microsegregation in crystal growth from the melt: an analytical approach

Upload: ella-byla-sara

Post on 06-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Microsegregation in crystal growth from the melt: an analytical approach

    1/8

    Journal of Crystal  Growth   13 1   (1993)  431—438   CRYSTALNorth-Holland   GROWT H

    Microsegregation in   crystal growth from   the  melt:

    an   analytical   approach

    J.P.  Garandet

     DTA / CEREM/DEM/SMGP/LET,   Commissariat   a   l’Energie  Atomique,   Centre d’Etudes Nucléaires de   Grenoble,   85X,F-38041   Grenoble  Cedex,   France

    Received  5   January   1993;   manuscript   received  i n   final   form 22   March   1993

    The  influence   of interface  velocity variations   on  microsegregation   is   modelled  analytically  using a  boundary layer formulationand   a  perturbation approach. The theoretical correlations   between   interface  velocity   and concentration fluctuations   are  seen to

    compare well with existing  numerical  and   experimental  data, meaning that   the  solute boundary layer formalism i s   well   adapted  to

    the   study   of   microsegregation.   A possible field   of   application   of   this   work   is   the   derivation   of   the   allowable   pulling   deviceinstabilities   in   a crystal   growth furnace.

    1.  Introduction   A   correlation   between   interface  and composi-tion fluctuations   was   obtained   numerically   by

    Solute segregation   at   the   microscopic   level   is   Wilson [4,51in the   early eighties   for a   sinusoidaloften   a   major   problem   for the   crystal growth   of growth  rate in an   idealized   Czochralski configura-application  oriented materials  [1]. For   instance,   it tion. An   interesting   result   was  that  microsegrega-

    is   well known   that rotation   of   the   sample   in an   tion   scaled   linearly   with   the   amplitude   of   theasymmetrical   thermal   field,  pulling   device   insta-   velocity   variations even  up   to   the   point   of   back -bilities  or vibrations lead   to time-dependent   van-   melting.ations   of   the interface   velocity which in   turn   An hybrid analysis was  carried out b y   Van Run

    often   result   in striations.   [61and   Favier   and   Wilson [71.Convection   is   ac-Another possible   mechanism for microsegrega-   counted for using   a   stagnant   film  model,   and the

    tion is  related  to  unsteady   convection in  the  melt,   solution   to   the   time  dependent   problem   is   then

    It can act either  directly  on   the solutal   field, as in   found numerically   using either   finite  differencesthe   case of   g-jitter   during solidification   in  micro-   [6] or finite   elements  [71.Both   approaches   weregravity [2] or   indirectly   when   the   temperature seen to compare very  well   with Wilson’s   data.fluctuations associated with   the   flow   modify   the A   solution   to   the   general problem,   involvinggrowth  velocity   and   thus   the   composition   of   the   an   analytical derivation   of   the   correlations   be-alloy.   tween the interface   velocity,   temperature   and

    Kinetic effects on   faceted interfaces   are also to   concentration   variations   is  very   difficult   to   find.

    be   considered.   High   lateral   growth velocities   at   One   of   the reasons   is   that, without   any   simplify-macrosteps   or local   interface   breakdown   due   to   ing   assumptions,   the   time   dependent   heat   andan excessive   undercooling can   result   in  transient   mass   transfer   equations  are   generally   non-linear.solute  incorporation   [3], but   a   detailed   study   of As a  consequence,   the   two   outstanding   effortsthese   microscopic  problems   is   outside  the   frame   in   the   field [8,91 both   relied   on a   perturbationof  our  present  work.   approach.   Another   common  feature   of  these   two

    0022-0248/93/$06.OO ©   1993   —   Elsevier Science  Publishers   B.V.  All rights   reserved

  • 8/17/2019 Microsegregation in crystal growth from the melt: an analytical approach

    2/8

    132   1 .1 ’.   Gurandet  /  Microsegregation   in   crystal   growth  from   the melt 

    models   is   that   the effect   of   convection   is   ac-   With the Z-axis   oriented   from   the interface  into

    counted   for   via   a   stagnant   film   model;   this   ap-   the   liquid,   W   is  necessarily negative.proach,   as   rightly   recognized   by   the   authors,   is   BPS   obtained   an   analytical   solution   to   the

    only   correct   when   convection   dominates   mass   above   set of   equations and   then   proceeded   totransfer, propose   a   simple   stagnant   film model   that   could

