microbiological process report · microbiological process report 1961 fermentation process review...

31
Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals, Inc., Edison, New Jersey, Massachusetts Institute of Technology, Cambridge, Massachusetts, and University of Pennsylvania, Philadelphia, Pennsylvania WITH THE COLLABORATION OF S. AIBA W. BORZANI F. DENTICE DI ACCADIA R. ELSWORTH T. GHOSE 0. HAN6 H. KLAUSHOFER I. MALEK A. MOLLER J. PHILIPPE F. Zt-CKERKANDL University of Tokyo, Tokyo, Japan Universidade de Sao Paulo, Sao Paulo, Brazil Istituto Superiore di Sanitd, Rome, Italy Microbiological Research Establishment, Porton, England Jadavpur University, Calcutta, India Research Institute for Pharmacy and Biochemistry, Prague, Czechoslovakia Versuchsstation fibr die Girungsgewerbe, Vienna, Austria Biological Institute, Prague, Czechoslovakia Svenska Sockerfabriks Aktiebolaget, Arl6v, Sweden SocieM Industriel pour la Fabrication des Antibiotiques, Paris, France SociNtt Industriel pour la Fabrication des Antibiotiques, Paris, France Received for publication 18 December 1962 The 1961 Process Technology portion of the annual Fermentation Review appeared in the 1962 Annual Review Supplement of Industrial and Engineering Chemistry. The material in that review dealt with microorganisms and the bioengineering aspects of fermentation processes. This portion of the annual Fermentation Review is concerned solely with processes. In the interests of conserving space, it is presented in tabular form. The very generous finalncial help provided by the Foundation for Microbiology to aid in the preparation of this manuscript is gratefully acknowledged. 273 on January 16, 2020 by guest http://aem.asm.org/ Downloaded from

Upload: others

Post on 05-Nov-2019

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

Microbiological Process Report

1961 Fermentation Process ReviewFRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY

Industrial Biochemicals, Inc., Edison, New Jersey, Massachusetts Institute of Technology, Cambridge,Massachusetts, and University of Pennsylvania, Philadelphia, Pennsylvania

WITH THE COLLABORATION OF

S. AIBAW. BORZANIF. DENTICE DI ACCADIAR. ELSWORTHT. GHOSE0. HAN6H. KLAUSHOFERI. MALEKA. MOLLERJ. PHILIPPEF. Zt-CKERKANDL

University of Tokyo, Tokyo, JapanUniversidade de Sao Paulo, Sao Paulo, Brazil

Istituto Superiore di Sanitd, Rome, ItalyMicrobiological Research Establishment, Porton, England

Jadavpur University, Calcutta, IndiaResearch Institute for Pharmacy and Biochemistry, Prague, Czechoslovakia

Versuchsstation fibr die Girungsgewerbe, Vienna, AustriaBiological Institute, Prague, Czechoslovakia

Svenska Sockerfabriks Aktiebolaget, Arl6v, SwedenSocieM Industriel pour la Fabrication des Antibiotiques, Paris, FranceSociNtt Industriel pour la Fabrication des Antibiotiques, Paris, France

Received for publication 18 December 1962

The 1961 Process Technology portion of the annualFermentation Review appeared in the 1962 Annual ReviewSupplement of Industrial and Engineering Chemistry. Thematerial in that review dealt with microorganisms and thebioengineering aspects of fermentation processes. Thisportion of the annual Fermentation Review is concerned

solely with processes. In the interests of conserving space,it is presented in tabular form.

The very generous finalncial help provided by theFoundation for Microbiology to aid in the preparation ofthis manuscript is gratefully acknowledged.

273

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 2: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 1. Alcohols and ketones

Product Investigation and results Reference

Acetone and bu-tanol

2, 3-Butanediol

Butanol and iso-

propanolDihydroxyace-

tone

Ethanol

Glycerol

Glycerol,

D-arabitol, anderythritol

Propanol

Two reviews of commercial fermentation appeared

New strain producing more butanol from molasses characterized and identifiedas Clostridium saccharoacetoperbutylicum

Performance tests of Clostridium saccharoacetoperbutylicum in industrial scale re-

portedPatent granted for high butanol-producing strain of Clostridium saccharoaceto-

perbutylicumSolvent losses in fermentor gases recovered by passing through carbon absorbersCitrus press liquors and citrus molasses, adjusted to 20% sugar concentration,fermented by two Aerobacter species to diol in concentrations as high as 5.3%in 48 to 64 hr

Corn-stalk hydrolysates and other plant wastes mixed with molasses fermentedto solvents by new strain of Clostridium butylicum

Commercial production from glycerol and uses of dihydroxyacetone reviewedReview of production and uses

Glycerol (10%O) converted in 90% yield in 24 hr, using Acetobacter suboxydans infermentors up to 3,500 liters in size; additional glycerol addition during fer-mentation resulted in product concentrations as high as 17.5%

Alcoholic fermentation of blackstrap molasses comprehensively reviewedChemical treatment of molasses and disinfection, using antibiotics, results in8.3% alcohol yields in broth

Different molasses addition schedules affected alcohol yield from molasses grainmedium

Beet cuttings (3 to 5%) added to molasses medium increased fermentation rateand alcohol yield to 11%o by volume, and produced more nutritive distillers'slop

Addition of molasses ash to medium prepared from deionized molasses reducedthe lag phase

Rate of nutrient addition most critical factor in multistage continuous fermenta-tion

Patents granted for determining rate of nutrient addition from fermentor gas

composition, with or without spargingYeast recycling offered no advantage with regard to growth or alcohol yieldWood hydrolysates produced alcohol in 91% theoretical yield, using Saccharo-myces vini and several other mycelia-forming yeast species in five Russiandistilleries

Alcohol produced from waste sulfite liquors neutralized, using sodium sulfide richalkali. High sulfide concentration inhibited fermentation. Biological effect ofsulfite and its relation to pH discussed

Ethyl acetate formation during fermentation occurs by intracellular mechanisminvolving coenzyme A, optimally between pH 4.4 and 4.6

Strains selected from 81 strains tested on cane molasses, corn, and sorghum mediaproduced 28 to 36 liters of alcohol per 100 kg of raw material

Four strains of Saccharomyces cerevisiae var. hansen produced alcohol from black-strap molasses with fermentation efficiencies of 91.3 to 92.6%

Yeast strain isolated from mohua flowers fermented 240 Brix mohua extract to11.1% alcohol concentration in 48 hr

Patent granted for aerobic fermentation using Saccharomyces rouxii in mediumcontaining 10 to 23% sodium or potassium chloride

Patent granted for production, using Pichia miso or Debaromyces mogii in me-

dium containing 30 to 45% fermentable sugars

Saccharomyces cerevisiae grown anaerobically in sugar-rich medium converteda-aminobutyric acid to propanol (34% molar yield), amyl alcohol (25% molaryield), and higher alcohols

Kovats and Niestrawski(A12), Ross (A25)

Harada (A9)

Motoe et al. (A17)

Motoe et al. (A18)

Laskewski (A14)Long and Patrick (A15)

Aganesova (Al)

Green (A7)Green et al. (A7a)Friedland et al. (A6)

de Almeida (A2)Kodin and Reger (AlO)

Poluyanova (A23)

Zabrodski et al. (A30)

Pandey and Shukla (A22)

Konovalov (All)

Markhof (A16), Rungaldierand Braun (A16)

Krishnamurti (A13)Semushina and Vladimirova

(A27)

Dillen (A3-A5)

Nordstrom (A19)

Venzano et al. (A29)

Teixeira and Salati (A28)

Ramachandra Rao et al.(A24)

Onishi (A21)

Onishi (A20)

Guymon et al. (A8)

274 APPL. MICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 3: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

TABLE 2. Acids

Acid Investigation and results Reference

Two general and comprehensive reviews of the biochemistry of Acetobacter ap-peared

Vinegar production in packaged generators and submerged culture techniquescompared

Acid concentration of 10 to 111%o in 5 to 6 days produced industrially in packedgenerators (70 mi3) using a pure culture inoculum

Acetobacter acetigenum was best of six species tested for submerged vinegar pro-duction in sparged small glass tube fermentors

Patent granted for production from fermentation broths containing alcoholColored dye intensity used as a measure of physiological activity of bacteria inpacked generator process

Production from beet molasses reviewed

Submerged process, and American plant with 12 30,000-gal fermentors claiming85% conversion of sugar in blackstrap molasses, described

A 55% yield from 15%', sucrose and 40% yield from the same amount of sugar fromblackstrap molasses obtained in 6-liter fermentors; high sugar concentrationsand low pH repressed oxalic acid formation

Bacterial contamination in a Russian production plant suppressed by addition ofantibiotics and nitrofurans. Evaluation of eight strains of Aspergillus niger insubmerged factory fermentation discussed. Media with increased osmoticpressure and ultraviolet irradiation used to select high acid-producing strains

Ultraviolet dosage favoring maximal appearance of higher acid-producing mu-tants was different than optimal dosage for formation of morphologicalmutants

Patent granted for submerged production, using Penicillium janthilnellum var.kuensanii or Penicillium restrictum var. kuensanii

Patent granted for production by Trichoderma viride in pH range 3 to 7Good fermentation yields in glass towers depended on ferrocyanide values below20 ppm; although active pellets of Aspergillus niger could be grown at valuesas high as 400 ppm, this value had to be reduced for satisfactory acid yield

Beet molasses characteristics, treatment, and medium composition were re-viewed for stationary and submerged processes

Beet molasses contains factor that stimulates acid formation by Aspergillusniger. Acidification of molasses precipitates colloidal material which absorbsfactor; factor can be redissolved from precipitate

