

irtua

lM

IMO

Ape

rtur

e (λ

/2)

Number of Real Antennas

LowerBound

UpperBound

• Upper contiguous MIMO aperture bound

“Mono-Static” MIMO

Transmit &Receive

Array

Real Array

MIMO ApertureMaximize

• Lower contiguous MIMO aperture bound

– Specific construction

Contiguous Length:

# Real Antennas:

Page 10: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-10

Bliss/Forsythe/Fawcett

Distributed MIMO Virtual Filled Aperture

• Virtual aperture limited by• Achievable if transmit and receive

locations are independent

Distributed MIMO

TransmitArray

ReceiveArray

∗Real Transmit Array Real Receive

Array

MIMO Virtual Array

Beam Pattern

Bearing (Filled Beamwidths)

Rel

ativ

e Po

wer

(dB

)

Rece

ive

Tran

smit

MIMO

Page 11: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-11

Bliss/Forsythe/Fawcett

Topics

• MIMO radar introduction

• MIMO resolution improvement

• Waveform optimization for improved SINR

• Waveform optimization for angle estimation

Page 12: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-12

Bliss/Forsythe/Fawcett

ConvolveWith

Channel

ReceiveSignal

Space-Time

Channel

RemapTo Virtual

Array

MatchedFilter

Basic MIMO Radar Processing

ReceiveAntenna

Array

TransmitAntenna

Array

ReceivedSignals

ChannelMatrices

TransmittedSignals

Notional Model

Independent TXWaveforms

TX #1

TX #2

TX #N

Scattering Field

Range

Bea

ring

Least Squared Estimator

Space-Time Channel Est.

Rec

eive

Ant

.

Range x Transmit Ant.

MIMO Response

Range

MIM

O V

irtua

l Arr

ay

RemapRemap

Image

Range

Bea

ring

MatchedFilter

MatchedFilter

Page 13: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-13

Bliss/Forsythe/Fawcett

Adaptive Waveform MIMO Radar

• Iterative approach• Second pass use

knowledge from first• Modify transmitted

waveforms

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

FFT

QuickTime™ and a decompressor

are needed to see this picture.

Remap

MIMO Processing

SelectPixels of Interest

SelectPixels of Interest

WaveformOptimizationWaveform

Optimization

Optimized TXWaveforms

TX #1

TX #2

TX #N

Page 14: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-14

Bliss/Forsythe/Fawcett

Waveform Optimization

Options• Maximize estimated channel power• Maximize estimated target response

Received Signal

Transmitted Signal

Not Necessarily AchievableDue to Block Toeplitz Structure

of

User-Defined Importance Weighted

Space-TimeChannel Estimate

Constrained Optimization

Solution (sort of)

Page 15: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-15

Bliss/Forsythe/Fawcett

Random WaveformScattering Field

Bea

ring

Rel

ativ

e En

ergy

(dB

)

Range Range

Performance Enhancementbearing/Range Images

8x8 MIMO Radar

8 Tr

ansm

itAn

tenn

as

8 Re

ceiv

eAn

tenn

as

Target Optimized Waveform

Range

Optimized Waveform

Range

Bea

ring

Page 16: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-16

Bliss/Forsythe/Fawcett

Performance EnhancementStatistics

Target-to-Clutter RatioImprovement

CD

FTarget

Optimized

ChannelOptimized

Spat

ial-o

nly

• Effects of waveform optimization

• Target-to-clutter ratio improvement significant

• Subtle benefit of space-time optimization is disappointing

Spac

e-tim

e

Better

Page 17: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-17

Bliss/Forsythe/Fawcett

Topics

• MIMO radar introduction

• MIMO resolution improvement

• Waveform optimization for improved SINR

• Waveform optimization for angle estimation

Page 18: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-18

Bliss/Forsythe/Fawcett

Clutter-Free Single TargetWaveform Optimization

target

8 x 8 MIMO RadarTransmit & Receive Patterns

Transmit Aperture = 6 x Receive Aperture

• Cramér-Rao-based optimization• “Optimal” waveform uses

difference beam only– Minimizes power on target

• Employ difference and other beams

– Transmit independent sequences on each beam

Transmit

DifferenceB

eam

Receive SumPattern

Transmit

SumB

eam

ReceiveAntenna

Array

TransmitAntenna

Array

Single Target

Page 19: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-19

Bliss/Forsythe/Fawcett

Accuracy of Angle EstimatesComparison of Simulation and Bounds

Sum-Beam BoundMixture BoundDifference-BeamBound

75% Sum Beam25% Difference Beam

ASNR (dB)

ML estimator agrees at higher SNR

ML

Sum-Beam BoundMixture BoundDifference-BeamBound

ASNR (dB)

10% Sum Beam90% Difference Beam

MLEstimateML estimator agrees at even higher SNR

Sum-Beam BoundMixture BoundDifference-BeamBound7% Each Ortho Beam50% Difference Beam

ASNR (dB)

ML

• Vary mixture of transmit power

• Transmit difference beam improves asymptotic performance

• Transmitting in all modes (full MIMO) improves finite performance

Page 20: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-20

Bliss/Forsythe/Fawcett

Summary

• Introduced new MIMO radar concepts

• Demonstrated up to order N improvement in MIMO virtual array aperture

• Improved MIMO radar target SINR using waveform optimization techniques

• Reduced angle-estimation error using MIMO waveform optimization technique

Page 21: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-21

Bliss/Forsythe/Fawcett

MIMO Radar Degrees of Freedom

• Dimension of space:• Dimension of subspace depends upon

transmit and receive array geometry

Assuming

Tradition Array Processingn Degrees Of Freedom

AdaptiveReceiver

Adaptive TransmitAnd Receive

2 n Degrees Of FreedomAdaptiveReceiver

& Transmitter

Distributed MIMOn2 Degrees Of Freedom

TransmitIndependentWaveforms

ReceiveWaveforms

“Mono-Static” MIMOn(n+1)/2 Degrees Of Freedom

Transmit &Receive

IndependentWaveforms

Page 22: MIMO Radar: Resolution, Performance, and Waveforms · MIMO Radar: Resolution, Performance, and Waveforms Dan Bliss ... Clutter-Free Single Target ... & Transmitter Distributed MIMO

MIT Lincoln Laboratoryasap06Radar-22

Bliss/Forsythe/Fawcett

Performance EnhancementStatistics

Target-to-Clutter RatioImprovement

CD

F

TargetOptimized

ChannelOptimized

CD

F TargetOptimized

ChannelOptimized

Target PowerImprovement

spat

ial

spat

ial