    Our   purpose   in this   paper   is   to   extend   the   account   for the   macrosegregation   phenomena.previous  analytical results   using a physically  sound   Indeed, even   if   we know   that   convection   is   pre-boundary layer approach.   Our   solution   will   thus sent,   let us suppose   that   mass   transport   is  purely

    be valid   all   over   the   convecto-diffusive   solute   diffusive in a   region of   extent 6s~in  front   of   the

    transport   range.   An   additional   advantage   of   our   interface,   the bulk  of the liquid being   assumed   to

    analysis   with   respect   to  previous  work   is  that   the   be   homogeneous.   Eqs. (1)   and (3)   become:algebra involved is much   simpler,  making it  easier

    d2C   dCto  use for   the practician.   D—~-+ V 

    A  necessary prerequisite   is   to modify the   stag-   dZ~   ‘dZ   =   (4)nant   film model first   introduced  b y   Burton,   Prim   ~   =  ~SF~   c   = C~.   (5)and   Slichter   (BPS, [101), which   will   be   done   in

    section  2. We   shall then focus on   the  limiting case   BPS   did not  ascribe   any physical   meaning to  6~,of   low   frequency perturbations   in   section  3   before one  of   the main   problems  being  that   the solution

    turning to   the   general problem   in   section   4.   The   of   the stagnant  film   model   led   to   a   discontinuityresults   are   discussed   and   a   comparison with   the   of   the solute   flux at   Z =  6SF’   To   quote   their

    words, “the  somewhat  arbitrary quantity   65F   mayexisting  numerical and  experimental   data  will   hepresented   in   section   5.   be   characterized b y   defining  it so   that   it yields the

    same   dependence   of the   composition   upon   thegrowth   parameters   that   is   given   by   the   exact

    2.  The boundary layer concept   solution”.

    Afterwards   however,   the   externally   supplied

    Let us briefly recall   the   basis of   the stagnant   parameter   65F   was widely   interpreted   as the

    film  model;   in   their  pioneering work, BPS  consid-   length   scale of   “diffusion   dominated   mass   trans-ered   a   steady   state,   one-dimensional concentra-   port”.   Wilson   [121showed   that   this   idea was   not

    tion problem,   the fluid   velocity   in   their   idealized   correct,   but a lot of   misunderstanding and   confu-

    Czochralski   configuration   being   given   by   the   ap-   sion   can still   be   found   in  the   literature.proximate analytical expression   of   Cochran   [111   Our opinion  is   that   the effect  of   diffusion   and 

    In a  frame moving  with the interface, the  govern- convection   is   to   force  all   the   significant  composi-ing mass   transfer   equation,   tion variations   to   take place   in a   region of   extent

    6   — the solutal boundary   layer   — in   the vicinity of d2C   dC   the   interface.   Using Wilson’s [121definition,

     D—+[V 1—W(Z)]—-—=0,   (1)

    dZ2   dZ   C(0)   C~

    6=   (6)was solved  along  with the boundary  conditions: Z=0   (interface):

    the physical   meaning  of   6   rests on   stable  physical

     D  —I   =V 1(1-k)C(0),   (2)(dC   1   grounds. One of   the main   interests  of  this bound-

     —   dZ )~   ary   layer concept   is   that   it   is  possible   to  account Z — s   ~: C   =C~.   (3)   very   simply   for the convection phenomena   in   the

    melt.   Indeed,   let us   consider the   “diffusion   con-V1,   W,   D,   k   and   C~,respectively,   stand   for the   trolled”   mass   transfer  equation:

    interface and   convective  velocities,   solute   diffu-d 

    2C    dC sion  and partition   coefficients,   and concentration   D—   ~-   Vett~=   0.   (7)

    in   the   fluid   phase   far   away   from   the   interface.   dZ2

  • 8/17/2019 Microsegregation in crystal growth from the melt: an analytical approach

    3/8

     J.P.   Garandet   /  Microsegregation   in   crystal growth from   the melt    433

    where   a   constant  effective velocity   fr~,yet   to be   A lot of   misunderstanding could   probably havedefined,   has   been  substituted   to   the   V 