Beet molasses unsuitable for fermentation, even after ferrocyanide treatment;usable if sterilized and fermented with 1% activated carbon in medium

Monoaminodicarboxylic acids and aqueous malt sprouts extracts added to asucrose-mineral salts medium increased the mycelial weight as much as 38%and the acid yield as much as 16% in stationary fermentations

Iron (0.1 to 0.2 ppm), zinc (0.1 to 0.3 ppm), and absence of manganese resulted inbest citric acid production from chelatic resin purified sugars

Patent granted for addition of 0.1 to 500 ppm cupric ion to medium containingmore than 0.2 ppm iron prior to end of initial growth phase in submerged fer-mentation

Relationship between phosphate concentration, redox potential, and acid-form-ing ability characterized for strain of Aspergillus niger

Chromatography used to follow changes in amino acid content of medium duringcourse of fermentation using beet molasses

Re-use of developed mycelia in submerged fermentation suppressed contamina-tion and increased yields

Oxygen used in 36-liter glass tower fermentations recirculated after carbon di-oxide removal; increase in pressures up to 1.7 atm increased yield and rateof production

Production of acid from sugar or molasses in deep (8 to 10 cm) stationary culturesrequired initial period of dry air circulation prior to establishing high humidityin chamber

Strain of Aspergillus niger capable of yielding 85% acid from beet molasses iso-lated

Patent granted for submerged production at pH below 6 using Basidiomycetes ofgroups Polyporus, Poria, and Lentinus

Contamination in Czech plant, using Penicillium purpurogenum suppressed byuse of formic acid and antibiotics

Janke (B8), Rainbow (B29)

Laskowski (B19)

Suomalainen (B32)

Lopez et al. (B22)

Els and Martens (B7)Loitianskaya et al. (B21)

Kovats and Niestrawski(B17)

Agnello and Kieber (Bi),Chopey (B4)

Kovats (B15)

Botcharova and Golubtchina(B3)

Kusiurina (B18)

Kinoshita et al. (Bll)

Kinoshita et al. (B12)Clark (B5)

Anonymous (B2)

Leopold and Valtr (B20)

Kovats (B16)

Kasatkina (B10)

Noguchi and Johnson (B25)

Schweiger (B31)

Opuszynska (B27)

Tolman (B35)

Botcharova and Golubtchina(B3)

Clark and Lentz (B6)

Zhuravsky and Aglish (B37)

Botcharova and Golubtchina(B3)

Pan and Lerner (B28)

Botcharova and Golubtchina(B3)

Acetic

Citric

Eburicoic

Gluconic

VOL. 11) 1963 275

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 4: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 2-continued

Acid Investigation and results Reference

Itaconic

Itatartaric

2-Ketogalactonic

2-Ketogulonic

Lactic

Propionic

Pyruvic

Succinic

Production from sugars other than glucose in wood hydrolysate, using Asper-gillus terreus, patented

Aspergillus itaconicus produced acid in 15%O yield of sugar consumed in additionto itaconic acid

Strains of Pseudomonas aeruginosa oxidized galactose in good yield in shake flaskand bench scale fermentations

Redox potential changes in conversion of sorbose by strain of Pseudomonas char-acterized at different aeration rates in bench scale fermentor

Low redox potential favored acid formation in continuous fermentation inchemostat

Pantothenic acid and nicotinic acid addition increased acid yield from potatostarch-sugar-malt sprouts medium, using Lactobacillus delbruckii from 95.5to 97%. Continuous agitation shortened fermentation time from 14 to 7 days

Rye sprouts (7 to 9%) added to 13% glucose medium using Lactobacillus delbruckiireduced fermentation time and foaming, and produced acid of better quality

Adding 6% lactic acid to raw medium prior to sterilization increased fermenta-tion productivity and enhanced product quality. Commercial-scale fermenta-tion of molasses discussed

Conversion (87%) of sugar in sulfite waste achieved in multistage packed columnfermentation in 55 hr, using Propionibacterium arabinosum and partial recycle.Mole ratios of propionic to acetic acids of 2 to 1 were obtained

Pseudononas aeruginosa strains, which produced a-ketoglutaric acid from glucosein complex media, converted lactic to pyruvic acid in a synthetic medium

A glutamic acid-producing Brevibacterium flavum strain converted glucose tosuccinic acid in 36% yield when aeration was carefully controlled

Kobayashi (B13)

Kobayashi et al. (B14)

Mastropietro Cancellieri andTiecco (B24)

Tengerdy (B33)

Tengerdy (B34)

Zagrodski et al. (B36)

Zmaczynski and Ziobrowski(B38)

Januszewicz and Brzozowska(B9) Botcharova and Go-lubtchina (B3)

Martin et al. (B23)

Saitoh et al. (B30)

Okada et al. (B26)

276 APPL. MICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 5: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

TABLLE 3. Amino acids

Acid Investigation and results Reference

Review of fermentation production of glutamic acid, lysine, ornithine, phenyl-alanine, and valine

Average cellular nitrogen content of 131 molds screened was 6.4%. Only 2.7%olysine and less than 0.5% methionine and tryptophan with small variationsamong species were noted

Techniques of isolating auxotropic mutants of glutamic acid-producing bacteriathat will accumulate other amino acids discussed

Patent granted for converting the corresponding a-keto precursor by ferment-ing with whole yeast cells in presence of a lipid solvent

Patent granted for aerobic submerged fermentation, using strain of Escherichiacoli in glucose-, sucrose-, or molasses-rich medium containing lysine (0.1 to0.5 g/liter), pyridoxine (0.1 to 0.2 g/liter), and decarboxylated portion of beetmolasses (60 to 80 g/liter)

Accumulation by two lysine-dependent auxotrophs of Micrococcus glutamicus re-

portedPatent granted for aerobic submerged fermentation using Streptomycesfragilis

Patent granted for aerobic submerged fermentation using a strain of Streptomyces

Accumulation, along with lysine, using a threonine-requiring mutant of Micro-coccus glutamicus reported

Homoserine dehydrogenase produced during fermentation, using a Micrococcusglutamicus mutant. Threonine and methionine inhibited the enzyme

Production in Poland by chemical isolation and fermentation methods usingBacillus megaterium and Micrococcus glutamicus reviewed

Patents granted for aerobic submerged production using Brevibacterium divari-catum

Patent granted for aerobic submerged production using Microbacterium flavumvar. glutamicum

Patent granted for aerobic fermentation of sugar and ammonium salt or urea

medium using Brevibacterium kuwasakiPatent granted for submerged aerobic fermentation using Micrococcus glutamicus

in medium containing biotin (1.0 to 5.0 ,ug/liter)Patent granted for submerged aerobic fermentation using Micrococcus glutamicus

in which fermentation is maintained between pH 6 and 9Patents granted for submerged aerobic fermentation of carbohydrate-salts me-

dium containing at least 20 Ag/liter of thiamine using Brevibacterium lactofer-mentus

Patent granted for submerged aerobic fermentation maintained at pH 6 to 9 byaddition of ammonium ion, using bacteria characterized by powerful a-keto-glutaric and fumaric acid-producing capabilities

Patent granted for production in medium to which thiamine is addedPatent granted for converting fumaric acid to glutamic acid, using eleven differ-

ent bacterial speciesAccumulation in broth, during course of several Streptomyces fermentations, ob-served

Oxygen required for acid production shown far in excess of that required for cellrespiration

Brevibacterium flavum accumulated considerable amounts of glutamic acid fromcomplex or synthetic media having acetate as the main carbon source

A variety of organisms were isolated producing from 30 to 60%ho glutamic acidfrom glucose, fructose, sucrose, or maltose

Patent granted for converting DL-glutamic acid to L-2-pyrrolidone-5-carboxylicacid, using enzyme action of Pseudomonas cruciviae in presence of an aromaticor heterocyclic aldehyde with an ortho radical coordinatable with a metal anda coordinatable metallic ion followed by hydrolysis of the L-2-pyrrolidone-5-carboxylic acid to L-glutamic acid

Patent granted for converting 10 to 100 mg/ml of glutamic to L-2-pyrrolidone-5-carboxylic acid by reacting it with Pseudomonas cruciviae in pH range 6 to 9

Patents granted for converting L-glutamic acid in DL-mixture to L-2-pyrrolidone-5-carboxylic acid using enzymes from Pseudomonas cruciviae, separating con-

verted product from D-glutamic acid, and hydrolyzing it to yield pure L-

glutamic acid

Krasilnikov (C30)

Rhodes et al. (C43)

Nakayama et al. (C37)

Good and Gunsalus (C13)

Nubel (C41)

Nakayama and Kinoshita(C36)

Ehrlich et al. (C12)

Moore et al. (C34)

Samejima et al. (C44)

Nara et al. (C40), Same-shima et al. (C45)

Bagniewski (C4)

Ajinomoto and SanrakuDistillers Co. (C1),Yamada (C51), Yamadaand Su (C52, C53)

Masuo et al. (C32)

Tsunoda et al. (C47)

Kinoshita and Akita (C21)

Kinoshita et al. (C29)

Ajinomoto and SanrakuDistillers Co. (C2, C3)

Kinoshita et al. (C24)

Motozaki et al. (C35)Ogawa et al. (C42)

Hofman (C15)

Yoshino et al. (C54)

Tsunoda et al. (C48, C49)

Wakisaka et al. (C50)

Kinoshita et al. (C26)

Kinoshita et al. (C27)

Kinoshita et al. (C22, C28)

General

Aspartic acid

Diaminopimelicacid

O-Diazoacetyl-(L) -serine

L-6-Diazo-S-oxo-norleucine

Homoserine

Glutamic acid

VOL. 1 l, 1963 277

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 6: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 3-continued

Acid Investigation and results Reference

Accumulation by homoserine-requiring mutants of Micrococcus glutamicus,Bacillus subtilis, and Escherichia coli in glucose-peptone-salts medium reported

Methods used for inducing nutritional mutants of Micrococcus glutamicus, whichled to selection of commercial lysine-producing strain described

Patents granted for aerobic submerged fermentation using auxotroph of Micro-coccus glutamicus requiring homoserine, threonine, and methionine; threonineand cystathione; or threonine and homocysteine

Strains of Saccharomyces cerevisiae and Torulopsis utilis grown in medium con-taining 1 to 5 g/liter a-ketoadipic acid and higher levels of DL-aminoadipic acidconverted these materials in 50 to 75% yield to intracellular extractable lysinetotaling as much as 20% of the cell dry weight

Saccharomyces cerevisiae accumulated lysine up to 16% of its cell dry weight,converting 3 g/liter of 2-oxoadipic acid in 63% weight yield in 36 hr in aerobicbench-scale fermentations

Patents granted for converting a-ketoadipic, a-aminoadipic, and 5-formyl-2-oxovaleric acids by contacting with yeast enzymes for at least 1 hr

Patent granted for converting 1 to 10 g/liter of a-aminoadipic acid with yeastenzymes in pH range 3 to 5

Lactic acid, instead of lysine, produced by homoserine-requiring mutant ofMicrococcus glutamicus when excess homoserine or threonine and biotin were

present in mediumPatent granted for aerobic submerged fermentation of lysine racemase using

eight different Proteus species and two Erwinia speciesPatent granted for enzymatic monodecarboxylation of DL-diaminopimelic acid

to yield L-lysine and unchanged D-diaminopimelic acid, racemizing D-diamino-pimelic acid and retreating with enzymes to produce more L-lysine

Patent granted for aerobic submerged fermentation near pH 7 using a Micro-coccus glutamicus auxotroph requiring citrulline or arginine

Patent granted for aerobic submerged fermentation in pH range 6 to 8 usingEscherichia coli in glycerol, sorbitol, mannitol, or sucrose medium containing10 to 200 mg/liter of tyrosine

Yields of almost 4 g/liter attained in 4-liter fermentors, using auxotroph ofEscherichia coli in sorbitol or mannitol medium supplemented by sucrose andcorn steep liquor and optimal concentration of diaminopimelic acid andmethionine

Patents granted for aerobic submerged fermentation in pH range 6 to 8, usingeither of two strains of Escherichia coli, in sorbitol or mannitol media contain-ing 100 to 140 mg/liter of diaminopimelic acid for one strain and 100 to 250mg/liter of diaminopimelic acid plus 100 mg/liter of methionine for the otherstrain

Isolated from fermentation broths of Streptomyces aureofaciens mutants pro-ducing tetracyclines

Conversion of anthranilic acid by yeast in aerobic submerged culture with yieldsas high as 1 g/liter reported

Patent granted for using molds or yeasts in a medium containing 0.01% indoleinitially, to which more was added as it was converted to tryptophan in con-

centrations as high as 1 g/literPatent granted for aerobic submerged fermentation in pH range 6 to 8 in sucrose

or lactose medium containing 0.1 to 1 g/liter of threonineAccumulation by isoleucine-less and leucine-less Micrococcus glutamicusauxotrophs in glucose-peptone-salts medium described

Nakayama et al. (C39)

Nakayama et al. (C37)

Kinoshita et al. (C23, C24a)

Broquist et al. (C5)

Jensen and Shu (C20)

Broquist et al. (C6-C8)

Broquist et al. (C9)

Nakayama et al. (C39)

Huang (C17)

Gorton and Hause (C14)

Kinoshita et al. (C25)

Huang (C18)

Huang (C16)

Chas. Pfizer (C10, Cll)

McCormick et al. (C33)

Terui et al. (C46)

Malin (C31)

Huang (C19)

Nakayama et al. (C38)

Lysine

Ornithine

Phenylalanine

Threonine

Trans-2,3-dihy-dro-3-hydrox-yanthranilicacid

Tryptophan

Valine

278 APPL. MICROBIOL..

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 7: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

TABLE 4a. Reports dealing with new antibiotics

Antibiotic Microorganism Properties and comments or both Reference

ActinoidinActinospectacinActinospectacin

AlmecillinAmidinomycinAngustmycin-CAntifongine 4915

Aspergillic acidAyamycin ABacillocinBlasticidin S

Candicidin

CarzinostatinChalcomycin

Citrinin

CycloserineDistamycine A,

B, and CDistacyne

(Distacin)Emimycin

Etruscomycin

Ferromycin

Folimycin

GlebomycinGlumamycinGramicidin JGriseorhodin AGrisonomycinHamycin

HON

Hortesin

Lagosin

Lankavamycin(Lankamycin)

Lankavacidin(Lankacidin)

Mikonomycin

Mitomycin

MixoviromycinPanthocidinPenbritin (BRL

1341)Phyllomycin

Proactinomyces actinoidesStreptomyces spectabilisStreptomyces spectabilis NRRL2792

Streptomyces sp.

Streptomyces paucisporogenesATCC 12596

Aspergillus flavusStreptomyces 0-80Bacillus subtilis var. antiblastiStreptococcus sp.

Streptomyces griseus 3570

Streptomnyces bikiensis NRRL2737

Penicilliumr citrinum Thom.

Streptomnyces garyphalusStreptomyces distallicus NCIB8936

Streptomyces distallicus NCIB8936

Streptomyces glyzeochromogenusvar. emiiseticus

Streptomyces lucensis

Streptomyces myanoensis

Streptom&yces neyagawaensis

Bacillus brevis INA 22/60Actinomyces sp.Streptomyces griseus A10073Streptomyces pimprina

Streptomyces akiyoshienisH-899

Streptomyces versipellis NRRL2528

Streptomyces roseo-luteusNRRL 2776

Streptomyces sp. NRRL 2834

Streptomyces sp. NRRL 2834

Streptomyces albogriseolusNRRL 2835

Streptomyces E-212

Streptomyces umbrosus

Similar to ristocetin and vancomycinProduction and isolationTrobicin (trade name) active against gram-

positive and gram-negative bacteriaNonallergic, allylmercaptopenicillinEffective against spore-forming bacteriaPerformance and mechanism studiedSubmerged culture described

BiosynthesisProduction describedAntifungal agent production describedActive against Piricularia oryzeChemical structure definedAntifungal agent

Effective against carcinomataProduction by aerobic culture

Submerged culture and isolation

Aerobic cultureProduction described

Production described

Production described

Polyenic antibiotic possessing tetraenicchromofore, active against fungi andyeasts

Active against gram-positive and gram-nega-tive bacteria

Production described, effective against plantfungi

Effective against gram-positive bacteriaProduction and isolationActive against Bacillus sp.Submerged aerobic cultureAntifungal agent

L-8-Hydroxy-,y-oxonorvaline inhibits human-type tubercle bacilli

Submerged culture antifungal agent

Production described

Production described

Production described

Production process

Recovery from whole broth

Effective against virusAntifungal agent, production and isolationA synthetic penicillin more active than

Broxil or CelbeninActive against plant fungi, submerged

aerobic culture

Lomakina (D105)Bergy (D30)Mason (D114)

Levitov (D104)Nakamura et al. (D126)Beppu et al. (D29)Laboratoires Francais deChemiotherapie (D98)

McDonald (D106)Katagiri (D92)Fukumoto (D62)Anonymous (Dll)Sakagami (D154)Waksman and Lechevalier

(D196)Ishida and Rikimaru (D86)Parke, Davis & Co. (D135,D136)

Societe Anonyme Oletta(D166)

Harris (D81)Societh Farmaceutici Italia

(D172)SocietA Farmaceutici Italia

(D172)Sumiki and Umezawa (D178)

Ghione et al. (D71)

Taguchi and Yoshikawa(D181)

Yamamoto et al. (D201),Sumina et al. (D179)

Okanishi et al. (D131)Oka et al. (D130)Paszkiewicz et al. (D137)Treibs and Eckardt (D189)CIBA, Ltd. (D48)Hindustan Antibiotics, Ltd.

(D84)Takeda Pharmaceutical In-

dustries, Ltd. (D183),Tatsuoka et al. (D186)

Oliver et al. (D132)

Bessell et al. (D31)

CIBA, Ltd. (D51)

CIBA, Ltd. (D51)

CIBA, Ltd. (D50)

Bristol Laboratories, Inc.(D40)

Kuroya et al. (D97)Anzai et al. (D12)Anonymous (D9)

Farbenfabriken BayerA. G. (D61)

VOL.11)1963 279

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 8: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 4a-continued

Antibiotic Microorganism Properties and comments or both Reference

Polyene-typePolyene-typePolyene-typePolyporenic acidProtomycin

Puromycin

QuinocyclineRufochromomy-

cineRufomycinRutilantinSiomycin

SpinathricinStreptogramin

ThiostreptonTriostineTubercidinTylosinVenturicidinVernamycin

VirocyzinUredolysin

Substance A

Substance B

AB substanceFactor BA7909

E73

FI-1163 (Etrus-comycin)

26/1

2911/1

2911/2

Undesignated

Undesignated

Undesignated

UndesignatedUndesignated

Undesignated

Undesignated

Undesignated

Undesignated

Boletus luteusStreptomyces fasciculusStreptomyces parvisporogenesPolyporus betulinusStreptomyces leticimari var.protomycicus

Streptomyces alboniger

Streptomyces aureofaciensStreptomyces rufochromogenus

Streptomyces attratusActinomycete A220Streptomyces sicyaensis

Streptomyces A18897Streptomyces diastaticus

Streptomyces WC3705Streptomyces S-2-210Streptomyces tubercidicusStreptomyces fradiaeActinomyces sp.Streptomyces loidensis ATCC

11415Streptomyces flavoreticuliStreptomyces griseus NRRL

2607Streptomyces A9578

Streptomyces A9578

Streptomyces griseusStreptomyces ostreogriseusStreptomyces sp.