    1   — W(Z)   been   avoided,   at no   additional   cost in   terms   of term   in   eq.   (1).   The   boundary conditions   being   mathematical   complexity, if BPS   had  introduced

    again eqs. (2)   and   (3),   the solution   is an effective velocity  J”~instead of 65F~Of course,

    for steady  state   problems,   the  difference   is  mere(1   —   k)V 

    1  ~_ 

      ~   + i

    1c~.   intellectual satisfaction,   but we  shall now   see that

    C(Z)  =   —

    (1  —

     k)V 1 exp~   D   )   j   this boundary layer   concept   can be   fruitfully  used

    (8)   in  the   study of   microsegregation.

    So far we   have   merely   changed   the   arbitrary

    parameter   necessary   to  match   the   exact   solution   3.  The  low   frequency   limitof BPS   at   the   interface,   but   a first   advantage   isthat   there is no   discontinuity of  the concentration   In this   section,   we   shall  assume   that   the   fre-derivative in   this   formulation.   Besides,   from  eqs.   quency   of   the  fluctuations   is  low   enough   for the

    (6)   and   (8),   we get ~   =  D/6,   meaning that   the   system   to   follow   them.   In   other   words,   we sup-characteristic   length   in   the  exponential   is   — as   it   pose that   the   composition   instantaneously   reacts

    should be   —   the   boundary  layer thickness. More-   to   a   change   of   the   growth conditions.   If   both

    over, it is   possible   to   show   from  scaling analysis   solidification   and   convection velocities   are   un-arguments  [13,141that   the characteristic equation   steady,   the   time-dependent   mass   transfer   equa-governing  the   variations   of   6   is   tion   in a   one-dimensional   frame  moving  with   the

     D/6   =   V 1   — W(6).   (9) interface at   a  rate   V1(t)   is

    Eq.  (9) was  seen   to  compare very well   with   exist-   aC    a~C    3Cing   numerical and   experimental   data   [13—15]; D   +  [V1(t)   — W(Z,   t)]   ~.   (11)a t    a z 

    2    a z  D/6   is  then expected to be close   to  V 

    1   — W(Z)  at

    the boundary   layer scale   6.   The   substitution   in   Order   of   magnitude arguments   indicate that   if 

    eq. (7)  i s   thus justified  on physical   grounds.   the concentration   variations   take   place   oven   aA way  to interpret   eq. (9) is  to  say  that,  at   the   time   scale   T   much  larger   than   6 

     2/D, aC/at   will

    boundary   layer edge,   a typical diffusive velocity   be  negligible with   respect   to   DII2C/aZ2.   In   that D/6   balances  the   overall   fluid motion   V,   — W(6)   case,   it is   possible   to write   down a   time   depen-

    towards   the front.   Moreover,   depending   on   the   dent   version  of  eq.   (9):relative magnitudes   of    V 1   and   W(6),   transport   D/6 ( t)   =   ~, ( t)   — W( 6(t),   t),   (12)

    will   be said   to   be   diffusion   controlled   (‘~~>>

     — W(6),   J’~~=   V1),   or   convection   controlled   (V 1   with   W(6(t),   t) standing for the   effective convec- — W(6),   fr~=   — W(6)).   It   is   then   possible   to   tion   velocity at   the   time   dependent   boundary

    define an effective partition  coefficient   keff   as   layer scale 6(t)   (see   eq. (9)).   Once   6(t)  has   been

     kC(0)   k    derived,   it is   possible   to   use   the convecto-diffu-(10)   sive   parameter   ~i(t)   = 6(t)V1(t)/D   in   the   effec-keff  =   C~   =   1   — (1   — k )  ~‘   tive   partition coefficient formula (eq. (10)).  Let  us

    where   the   convecto-diffusive   parameter   ~   =   now suppose that   the convective contribution doesV16/D = V1/V~~~measures   the  respective   contri-   not   depend   explicitly   on   time,   viz.   W(6(t),   t) =butions  of  convection and diffusion  to mass   trans-   W(6(t)),   and   that   the   growth   rate  I/~(t)is givenport.   It is interesting   to   note   [13,141 that   in the by:developed   convective   regime   (~1~n 1   or   6   ~   V1(t)   = ~7~(i +m(t)),   (13)