Streptomyces albuitus

Streptomyces lucensis

Actinomycetes sp.

Actinomycetes globisporus var.roseus

Actinomycetes globisporus var.roseus

Streptomyces verticillatus

Epicoccum migrum Link

Epicoccumn androppognis Schol-Schwarz

Streptomyces sp.Streptomyces viridochromogenesA23575

Streptomyces venezuelae

Streptomnyces cineveoruber corbazvar. fructofermentaris

Streptomyces griseus NRRL2764

ProductionSubmerged aerobic cultureAmphoteric in nature, active against fungiA triterpene natureProduction described

Culture in nutrient containing alkylene-diamine N, N, N', N'-tetraalkanoic acids

Active against gram-positive bacteriaProduction described

Production describedAntiphage activityThiostrepton-like character, active againstgram-positive bacteria and mycobacteria

Production processSubmerged aerobic culture, active against

gram-positive bacteriaHeavy-metal salts increased yieldProduction describedProduction describedProduction describedAntifungal agent production describedProduction described

Production describedActive against uredospores production bysubmerged aerobic culture

Production by submerged aerobic culture

Production by submerged aerobic culture

Production by submerged aerobic cultureProduction describedWater-soluble polypeptide, active againstgram-positive and gram-negative bac-teria, produced by aerobic culture

Coproduced with cycloheximide and fungi-cidin

Production by submerged culture

Antifungal agent, polyene origin of the candi-cidin type

Production and isolation

Production and isolation

Production by aerobic culture

Antifungal agent, produced by submergedculture in 6-liter vessels

Antifungal agent, produced by submergedculture in 6-liter vessels

Water-soluble baseProduction described

Antifungal agent, specifically inhibits Coc-cidioides immitis

Colorless, water-soluble base, produced byaerobic culture

Production by aerobic culture

Chemical formula C7H602N2S2

Santoro and Casida (D155)Tanner et al. (D184)Tanner et al. (D185)Ejimenko et al. (D59)Hata et al. (D82)

Weindling (D197)

Marsh et al. (D112)Societe des Usines ChimiquesRh6ne-Poulenc (D167)

Shibata et al. (D163)Asheshov and Gordon (D14)Nishimura et al. (D128)

CIBA, Ltd. (D49)McCormick and McGuire

(D118)Platt (D145)Katagiri et al. (D93)Nakamura (D125)McGuire et al. (D119)Rhodes et al. (D150)Donovick et al. (D56)

Saitoh et al. (D153)Gattani (D69, D70)

Prelog and Gaeumann(D148)

Prelog and Gaeumann(D148)

Gaeumann and Voser (D68)Ball (D16)CIBA, Ltd. (D47)

Chas. Pfizer & Co., Inc.(D43)

Societ& Farmaceutici Italia(D173)

Golyakov (D79)

Silaev (D164)

Silaev (D164)

American Cyanamid Co.(D8)

Bamford et al. (D17)

Bamford et al. (D17)

Benz et al. (D28)CIBA, Ltd. (D52)

Egeberg et al. (D58)

Gaeumann and Benz (D64)

Gaeumann et al. (D65)

Gaeumann et al. (D66)

APPL. MICROBIOL.280

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 9: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

TABLE 4a-Continued

Antibiotic Microorganism Properties and comments or both Reference

Undesignated Streptomyces eurythermus Antibacterial agent Gaeumann and Prelog (D67F)Undesignated Streptomyces caespitosus NRRL Production by submerged anaerobic culture Kamada et al. (D91)

2564Undesignated Pseudomonas aeruginosa Antifungal agent, specifically inhibits Klite and Gale (D95)

Candida albicansUndesignated Streptomyces ostreogriseus Production by submerged culture Lees et al. (D99)Undesignated Streptomyces nashvillensis Active against gram-positive Staphylococcus McVeight and Reyes (D120)

sp., resistant to erythromycinUndesignated Streptomyces echinatus Chemical formula C25H3707N7S Prelog et al. (D147)Undesignated Streptomyces 1415 Montecatini Production and isolation described Sgarzi et al. (D162)Undesignated Streptomyces olivaceus Production described Sobin (D165)Undesignated Streptomyces peruviensis Active against gram-positive bacteria, Soci6te des Usines Chi-

chiefly Mycobacteria, production and iso- miques Rhone-Poulenclation described (D170)

Undesignated Clostridium sp. Production by anaerobic culture Sturgen and Casida (D176)Undesignated Bacillus subtilis Antifungal agent, physiochemical study Van Vuuren et al. (D194)Undesignated Streptomyces NRRL 2390 Antifungal agent produced by aerobic culture Wooldridge (D198)

TABLE 4b. Reports dealing with new antitumor agents

Agent Microorganism Comments Reference

Undesignated Streptomyces sp. Active against Ehrlich carcinoma and sarcoma 180, Arcamone et al. (D13)similar to rhodomycin

Undesignated Mycelial fungi Active against Paramaecium caudatum and Ehrlich Becker et al. (D22)carcinoma

Primocarcin Anticarcinoma substance Isono et al. (D87)Peptimycin Streptomnyces mauvecolor Inhibits Ehrlich carcinoma Murase et al. (D123),

Umezawa (D193)DCS Streptomyces nagasakiensis Antitumor substance Ohtani et al. (D129)Terric acid Asperigillus terreus Inhibits Ehrlich carcinoma Takahashi (D182)Terric acid Mucorales sp. Inhibits Ehrlich carcinoma Takahashi (D182)Undesignated Soil bacteria Total of 1,448 cultures examined for activity against Toropova (D188)

Ehrlich carcinoma

VOL. 11 7 1963 281

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 10: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 4c. Antibiotic processes and biosynthesis

Antibiotic Microorganism Comments Reference

Actinomycin Actinomyces violaceus

Actinomycin Streptomyces chrysomallusLinden

Actinomycin

Actinomycin Actinomyces sp.

Actinomycin Streptomyces chrysomallusCephalosporin C Cephalosporium sp.

CephalosporinsC, N, and P

Echinomycin

Erythromycin

Erythromycin

ErythromycinFlavensomycinGriseofulvin

Griseofulvin

GriseofulvinGriseofulvinGriseofulvin

GriseofulvinKanamycinKanamycin BNeomycin Band C

Novobiocin

NovobiocinOleandomycin

Oncostatin CPenicillin

Penicillin

PenicillinPenicillinPenicillin

Penicillin

Cephalosporium IM149.137

Actinomyces echinatus, A.flavochromogenes, and A.griseolus

Streptomyces erythreus 59-243

Streptomyces erythreusStreptomyces cavourensisBotrytis allii CM1-42078,

Cercospora melonis, andMicrosporum canis

Penicillium patulum

Penicillium griseofulvinStreptomyces kanamyceticusStreptomyces kanamyceticus

Streptomyces spheroides

Actinomyces antibioticus

Streptomyces sp. INA 39/58Penicillium notatum andPenicillium chrysogenum

Penicillium chrysogenum

Penicillium chrysogenumPenicillium chrysogenumHA-6

Penicillium chrysogenunt

Penicillin

Penicillin

Penicillin

PenicillinPenicillinPenicillinPenicillin

Penicillium chrysogenumn

Penicillium chrysogenum

Penicilliurn chrysogenutm

Discussion of the nitrogen content in the myceliumwith reference to the rate of antibiotic synthesis

Employed soybean-glucose medium for productionof antibiotic

Discussion of biosynthetic variation in actinomycinmolecule

Study of the effect of fatty acids on growth andantibiotic production

Production of antibiotic in synthetic mediumProduction of the water-soluble mono-amino dicar-boxylic acid form

Review of the work on cephalosporins

Agatov (D2)

Das Gupta et al. (D55)

Katz and Pugh (D94)

Perry (1)139)

Sen et al. (D158)Abraham and Newton (D1)

Serchi and Sancio-Tului (D161)

Production of echinomycin as well as antibiotic 6270 Ivanitskaya (D88)

Effect of acetate, formate, and propionate on thebiosynthesis of erythromycin

Selection of nitrogen source in erythromycin bio-synthesis

Review of the erythromycin fermentationDescribes production by submerged aerobic cultureProcess for demethylation of the griseofulvin mole-

cule

Procedures described for increasing the antibioticyields

Production by submerged cultureDescribes production and isolationBiosynthesis of griseofulvin and the methylatedbenzophenone

Production by surface cultureProduction describedProduction by submerged cultureProduction and isolation described

Physiological study in connection with biosynthesis

Review of the novobiocin fermentationUse of a mutagenic agent to aid in the development

of a high titer-producing strainProduction in shake flasksProduction in the polyfluoroalkoxyacetic acidsthrough proper precursor additions

Comparative study with vegetative and sporeinoculum

Describes a simple medium for productionProduction studied on synthetic mediumInvestigation of optimal sugar and precursor feed

rateWaste mycelium used as sole nitrogen source, re-

cycled mycelium five times without lowering titerDescribed a simple test for assaying penicillinase

activityEffect of acetate, pyruvate, and trichloroacetic

acid cycle acids on fermentationDephytinization of corn steep liquor affects the

biosynthesis unfavorablySurvey of new penicillinsUse of derivatives of propylmercaptoacetic acidRole of precursors in penicillin biosynthesisUse of starch and potatoes for substitute of lactosecarbon in nutrient medium

Musilek and Sevcik (D124)