     D/V1),   665F~  Under   this   restriction,   65F   is

    indeed the  characteristic  length  scale of   the prob-   m(t) being a modulation  around the average value

    1cm,   but   this  result certainly  does  not hold when   V~,assumed  smaller  than unity to avoid backmelt-

    diffusion  becomes important.   ing.   The time-averaged value   of   the boundary

  • 8/17/2019 Microsegregation in crystal growth from the melt: an analytical approach

    4/8

    434   . 1 .   P.   Gurundet  /  Microsegregaoon   in crystal   growth from   the  ,m’lt 

    1   relative   concentration   variation   velocity  changes.   It   can   also be   considered  as thelow   frequency   limit   for the   general problem   we

    k~O.Oi   shall   now   address.0.8   ‘~-

    0,6   k=O.1

      4. The general  problem

    0,4   Our purpose here   is   to   derive   a   correlation

    -   between interface   velocity   and concentration0,2   ~   k—O.5   variations.   As   was   done   previously in the   analyti-

    cal   efforts  already  quoted  [8,9], we  shall   rely on a

    c   —   ——   —~-~-   perturbation   approach.   However, we   shall   not0 0,1   0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9   I

    dwell on the   related   temperature   problem   andthe   interested reader   is   referred   to   the earlier

    Fig.   I.   Relative   microsegregaiion   versus   i   in   the   low   ‘re-   papers for   a   derivation   of the   influence   of   ther-quency limit for various values of the   segregation coefficient.   mal   oscillations   on   growth   rate.

    In   refs. [8,91, it   was   assumed that   the   stagnant

    film   thickness  did not   depend on   interface veloc-ity.   We  shall   here   drop   this   hypothesis,   the key

    layer thickness   ~   can   then   he   derived from   eq.   improvement   being  that   our   results   arc   expected

    (9),   i.e..   D/6   =   V 1   W(6).   If we  now   suppose   the   to   hold   whatever   the   convecto-diffusive   state   of 

    variations   of the   W(6(t))   term   to   be small.   eqs.   the   melt,   i.e.   for i ranging  from   0   to   I.   However,(12)   and (13) yield the   approach   of refs. [8,91 is   certainly correct   in

    the   convective regime  limit (6   ~<   D/VI   or i ~<   1 )

    ~(I)   =   +   (14)   and   it   will   be used   to  check   the validity of   our1   +ni(t)~1   solution   there.

     —   —   —   Due   to our  solutal   boundary  layer formulation.where   i =   V16/D.  Using   ~(t)   thus defined as  an   the   time-dependent   version   of  eq.   (7)  will   be theinput   in   the   effective   partition   coefficient   for-   relevant   mass   transfer equation.   The   main   van-

    mula,   we find   that   the concentration fluctuation   ables of the   problem   (composition   field,  interfacefor lo w   amplitude   growth  rate  changes   is   and  effective velocity)   are   expanded   into Fourier

     — k  ) ~(1   — ~)   series  up to   the   order one;   thus:(‘~(t)   ~SS   I   ~(l   —k)~   c’5sifl(t),   (15)   C(Z,   r)   =C°(Z) +C’(Z)   exp(iwt),   (16a)

    where   ~   is   the   average   interface   composition   V~=   V1°+   V1 t    exp(iwt),   (lOb)derived   setting   i=i   in eq.   (10).   The relative   V.~1=V.YF+   V,   exp(iwt).   (lbc)concentration   variation   is   plotted   in   fig.   1   forvarious values   of   the   partition   coefficient   k.   An   w   being the   pulsation   of   the perturbations,   as-

    expression similar to  eq. (15) was   earlier  obtained   sumed   small with   respect   to   the zeroth orderin   the   frame   of   the   stagnant   film model [11; as   contributions.   Since we focus   only   on the   influ-expected, both   approaches   yield   the   same   tran-   ence   of   variations   of   the interface velocity,   the

    sient behaviour  when   convection dominates   mass   fluctuation of   fr~reduces   to   V~l.transport   (i   ~<   1) ,   but  significant  differences   are   The   zeroth order   solution   is   simply   eq.   (8),observed   when   diffusion  becomes important. setting   fr~=  D/6°; we shall   assume   that   the

    Eq. (15) is   useful   for   prediction   purposes, boundary layer thickness of the  steady  state   prob-keeping   in   mind that   it   is   only valid   when   the   1c m   5°is   a given  parameter.  More   interesting forboundary  layer reacts   instantaneously   to interface   our   present   purposes,   the   first   order governing

  • 8/17/2019 Microsegregation in crystal growth from the melt: an analytical approach

    5/8

     J.P.   Garandet  /  Microse gre gation   in   crystal growth from   the melt    435

    equations   in   the   bulk   and   at   the interface are, interface velocity variations  are proportional,   theirrespectively,   relative amplitude   depending   on   three   non-di-

    mensional parameters:d 

    2C’ D   dC’   dC° D   dZ2   + ~T   -   iwCt   =   -   V 

    1 t   ~(17)   ~°=5°V1

    0/D,   Fq  =w(6°)2/D, k.

    dC’ Eq. (21)   may   look   a   little   unfriendly,   but   it is=  (1   — k)(V 1

    0C1 + v~tC0).   (18)   indeed   quite simple with respect to  the  previouslydZ

    published  correlations  (eqs. (13a), (14a)   and  (14b)An   additional   requirement   is   that   the   perturba-   in ref. [8], eqs.   (40),   (41)   and   (42) in ref. [9]). Totion   C’   vanishes   far away  from the   interface:   check  the  validity  of  our result,   two   limiting cases

     Z—~,   C1=0.   (19)   can be   considered:.   The   low   frequency   limit, Fq   — v   0 ;   it is easy   to

    The   solution   to   the   homogeneous problem   is show that   eq. (21)  reduces   to   eq. (15).simply:   C~=   A   exp(m,Z),   A   being   an   integration   • The   convective regime,   high   frequency   rangeconstant  yet  unknown   and  m,   a  complex parame-   (~O~ 0 , Fq   — s ~)  where   the   previous solutionster: [8,9] are   expected   to  be   hold.   Taking   the   limit

    1   [

      (  4iw(6°)2)i/2]   Fq   —*   ~,   eq. (21)  becomes

    1—i11+   1+   I   ~(1_k)~Fq~/2   (22)1260   D

    ~=Vi

    Setting   dC°/dZ=   —B   exp(—Z/6°),   with   B   =   which  can be  made to  coincide  with  the  publishedV~°C,°(l — k)/D,   a   particular   solution   of   eq.   results  [1,9,16].

    (17)   is   simply   C,~=  (iB/w)   exp(—Z/6°).   The

    general  solution   is  thus

    iB   (   Z   1   5.   DiscussionC’  =A   exp(m,Z)   + —exp~ — 

    0) 

    Now   that   we   have   gained   confidence   in theWe now  make use of  eq. (18)  to  determine   A ,  and   validity  of  eq.   (21),   we  can proceed   to   a   system-we finally get   for the   value of   C’   at the   interface:   atic   presentation   of   the predicted   correlations.

    Shown in   fig.   2   is   the frequency dependence   of V 1

    1 (1  —k)C~

     (  iV,°   ,~0)).   the   modulus   of the   relative   concentration   vania-

    1—  —(1   +mC:=_D+(lk)V0   0)6°

    (20)   —

    The  above  expression can be  transformed   into   ->

    C   V 1

    1   —   -1

    -1.5C~   V,

    1   —   (i~i0/2Fq)[1   —   (1   +   4iFq)iz”2]   ~   -2 X    ~[1+(l+4iFq)1/2]   —(1—k)~°

     —2.5

    (21)  — .3

     —3 —2   —i   0   1   2 3 4

    As   noted   in ref. [8],  the occurrence of   imaginary   log   (Fq~terms   defines   the phase  difference   between   the   Fig.   2.   Norm   of  the   relative   concentration   variation   versusinterface concentration, and the   driving   term   non-dimensional frequency   for   three   values   of   .i°and   k  =

    1 ’   exp(iwt).   We find   that   the concentration and   o.oi.