Ostrowska-Krysiak et al. (D134)

Stark and Smith (D175)Craveri and Giolitti (D54)Boothroyd (D34)

Glaxo Laboratories, Ltd. (D75)

Glaxo Laboratories, Ltd. (D77)Glaxo Laboratories, Ltd. (D78)Rhodes et al. (D149)

Schering A. G. (D156)Umezawa et al. (D191)Umezawa et al. (D192)Anonymous (D1O)

Brinberg and Graborskaya(D39)

Hoeksema and Smith (D85)Alikhanian et al. (D3)

Woznicka et al. (D199)Beecham Research Labora-

tories, Ltd. (D24)Bhuyan et al. (D32)

Brandl et al. (D37)Brandl et al. (D38)Chaturbhuj et al. (D45)

Ghosh and Ganguli (D72)

Ghosh and Borkar (D73)

Ghosh and Vinze (D74)

Jan et al. (D89)

Knox (D96)Levitov et al. (D102)Levitov et al. (D103)Petrova et al. (D141)

APPL. MICROBIOL.282

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 11: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

Antibiotic

Penicillin

Penicillin

Penicillin

Penicillin6-Aminopenicil-

lanic acid

6-Aminopenicil-lanic acid

6-Aminopenicil-lanic acid

6-Aminopenicil-lanic acid

6-Aminopenicil-lanic acid

6-Aminopenicil-lanic acid

6-Aminopenicil-lanic acid

6-Aminopenicil-lanic acid

6-Aminopenicil-lanic acid

6-Aminopenicil-lanic acid

6-Aminopenicil-lanic acid

Ramulosin

Ristocetin ARistocetin BRifomycin A,

B, C, D, andE

Rifomycin

Rifomycin B

Rifomycin B, 0,S, and SV

Rifomycin B

SpiramycinsSpiramycin I,

II, and IIISpiramycin II

Spiramycin III

Streptomycin

Streptomycin

Streptomycin

Streptomycin

Microorganism

Penicillium chrysogenunm 51-20F3

Penicillium chrysogenum

Penicillium chrysogenun

Penicillium chrysogenumPenicillium chrysogenum

Staphylococcus pyogenes

Penicilliuntt chrysogenum

Schizomycetes

Emnericellopsis minima

Penicilliunm chrysogenum

Streptomyces lavendulae

Streptontyces lavendulae

Pestalotia ranmulosa vonBeyma NRRL 2826

Nocardia luridaNocardia lurida NRRL 2430Streptomyces mediterraneiATCC 13685

Streptomyces mediterranei

Streptomyces mediterranei

Streptomyces mediterranei

Streptomnyces mediterranei

Streptomttyces ambofaciensNRRL 2420

Streptomyces ambofaciens

Actinomyces streptorntycini

Streptomnyces spp. B-178 andLS-1

Streptomyces sp.

TABLE 4c-continued

Comments

Investigation of the intracellular distribution of in-organic sulfate under various conditions of anti-biotic production

Mathematical relationships are developed for theoptimization of penicillin production

Study of the lysine inhibition reversal of penicillinproduction

Study of the oxidative metabolism of washed cellsStudy of factors affecting production, includingprecursor, aeration, medium, and antifoam agentvariations

Induction of penicillinase activity by 6-aminopeni-cillanic acid

Survey of 215 molds, yeasts, and actinomycetes forthe production of penicillin amidase

Described production in absence of precursors

Production of the acid from penicillin by contactingwith a microbially produced penicillin amidase

Production of the acid from penicillin by contactingwith penicillin acylase

Production in shake flasks

Review of new penicillin derivatives of 6-aminopen-icillanic acid, including Broxil, Celbenin, andPenbritin

Report on the degradation of penicillin to 6-amino-penicillanic acid

Conversion of n-heptyl penicillin to the acid

Conversion of phenoxymethyl penicillin to the acid

Production described

Preparation of salts from fermentation brothProduction describedDescribed production and isolation of the antibioticand its components

Pilot plant scale production using a semisyntheticmedium described

Suitable agitation: aeration programming as well asbarbituric acid derivatives were found essentialto yield high titers

Activation of B and 0 complexes, production andproperties of S and SV

Production enhancement of B complex by the addi-tion of barbituric acid salts

Production describedIndustrial-scale production with titers of 700 ,ugper ml

Conversion of I to II by the action of an acylatingenzyme system

Techniques are described for improving the yield ofthe III complex from 30% to 80% of the totalspiramycin yield

Effect of ultraviolet and ethyleneimine on anti-biotic production capacity of the strain

Effect of carbon source on biosynthesis of the anti-biotic

Effect of fatty acids on growth and antibiotic pro-duction

Describes purification process

Reference

Segel and Johnson (D157)

Sen and Adhia (D159)

Somerson (D174)

Vinze and Ghosh (D195)Batchelor et al. (D18)

Batchelor et al. (D19)

Batchelor (D20)

Beecham Research Labora-tories, Ltd. (D23)

Beecham Research Labora-tories, Ltd. (D25)

Chas. Pfizer & Co., Inc. (D44)

Cole and Rolinson (D53)

Doyle (D57)

Erickson and Bennett (D60)

Rolinson et al. (D151)

Rolinson et al. (D152)

Hesseltine et al. (D83)

Philip and Schenk (D143)Philip and Schenk (D142, D144)Lepetit S. p. A. (D100, D101)

Margalith and Pagani

Margalith and Pagani

(D109)

(DllO)

Sensi et al. (D160)

Margalith and Sensi (Dill)

Ninet et al. (D127)Societe des Usines ChimiquesRhone-Poulenc (D168)

Societe des Usines ChimiquesRhone-Poulenc (D171)

Societe des Usines ChimiquesRhone-Poulenc (D169)

Alikhanian et al. (D4)

Gorskaya and Severin (D80)

Perry (D140)

The Distillers Co., Ltd. (D187)

VOL. 11) 1963 283

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 12: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

Antibiotic

Streptomycin

Tetracycline

Tetracycline

Tetracycline

Tetracycline

Tetracycline

Tetracycline

Tetracycline

Microorganism

Streptomyces griseus

Streptonmyces a ureofaciens

Streptomyces sp.

Actinomyces aureofaciens

Streptomnyces fuscofaciens

Streptomyces sp.

Tetracycline Streptomyces spp.

Tetracycline

Oxytetracy-

clineOxytetracy-

cline

Oxytetracy-

clineOxytetracy-

clineOxytetracy-

clineOxytetracy-

dcine

chlortetra-cycline

Chlortetra-

cyclineChlortetra-

cyclineChlortetra-cycline

Chlortetra-cycline

Chlortetra-cycline

7-Chloro-6-

demethyl-

tetracycline

7-Chloro-6-

demethyl-

tetracycline

5a (11a)-De-hydrotetra-

cycline

12a-Deoxy-

tetracycline

Tyrothricin

E129 Factor Z

PA155A

Streptomnyces rimosus BS-21

Streptomyces rimosus

Streptomyces rimosus

Streptomyces rimnosus

Streptomyces rimnosus

Streptonmyces rimnosis 2234

Actinomyces aureofaciensLSB-16

Streptomyces aureofaciens

Streptontyces aureofaciensATCC 12748-12751

Streptomyces aureofaciens

Streptomyces sp.

Streptomyces aureofaciens

Sporormia minima andThielavia terricola

Bacillus brevis

Streptomyces ostreogriseusStreptomyces albus

Table 4c-continued

Comments

Comparative analysis of cultural, physiologicaland biochemical properties of two differentstrains

Use of special nutrient and precursor in productionby aerobic fermentation

Production by aerobic fermentation in mediumcontaining chloride ions

Study of organic acid formation in process, excessmineral phosphate suppresses antibiotic produc-tion and increases acid

Describes effect of mineral phosphate on biosyn-thesis of the antibiotic

Technique for minimizing chlortetracycline in afermentation by precipitation of chloride ionswith silver ions

Production by submerged fermentation underaerobic conditions

Production of the tetracycline series by culture ofStreptomyces sp. in medium containing addedcosynthetic factor-i

Described production of tetracyclines by mixedculture of two or more Streptomyces spp. underaerobic conditions

Use of potatoes in nutrient media

Effect of various substrates on yield

Describes hybrid strain which will produce higheryields under conditions that result in lower foam-ing levels

Report on the effect of oils on the antibiotic bio-synthesis

Use of grown mycelium for studying the process ofantibiotic synthesis

Production in a chemically defined medium

Synthetic medium developed for the study of aminoacid, carbohydrate, and organic acid utilizationand antibiotic production

Substitution of potato starch waters and fer-mented bran extract for corn steep liquor

Comparison of media with oilcakes as the source oforganic nitrogen

Describes a new medium for production of theantibiotic

Production of chlortetracycline by biological con-version of 5a(11a)-dehydrotetracycline

Enhancement of 7-chlortetracycline productionby culture in medium containing alkanol withless than six carbon atoms

Effect of fats on biosynthesis of antibiotic

Describes process for producing antibiotic on 30-liter scale using seven different strains

Production using a medium 0.5 to 6% glyceride oil

Production by aerobic fermentation, can alsoproduce 7-chloro and 7-bromo derivatives

Describes process for 12a-hydroxylation of 12a-deoxytetracycline

Enhancement of yield by addition of cobalt ionsto media for both submerged and surface culture

Describes productionProduction by submerged aerobic culture

Reference

Tye et al. (D190)

American Cyanamid Co. (D5)

American Cyanamid Co. (D7)

Belousova and Popova (D26)

Belousova and Popova (D27)

Chertow (D46)

Marsh and Routien (D113)

McCormick et al. (D115)

McCormick et al. (D116)