  • 8/17/2019 Microsegregation in crystal growth from the melt: an analytical approach

    6/8

    436   . 1 .  P .   Garandet    /  Mic-ro.segregation in   crystalgrowth from the  roe/i

    C   ~   T

    C ’

    51

    ~   -~   r~C r)

    U -.Cr

    NCr~Cr-   6— 

    -   oL~—I   ~

    3   2   1   0   1   2 3   4   4 5

    log (-q)

    Fig.   3.   Interface velocity/concentration phase   shifi sersus   FigS.   Norm   of the   relative concentration sariation   versus  the

    non-dimensional frequency   for   the   case   Jo   = ((.5   and   —   convecto-diffusive   parameter tor   three   values ol   Fq   and   k   — ‘(1 .1)! .   0.))

    tions   for   three   values   of   the   steady   state con-   Fq   I   ~ However, since   microsegregation   van-

    vecto-diffusive  parameter,   i°   0.1,   i°—0.3   and   ishes   both   in the   low   (eq. (15))   and high  (ccl.   (22))=  0.9;   in   all   cases,  we   took   k   = 0.01.   Fq limits, a   maximum   in   the   medium frequency

    The variations   are   monotonic,   the   expected   range could   have been  expected.Fq   I   2   power law   being observed above   a   cutoff    An   alternative   presentation   of’   these   results   isfrequency   Fq   1 .   The   associated   phase   shift   of    proposed   in   fig.   5,   using   i~as a   variable.   Forfig.   3   also   exhibits   a   monotonic decrease;   in the   high values  of   Fq,   the relative concentration   flue-low   frequency range,   the   concentration   fluctua-   tuations   increase  linearly with   i°;it   is   only  for Fq

    tion  i s   able to  follow   the  variation  of  the interface   smaller   than   0.03   that   a   maximum   can   he   oh-velocity,   but   it   lags   ~/4   behind   in   the   high   fre-   served.   The influence  of   the partition  coefficient

    quency  limit, has   not   been   checked   in   detail,   hut   the   corn-

    A  priori   more surprising  is the   result obtained   position   variations   always   seem   to   increase   withfor i°=   1 ,   i.e.   for purely   diffusive mass   transport   1   —   k  H(see   fig.   4).   The relative   composition   variations   Turning   to   a   comparison with   the numericalfirst   increase with frequency,  then pass through   a   data,   the   effect   of   fluctuating   growth   rate   in   a

    maximum  around Fq   0 .1   and  finally decrease   as   Czochralski  configuration   was  thoroughly studiedby   Wilson   [4,5.7] in the   early   eighties.   A   fullytime-dependent   analysis was   carried   out.   assurn-ing a   variation   following eq.   (13).   with   n,( t) —

    A   sin(wt),  where   w   stands   for the   angular veloc--

    5 L-   -   ity   of   crystal   rotation.

    Shown in  table   I   is   a   comparison   between   the

    predictions   of   our   eq.   (21) and the   numerical

    Table   I

    (~onipartsonbetween our   analytical   predictions   and   Wilson’s

    numerical results  1 7 1

    -2   5   .~____________________________________   J°   Fq   k    ( H   / (   (‘iH   ( H ’4   3   —2   1   0   1   2   3   4

    leg.  (21)) (numericalllog   ~3r

    Fig.   4.   Norm   of   the relative   concentration variation   versus   1)33   6.09   001   1 ). 1 1 )   ((II

    non-dimensional   frequency   for the   case   —   I   (purely  diffu- ~   2   54   ((.07   028 026

    sive  mass   transport)   and   k    ( (1)1.   1)78 2.54   1.25   0.0505   11.0515

  • 8/17/2019 Microsegregation in crystal growth from the melt: an analytical approach

    7/8

     J.P .   Garandet   /  Microsegregation   in  crystal growth  from   the melt    437

    E

    0   C)

    51

    c v _50   E 

    0

    a   0   (b )   —.~.   •

    ~   3x10

    19   •   -   40   a,0   •   l~~1~’~O   •   30   —0   0

    0   •••••a )o   •~   ~   -   20

    =0

    Icycle   2   cycle   3   cycle   —   102xtO’9   —   I   i   I       I   0   0

    0   1   2 3 4 5 6 7 8 9   1 0   I I   1 2 1 3   1 4   1 5 1 6 1 7 1 8   1 9 c c

    tb )   Length   of   crystal grown   (pm1x280   (0 10

    0

    Fig. 6 .   Quantitative  growth rate and microsegregation analysis on a  Ga  doped  Ge crystal   (experimental result  from ref.   [17]).

    results   for the   three  cases   presented   in   ref.   [7].   with   the  predictions   of eq. (21) is fair, the   maxi-Even   though   we know   that microsegregation   re-   mum discrepancy being  roughly   50%.

    mains   proportional   to   A   up   to  the point  of  back 

    melting   [4],   thus   supporting the   possibility   of   alinear approach   even  out   of its   range   of   validity   Concluding remarks

    stricto sensu,   the agreement   is   well   beyond  what

    could   have been  expected.   Our   purpose   in this   paper   was   to  propose   anAs  for the  experimental data, a very   important   analytical approach to   the microsegregation   prob-

    paper   was   published   by   Witt   et al. [17] in   1973.   1cm.   Using a   perturbation   analysis, we   were able

    These   authors were able   to   measure simultane-   to  derive   a   correlation   between  interface velocityously the   dopant  distribution  (via spreading  resis-   and concentration   fluctuations. The algebra   in-

    tance)   and the  microscopic  interface velocity (via volved was seen to be  quite   simple with respect   tothe   distance between   striations   induced   by   cur-   the previous   theoretical treatments  [8,9]. We thus

    rent   pulses   sent   at a   given   frequency)   in   think  that   our  modelling  can be   used   in  practice,Czochralski  grown   Ga doped   Ge. A typical out-   for instance  to   assess   the allowable pulling  device

    put   of   this procedure  is  plotted   in fig.  6 .   instabilities   in a  crystal growth   furnace.Further   work  by   the MIT team  [18,19] on   this We   also   demonstrated   the   possibility   of   ac-topic   featured   Sb   doped   Si   alloys.   All the   results   counting   for the   effect   of   convection   in the   melt

    are   summarized   in   table   2,   only   the   experiments   via a   solute   boundary   layer   formalism.   As   op-performed  without backmelting being  considered   posed   to   the   Burton,   Prim   and  Slichter   stagnanthere.   Two sets of   data   were   obtained   from   ref.   film   model   [10], this   approach   stands   on   stable[18], as   the   two   growth   cycles   were somewhat   physical   grounds.   As   the boundary layer concept

    different   (see   fig.   2   in ref. [18]). The   agreement   was also   successfully   applied   to   radial  problems[20,21], we   think  that   it is a   very  powerful   key   tothe   modelling   of   segregation   phenomena   in  melt

    Table 2

    Comparison between   our analytical  predictions and the   exper-   crystal growth.imental results [17—19]

    J°   Fq   k    C~/C,°   C~/C°(eq.   ( 2 1 ) )   ( e x p e r i m e n t a l )   Acknowledgements

    0.44 3.49   0.087   0.094   0.147   1 1 7 10.35   5 .6 1   0.023   0.058    0.08   1 1 8 1   Fruitful  discussions   on   the   topic   with Drs.  A.0.37   5.38    0.023 0.069 0.097   [181   Rouzaud,   D.   Camel  and J.J. Favier   are   gratefully0.26 6.38   0.023 0.045   0.06   [191   acknowledged.   The   author   would also   like   to

  • 8/17/2019 Microsegregation in crystal growth from the melt: an analytical approach

    8/8

    438   . 1 .   P.   Garatu/et   /  Micro.segregation  in   crystal growtbt   /rom the tile/i

    thank  his friends 0..   Z.,   J. and   F .   for their   help in   i5   Zeroth   order   convecto-diffusive  parameter

    improving   the presentation   of the   manuscript.   w   Frequency  of   perturbation  (s   IThe  present  work was  conducted  within the   frameof the   GRAMME   agreement   between   the   CNES

    and the   CEA.References

    I”~oiuenclature   [I]   JR. (arrutllers   and   A l ’ .   Wilt.   in:   (rystal   ( ~rowIli ,iiid(‘haracterizittion,   lids. R.   IJeda   and   i l ) .   Mullin   (North—

    A   Amplitude   of growth   rate   modulation   I   lolland. Amsterdam.   197S).[2]   .1.1.1).   Alexander,   I   Ouazzani   and   I     Rosenberiiet.   .1 .