Yakimov and Neshatacra(D200)

Gado et al. (D63)

Mindlin et al. (D122)

Orlova (D133)

Sui-tszin (D177)

Zygmundt (D202)

Zygmundt (D203)

Jan and Libuse (D90)

Makarevich and Laznikova(D107)

Makarevich and Laznikova(D108)

McCormick and Hirsch (D117)

Miller et al. (D121)

Popova et al. (D146)

Perlman et al. (D138)

Szumski (D180)

American Cyanamid Co. (D6)

Beck and Shull (D21)

Biochemie G.m.b.H. (D33)

Glaxo Laboratories, Ltd. (A76)Chas. Pfizer & Co., Inc. (D42)

284 APPL. MICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 13: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

TABLE 4d. Antibiotic reviews

Subject Comments Reference

Actinomycins Classification of the actinomycetes in relation to their antibiotic activity Baldacci (D15)Antifungal Progress report on polyenes, lagosin, capacidin, amphotericins, heptaenes, Boyd (D35)agents blastomycin, cycloheximide, and griseofulvin

General Progress report on penicillins, paramomycin, kanamycin, actinomycin, mitomy- Boyd (D36)cin, streptonigrin, and the antitumor antibiotics

General Review of the relation of antibiotic synthesis to intermediary metabolism Bu'lock (D41)

TABLE 5. Vitamins

Vitamin Investigation and results Reference

Patent granted for removing fermentable sugar from citrus pulp by fermenta-tion, and recovering bioflavonoids by solvent extraction

Patents granted for submerged aerobic fermentation using fungi of family Da-crymycetaceae in medium subjected to radiation in visible spectrum

Patent granted for submerged aerobic fermentation using mating strainsof Choanepnora trispora in medium containing 0.05 to 0.3% (by volume)s-ionone and 0.1 to 1.0% (by weight) acetic acid or glycine derivatives

Peak yields of 0.86 g/liter obtained in 5 days using mating strains of Blakesleatrispora by submerged aerobic fermentation in medium containing detergentand 5% kerosene

Maximal vitamin B12 content of 13 different algae native to Swedish east coastwas 3,g/g of dry weight

Cultural, morphological, and physiological characteristics of Bacillus omeli-anskii, an anaerobic, mesophilic, cellulose-digesting vitamin B12-producer;described

Patents granted for submerged anaerobic vitamin B,2 fermentation using Pro-pionibacterium shermanii

Patent granted for submerged aerobic fermentation above 45 C using ther-mophilic vitamin B12-producing microorgansm in medium containing cobalt

Streptomyces noursei produced 0.5 mg/liter of vitamin B12 along with fungicidinin a cobalt-containing medium. Methanol addition enhanced antibiotic forma-tion but retarded vitamin synthesis

Streptomyces olivaceus produced 0.33 mg/liter of vitamin B1, in synthetic medium;40% of vitamin formed during growth phase; 70c% was true vitamin B12; balancewas unidentified form

Patent granted for production by Propionibacterium in medium containingcuprous cyanide

Patent granted for microbial production in medium containing 25 to 170 mg/literof cobalt supplied as sodium cobalt EDTA

Nickel sulfate (10 ppm) added to cobalt-containing synthetic medium increasedyield from normal 0.4 to 1.5 mg/liter using Streptomyces humidus

Iron and cobalt in medium increased vitamin B12 production by Propionibac-terium jenseni in synthetic medium. Magnesium, also necessary, influencedvitamin and factor ,B ratio. Manganese retarded vitamin formation

Patent granted for submerged aerobic fermentation process using Pseudomonasdenitrificans in a medium containing 5,6-dimethylbenzimidazole

Patent granted for 5,6-dimethylbenzimidazole addition to anaerobic culture ofPropionibacterium after 50 to 60% of maximal growth was attained. More than20 mg/liter of vitamin B,, were obtained

Patent granted for addition of 10 to 15 mg/liter of 5,6-dimethylbenzimidazole toPropionibacterium shermanii fermentation in peanut meal medium; 10 to 11mg/liter of vitamin B,, were obtained in 3 to 4 days

Patent granted for anaerobic conversion of the incomplete vitamin B,2 factors,etiocobalamin carboxylic acid, etiocobalamin phosphoriboside, or 5,6-di-methylbenzimidazole, to vitamin B,2 using Propionibacterium shermanii

Sudarsky and Fisher (E30)

Farrow and Tabenkin (E8),Hoffmann-LaRoche (E10,Eli)

Miescher (E23)

Ciegler et al. (E4)

Karlstrom et al. (E15)

Emanuilov (E7)

Hoffmann-LaRoche (E9, E12)

International Hormones(E13)

MusilkovA (E25)

Konova and Borisova (E19)

Cords et al. (E5)

UCLAF (E33)

Kanzaki et al. (E14)

Vorobieva (E35)

McDaniel (E22)

UCLAF (E34)

Laboratoire Roger(E20)

Bellon

Becher et al. (E3)

Bioflavonoids

,-Carotene

Cobalamins

VOL. 11) 1963 285

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 14: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 5-continued

Vitarin Investigation and results Reference

Patent granted for anaerobic conversion of factor III to vitamin B12 using Pro-pionibacterium shermanii in medium containing 5,6-dimethylbenzimidazole

Patent granted for producing cobalamin by treating cells cultured in, and iso-lated from, cobalt-containing medium with a vitamin B12 precursor

Competitive inhibitor of vitamin B12 (called factor X) isolated from Propioni-bacterium shermanii fermentation. Factor appears to be intermediary productin vitamin biosynthesis

Patent granted for anaerobic conversion of pseudovitamin B12, factor A, or 2-methylmercaptoadenine cobalamin analogue to vitamin B12 using Propioni-bacterium shermanii in medium containing 5,6-dimethylbenzimidazole or 5(6)-hydroxy benzimidazole

Patent granted for anaerobic production of physiologically active cobalaminsusing vitamin B12-producing microorganisms requiring as a precursor a quina-zoline, a phenazine, quinoxaline, benzotriazole, or 2-nitro-4-trifluoromethylaniline

Patent granted for production of vitamin B12 analogues by growing a strain ofEscherichia coli in synthetic medium containing factor B and several 5,6-sub-stituted benzimidazoles

Patents granted for production of cobalamins using Nocardia rugosa in mediumcontaining compounds of the groups 2,3-diamino-5,6,7,8-tetrahydronaptha-lene, 5,6-tetrahydrobenzenebenzimidazole, 2,4,5-triaminotoluene, or 5(6)-amino-6(5)-methylbenzimidazole

Conversion of glucose to erythorbic acid by Penicillium notatum takes place with-out cleavage or inversion of carbon chain

Patent granted for submerged aerobic fermentation using fungi of genus Penicil-lium in media containing glucose, gluconic acid, sucrose, maltose, or starch

Optimal yields of 39 mg/liter obtained in 4 to 5 days in medium containing 10%sucrose using a strain of Aspergillus niger in surface culture

Patent granted for submerged aerobic fermentation producing flavinadenine di-nucleotide using Eremothecium ashbyii

Becher et al. (El)

Perlman (E26)

Kelemen and Simon (E16,E18)

Becher et al. (E2)

Perlman (E27)

Miller and Robinson (E24)

diMarco et al. (E6), SociethFarmaceutici Italia (E29)

Takahashi et al. (E31)

Takahashi et al. (E32)

Shukla and Prabhu (E28)

Masuda et al. (E21)

Erythorbic acid

Riboflavine

286 APPL. MICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 15: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

TABLE 6. Steroid transformations

Transformation Microorganism Comments Reference

1,2-Dehydro- Arthrobacter, Corynebac-genation terium, Mycobacterium,

Mycococcus, and Nocardiasp.

A Mycobacterium sp.Fusarium caucasicum

Arthrobacter simplex

Azotobacter agilis, Azoto-bacter indicus, and Azoto-monas fluorescens

Bacillus sphaericus

Genus Nocardia and genusCorynebacterium

Fusarium caucasicum

Bacillus pulvifaciens

1, 2-Dehydro-genation andll1-hydrox-ylation

1, 2-Dehydro-genation and16a-hydrox-ylation

1, 2-Dehydro-genation anddeacetylation

1, 2-Dehydro-genation and11, 17, or 21-hydroxyla-tions

1-Hydroxyla-tion

Hydroxylations(1, 2(3, hla,and 11,8)

Hydroxylations(1,8, 5(3, and7(3)

Hydroxylations(2,B and 15(3)

Helminthosporium sativumand Bacillus pulvifaciens

Review of microbiological transformations of ste- Moniz de Ariroids presented with 138 references

Trends in steroid production and development of Tausk (F46)cortisone and testosterone discussed

Review of the metabolism of cardiac lactones by Titus (F48)microorganisms appeared

Strains (700) of microorganisms studied for their Shirasaka ettransformation of progesterone and compound S

Strains (57) selected from 400 soil isolates capable Isono and Alof dehydrogenating hydrocortisone examinedtaxonomically

Dehydrogenation of cortisone reportedDehydrogenation of M4-androstenedione and the

effects of different structures examinedDehydrogenation of crystalline hydrocortisone as

solid substrate demonstratedDehydrogenation of steroids

Patent granted for dehydrogenation of 12a-haloA4-3, 20 diketo-11,21-bisoxygenated pregnene toform 12-halo A1 4-11-oxy-21-hydroxy pregnadiene

Patent granted for dehydrogenation of 3-keto A4steroids having 18 to 21 carbon atoms in skeletonin presence of antibacterial antibiotic that en-hances transformation

Breakdown of Al 4-androstadienedione formed fromA4-androstenedione to Al-dehydrotestololactoneinhibited by phenanthrene added to broth

Dehydrogenation of 4-en-3-one and 5-en-3i3-ol typesteroids resulted in formation of 1,4-dien-3-onetype steroids

Patent granted for consecutive transformation ofcompound S to prednisolone without intermedi-ate isolation

Problems of substrate and microorganism choicein development of commercial process for produc-tion of triamcinolone are discussed

A Mycobacterium sp. and Ba- Simultaneous dehydrogenation and deacetylationcillus megatherium observed in mixed culture

Simultaneous dehydrogenation and hydroxylationof A4-3,20-diketopregnene, using combinations ofa variety of microorganisms in a single operation

Cladosporium species andStreptomyces oligochro-mogenus

Streptomyces (14 differentspecies)

Genus Rhizoctonia and genus

Sclerotium

Absidia orchidis

Sclerotinia libertiana

Hydroxylation of progesterone

Hydroxylation of steroids of pregnene series

Hydroxylation of steroids containing 1, 2, or 11-methylene groups

Mixture of mono-, di-, and trihydroxylated deriva-tives of digitoxigenin obtained

Dihydroxy derivative of deoxycorticosterone andmonohydroxy derivatives of corticosterone pre-pared

agao (F34)

al. (F43)

be (F24)

Sokolova et al. (F44)Wix and Albrecht (F55)

Kondo and Masuo (F26)

Terumichi (F47)

Wendler and Taub (F51)

Badia and Sardinas (F3)

Wix and Albrecht (F56)

lizuka et al. (F22)

Tsuda et al. (F49)

Brown et al. (F6)

Sokolova et al. (F44)

Wettstein et al. (F53)

Stoudt et al. (F45), McAleerand Stoudt (F32)

Feldman et al. (F14)

Greenspan and Schaffner (F20)

Nozaki (F37)

Shirasaka (F39)

VOL. 1 1 1963 287

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 16: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 6-continued

Transformation Microorganism Comments Reference

2,6,16a-Hydrox- Streptomyces ro8eochro-ylation mogenus

3-Keto and 4,5- A Streptomyces sp.hydrogena-tion

6ft, Ila-Hydrox-ylation

6,-Hydroxyla-tion

Hydroxylation(6,B, 14ct, or153)

63, ,15,3-Hydrox-ylations

7j3, 15,3,20,B-Hy-droxylations

9a-Hydroxyla-tion

9,10-Secophenol for-mation

lla-Hydroxyla-tion

11-Hydroxyla-tion

l la, 1l#-hy-droxylation

11-Hydroxydehydrogena-tion

la,)17a-Dihy-droxylation

11, 17, and 21-hydroxyla-tion

15a-Hydroxyla-tion

15-Hydroxyla-tion

16 a-Hydrox-ylation

Streptomyces sp.

Gibberella saubinetti

Coriolus versicolor, Poriacocos, Polyporus cinna-barinus, and Polyporustulipiferus

Botrytis cinera

Diplodia tubericola

Nocardia sp.

Nocardia corallina

A Pseudomonas sp.Arthrobacter sp.

Rhizopus nigricans

Genus GlomerellaA Beauveria sp.Order Mucorales

Various

Absidia orichidis

Cunninghamella elega

Dactylium dendroides

Gibberella saubinetii

Genus Hormodendrugenus Spicaria

Streptomyces sp.

16a-Hydroxylation of 9a-flurohydrocortisone is pre-dominant. Degree of 2fl-hydroxylation dependsupon strain and may be enhanced or eliminatedby selection of isolates

Reduction of 3-oxo-M4-androstenes and pregnenes

Two strains capable of 6j, lla dihydroxylation ofprogesterone isolated from 200 screened

Hydroxylation of compound S and 17a-hydroxyprogesterone reported

Patent granted for monohydroxylation of 21-hydroxy-3,20-diketo pregnenes

613-Hydroxylation of compound S and 17a-hydroxyprogesterone, 15,B-hydroxylation of corticoste-rone, and dihydroxylation of deoxycorticosteronereported

7,B and 7,6,1513-hydroxylation of progesterone, 7,B and7,B8,1513-hydroxylation along with shifting thedouble bond of pregnenolone from A6 to A4, and713 and 20,8-hydroxylation of compound S reported

Hydroxylation of 4-androstene-3,17-dione, as wellas formation of the 9, 10-seco phenol derivative,and hydroxylation of progesterone along withformation of 9a-hydroxy testosterone reported

Hydroxylation of 3-keto-A4-steroids unsubstitutedin 11 position

and an 4-Androstene-3,17-dione aromatizised to 3-hy-droxy-9, 10-seco-1,3,5(10)-androstatriene-9,17-dione

Hydroxylation of 18-substituted lactone derivedfrom the alkaloid holarrhimine reported

Hydroxylation of progesterone describedHydroxylation of 11-desoxysteroidsHydroxylation of 11-desoxysteroidsProduction of 11,17a,21-trihydroxy-4-pregnene-3,20-dione ester by hydroxylating the 17a,21unesterified precursor in a fermentation andchemically esterifying the hydroxylated product

Of 64 isolates tested, 19 hydroxylated the 11-posi-tion. The best organism was Absidia orichidis,which produced a 7:1 1113 to lla ratio from pro-gesterone, and a 4:5 ratio from compound S

Conversion of 0.6 g/liter of compound S to 49%hydrocortisone and 44% a-epimer reported

Ins Hydrocortisone oxidized to cortisone in suspensionof cells grown in synthetic medium

Dihydroxylation of 11,17-desoxypregnenes

Simultaneous dihydroxylation of any of positionsindicated, using any two of a variety of microor-ganisms in a single operation

Hydroxylation of progesterone and deoxycorti-costerone reported. Hydroxylation of corti-costerone produced an unidentified 15-hydroxyderivative

tm and Hydroxylation of compound S and its esters totheir corresponding 15a or 1513 derivatives

Five strains capable of hydroxylation isolated from200 screened

Goodman and Smith (F18)

Wettstein and Vischer (F52)

Shirasaka and Ozaki (F41)

Shirasaka and Tsuruta (F42)

Blank et al. (F5)

Shirasaka (F40)

Asai et al. (F2)

Dodson and Muir (F10)

G. D. Searle Co., Inc. (F17)

Dodson and Muir (Fll)

LAbler and Sorm (F27)

Barmenkov et al. (F4)Carvajal (F8)Ilavsky and HerzogMurray et al. (F36)

(F23)

Capek and Hanc (F7)

Hand et al. (F21)

Eroshin and Krasilnikov (F13)

Dulaney and McAleer (F12)

Wettstein et al. (F54)

Shirasaka and Tsuruta (F42)

Allen and Feldman (Fl)

Shirasaka and Osaki (F41)

APPL. MICROBIOLI2828

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 17: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

Table 6-concluded

Transformaton Microorganism Comments Reference

17ca-Hydroxyl-ation

20-Keto re-duction

21-Hydroxyl-ation

Sidechaincleavage

Miscellaneousoxidation

21-Acetylation

Streptomyces roseochromogenus Hydroxylation of 9ce-fluorohydrocortisone in iron con- Goodman and Matrishin (F19)taining medium in which 3 to 5 g/liter of dibasicpotassium phosphate is present

Streptomyces halstedii Hydroxylation of steroids containing 18 to 21 carbon Kita (F25)atoms

Streptomyces halstedii Hydroxylation of estrone and estradiol reported Kita et al. (F25a)Two Streptomyces strains Hydroxylation of steroids containing 18 to 22 carbon Chas. Pfizer & Co., Inc. (F9)

atomsStreptomyces roseochromogenus Hydroxylation of steroids Olin Mathieson Chemical Corp.

(F38)Streptomyces roseochromogenus Hydroxylation of 6a-fluoro cortisone, hydrocortisone, Magerlein et al. (F31)and another Streptomyces prednisone, and prednisolone, and their 9#-fluorostrain derivatives

Streptomyces roseochromogenus Hydroxylation of 6a-ethyl cortisone and hydrocorti- Lincoln et al. (F30)and another Streptomyces sone and their 9a-fluoro derivativesstrain

Genus Sepedonium Hydroxylation of lla-hydroxyprogesterone Murray and Reineke (F35)

Species of Bacillus, Chlorella, Reduction of 20-keto position of compound S to 20,6- Valcavi and Zannini (F50)and other microorganisms hydroxy derivative reported

Colletotrichum lindenruthia-numKabatiella phoradendriOphiobolus herpotrichusGenus Cladosporium

Trichoderma glaucunm

Hydroxylation of steroids of pregnane series Les Laboratoires Frangais deChemiotherapie (F29)

Hydroxylation of steroids of pregnane series Laskin et al. (F28)Hydroxylation of 4,14-pregnadiene 3,20-dione Meister and Murray (F33)Conversion of 20-ketopregnenes to 17j3-acetoxy-A4- Fonken and Murray (F15)

androstenesOxidation of nucleus of 20-ketopregnanes by micro- Fonken and Murray (F16)organisms that simultaneously alter the 20-ketofunction, where this function is an acetal or enolether

21-Acetylation of 9a-fluoro-11,3,21-dihydroxy-16a, 17 Holmlund et al. (F21a)isopropylidenedioxy-pregn-4-ene-3,20-dione in 20-liter submerged culture described

VOL. 11) 1963 289

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 18: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 7. Enzymes

Enzyme Organism Comments Reference

Acylase Nocardia sp.