    C    Solute composition   (mass or mole   traction)   (‘rysil   Growth   97   (989)   285

    ~   Steady  state   interface composition   (mass or   [3]  AN.   Danilewskv nil   K.W.   I l e n z ,   J .   (ryslal   ( ~ussIbi   01

    mole   fraction)   (1989) 571.

    C ’~ ’   Zeroth   order interface   composition   (mass   [4]   1.0.   Wilson.   J.   Crystal   Growth   48   I   1980)   4.35or mole   fraction)   H   [.0.   Wilson.   J.   (‘rystal   Growth   48   (1980)   451.

    I   ‘   . . . .   [6]   A.M.J.G.   van   Run.  J .   Crystal   Growth   47   11979)   68ILC,   Fluctuation   of the   interface   composttion   [7]   JJ   [~   and  [.0   Wikon,   . 1   Crystal   (irowth   5$   I   1982)

    (mass or mole   fraction)   1(3.

     I)   Solute diffusion   coefficient  (rn   s --   )   [8]  DII.   I   l u r l c ,   F.   Jake man   and   ER.   l’ikc   3-stIll

    Fq   Non-dimensional frequency   (irowih   3/4 (1968)   633.

    k    Solute   partition  coefficient   [9]   1) .   Thevcnard,   A.  Rouz~iud.J.  (‘omera   and  .1.1.   ~aviei.   . 1 .(‘rvstal   Growth   108  (I 991)   572.

    m( I   )   Modulation   of  growth   rate   [11)1   IA   Burton.   R (‘   Prim   and   W.P   Sliehter,   J.  (hem   PhysW    Dimensional  velocity   component   on   Z axis   21   (1953)   987.

    (m5_I)   [I   Ii   W.G.   (oehran.   Proc.   (‘ambridge   Phil. Soc.   30   (1934)   .365.

    V~~-Effective diffusion velocity   (rn   ~   --   I)   [12] L.C).   Wilson,   J.   Crystal   Growth   44   (197$)   247.

    V    Interface   velocity   (m   ~   — -   I   [13]   J.P.   Garandet.   T.   Duffar and   .1.1.   Favicr.J.(rysI~l- .     Growth   11(6   (1990)   437.

    V,   Average   intirtact   velocity   (m   s   [14]   1   P   Ci  ir mdcl   ii   I   sri   nd D   (   imcl   in   II indbook  o hV ,

    1 1   Zeroth   order interface velocity   (m   ~  —   I)   Crystal   Growth.   Vol.   2,   Ed.   D.T.J.   I  lurle   (North-I  lolland,V, I    Fluctuation   of  interface and  effective  veloc-   Amsterdam. to   he  published).

    ities  (m   ~   I)   [IS]   3.1’.   G:irandet.   A.   Rouzaud,   T.   Duffar   and   [1   Camel.   .1 .

     Z    Space  coordinate   normal   to interface   (m)   (‘rystal   Growth   113   (1991)   587.I  6]   D.T.J .   I-lu ne  and F. Jakcman,   J .   Crystal   Growth  S   ( I  969)

    227.S   Solute  boundary  layer thickness   (m)   [17]   A.F.   Wilt, M.   l.ichtcnsteigcr and   Il.(.   Gatoi,.I,   [Ice-51 1   Zeroth   order solute   boundary   layer   thick-   trochem.   Soc.   1 211   (1973)   1119.

    ness   (m )   [IS]   A.   Murgai.   I   IC’.   Gatos   and   A.F.   Wilt.   .1 .   Eleetroclicm.Soc   l~3(19761   114

    ~.   Stagnant   film   thickness   in BPS model (m)   [19]   A. Murgai,   [C.   Gatos and   WA.   Wesldor~~..I.Flee—I   Convecto-diffusive  parameter   (0 ~ i ~   trochem   Soc.   126   (1979)  2240.i   Quasi-steady-state   convecto-diffusive   pa-   [20]   J.P.   Garandei,   J.   Crystal   Growth   114  (1991)   593.

    rameter   [21]   JR   Garandet,   . 1 .   Crystal   Growth   125   (1992)112.