AmylaseAmylaseAmylaseAmylase

Amylase

Amylase

Amylase

Cellulase

CellulaseChlorogenicase

CollagenaseEndo-polygalac-turonase

Endo-polygalac-turonase

EnzymesEnzymesGlucamylase

Invertase

Isocitratase

LipaseMethylmalonylisomerase

NaringinasePectinasePectinasePectinase

Penicillinase

Phosphatase

ProteaseProtease

ProteaseProtease

ProteaseSteroid destruc-tase

SucraseTransaldolase

Yeast-dissolvingenzyme

Yeast-dissolvingenzyme

FungiAspergillus oryzaeAspergillus sp.Bacillus subtilis

Aspergillus oryzae

Aspergillus oryzae

Aspergillus sP.

Aspergillus niger, Penicilliumsp., and Trichoderma sp.

Cellulomonas fimi and C. foliaAureobasidium pullulans

Clostridium histolyticumAspergillus niger

Various

Aspergillus niger ATCC 13497

Candida Utili, Saccharomyce,cerevisiae, and others

Micrococcus glutamicus

Aspergillus sp.Propionibacterium sp.

Caniothyrium diplodiellaCaniothyrium diplodiellaStreptomyces sp. (150)Aspergillus niger

Escherichia coli

Aspergillus niger

Aspergillus sojaeKoji-mold strain 66

BacteriaMicrococcus freudenreichiiATCC 407

Streptomyces sp.Various

Aspergillus oryzaeCandida utilis

Streptomyces sp., Pseudomonassp., and Micrococcus sp.

Streptomyces (A-14)

Preparation of 6-aminopenicillanic acid andsubstrate specificity discussed

ReviewEffect of ionizing radiation studiedAntiacidic amylase producedInhibitory effect of glycine on amylase pro-duction

Sodium fluoride, sodium azide, diethylcar-bonate, methylene blue, 2,6-dichloro-phenolindophenol increase amylase ac-tivity

Wheat bran from soft-red winter wheatsfound to be best culture medium

Addition of phytic acid or phytates improvesyield of enzymes

Production in submerged culture

Effect of various factors on activityEnzyme hydrolyzing chlorogenic acid to

caffeic and quinic acids produced on med-ium containing p-hydroxy benzoic acid or3,4-dimethoxybenzaldehyde

Relatively simple medium describedPurification by ethanol and (NH4)2SO4 frac-

tionationPurification and properties

Review on uses in food industryReview on methods of assayHigher yields; lower transglucosidase-gluc-amylase ratio

Survey of amounts of total and extracellularenzyme produced

Acetic acid sole carbon source. Biotin af-fected enzyme yield

Effect of metal ions on enzymePurification and properties

Properties and applicationsProduction methodBreakdown (95%) of pectin in some mannerStirred fermentors (10 liter), 2% pectin +

salts gave highest yieldsProduction on corn steep liquor phenylacetic

acid mediumHydrolyzed 91.4% of adenosine triphosphate

at pH 1.4 to 2.0 at 30 CCharacterization of inactive formThermostable protease

Antiacidic protease productionEnzyme protected by 2% NaCl. Maltosestimulated protease production

Four strains studied for proteolytic activityQuininoid compounds inhibit destruction of

steroids; 1, 2-dehydrosteroid accumulatesEffect of ionizing radiations studiedPreparation from low-temperature driedyeast described

Enzyme produced which dissolves cell mem-brane of yeast

Production of enzyme which dissolves yeastcell wall

Huang (G9)

Kujawski and Piller (G13)Fields et al (G8)Minoda et al. (G21)Tsuru and Fukumoto (G31)

Malkov and Deeva (G16)

Trainina et al. (G30)

Yamada (G36)

Terui et al. (G29)

Ikemiya et al. (G10)Lewis (G14), LewisThompson (G15)

and

Warren and Gray (G35)Mill and Tuttobello (G20)

Endoh (G5)

Rzedowski (G25)Underkofler (G34)Armbruster (G2)

Dworschack and Wickerham(G4)

Kimura et al. (G12)

Iwai et al. (Gil)Stjernholm and Wood (G26)

Takiguchi (G28)Miura (G22)Billimoria and Bhat (G3)Tuttobello and Mill (G32)

Farbenfabriken Bayer A. G.(G6)

Matsui et al. (G17)

Yamamoto (G37)Matsushima and Shimada

(G18)Uchino and Doi (G33)McDonald (G19)

Richou et al. (G24)Feldman et al. (G7)

Fields et al. (G8)Pontremoli et al. (G23)

Abe et al. (Gl)

Tabata and Terui (G27)

APPL. MICROBIOL290

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 19: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

TABLE 8. Cells and tissues

Organism Comments Reference

A lgae

Blue-green algae

Chlorella pyrenoidosaand Chlorella vulgaris

Chlorella pyrenoidosa

Chlorella sp.

v Ctonyaldex catenella

Anim-als and higherplants

Animal cellsAnimal cells

Animal cellsAnimal cellsAnimal cells: various

strainsAnimal cells: rabbit

kidney, bovine lung,and human synovial

Animal cells: Walkercarcinosarcoma 256,sarcoma 180, KB,and human heart

Animal cells, pig kid-ney

Animal cells: guineapig lung, Maben, em-bryonic human lung,and human liver

Plant cells

Plant cells: Ginkgo-pollen

ProtozoansBacteriaBacteria

Bacterial preparation

Bacillus thuringiensis

Salmonellatyphimurium

FungiMorchella crassipes, M.

esculenta, and M.hortensis

Various Morchella spe-cies and strains

Various molds, yeasts,actinomycetes,algae, mushrooms,and bacteria

Theoretical equations for determining optimal conditions for photosynthesis de-rived

Concentration of 200 ppm or less of anisomycin, nystatin, and actidione useful ineliminating green algae and contaminants from cultures of blue-green algae

Basophilia and redox relationships studied

At constant pH, calcium nitrate and urea are better nitrogen sources than am-monium nitrate or ammonium sulfate. At high temperatures urea has slighttoxic effect

Limiting production rate for autotrophically grown algae determined by incidentlight, power efficiency of cell synthesis, and relation between specific growthrate and light intensity

Culture in 1-liter Fernbach flasks for 12 to 16 days produces a toxin identical tothat found in cases of poisoning due to eating of mussels and clams containingthis algae in their digestive tract

Review article on use in nutrition, physiology, virology, and geneticsReview of large-scale production and use

Review of mammalian cell culture methodsReview with emphasis on virology and vaccine productionIn suspended culture, serum can be replaced by methyl cellulose if flask walls arecoated with a hydrophobic silicone

Agitated 5-liter fermentors produced 5 to 15 liters of cell suspension (500,000cells/ml) in 7 to 10 days. This was then used for virus production

Detailed nutritional studies with aim of replacing serum and overcoming serumtoxicity reported

Canine hepatitis prepared by serial passage in pig-kidney cultures

Variola virus propagated in suspended cultures

Techniques of growth in liquid media and significance of morphological and cy-tological events during suspended growth discussed

Relationship of media composition to tissue composition studied

Use of protozoans for testing of antibiotic and antitumor drugs described

Cellulose sponges supporting an agar medium are alternately squeezed and re-laxed; concentrations of up to 8.4 X 101" cells/ml of Serratia marcescens were ob-tained

A preparation of Escherichia coli NRRL B-1958 and Aerobacter aerogenes NRRLB-1959 used in treatment of intestinal disorders

Submerged fermentation with over-all cycle of 24 to 32 hr described to producespores used as insecticide against lawn moth and tent caterpillar, etc.

Grown in 6-liter flasks on rotary shaker and in 1-liter cylindrical reactor; yieldsimproved with aeration, but no quantitative correlation was found

Submerged culture in 7-liter carboys described. All species grew well with malt-ose as carbon source. With glucose, M. hortensis grew faster than M. esculenta,which grew faster than M. crassipes. M. hortensis utilized lactose well, M. es-culenta poorly, and M. crassipes not at all

At optimal growth temperatures in range 55 to 70 F, 10 to 25 g (dry weight) /literwere obtained. Flavor was good, and mycelium can be used fresh, frozen, dried,powdered, or as a flavor concentrate

Course of cell propagation in 30-liter fermentors studied. Variables followed werepH, dry cell weight, and carbohydrate utilization

Frederickson et al.(H12)

Hunter and Mc-Veigh, (H20)

Rtetovsky and KlAs-terskA (H35)

Pinevich et al. (H33)

Myers (H30)

McLaughlin et al.(H26)

Salzman (H36)Merchant and Ei-dam (H28)

Schindler (H38)Oker-Blom (H31)Bryant et al. (H4)

Haas and Crawford(H17)

Tytell and Neuman(H41)

Emery (H10)

Mika and Pirsch(H29)

Steward (H37)

Tulecke (H40)

Johnson et al. (H21)

Freeman (H13)

Biochemie G.m.b.H,(H3)

Megna et al. (H27)

Holme and Edebo(H19)

Litchfield(H23)

et al.

Gilbert (H16)

Denison et al. (H7)

4-v-OL. 11 1 1963 291

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 20: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 8-continued

Organism Comments Reference

YeastsCandida neoformans

Candida utilis

Candida utilis

Candida utilis

Candida utilis

Candida tropicalisSaccharomyces

cerevisiae

Saccharomycescerevisiae

Saccharomycescerevisiae

Saccharomycescerevisiae

Saccharomyces fragilis

Saccharomyces fragilis

Yeasts

Baker's yeast

Baker's yeast

YeastYeastYeast

Yeast

Growth in capsular form on medium containing 10 to 100,000 pg/liter of thiamine,100 to 10,000 mg/liter of sodium glutamate, and 0.5 to 3% maltose or sucrosedescribed

Substances which inhibit bacterial growth were produced in the medium con-currently with the formation of yeast protein

Waste water from baker's yeast production used to dilute waste molasses gave a5 to 10% higher yield than waste molasses alone

Grown in symbiotic fermentation with Endomycopsis fibuliger on potato starchmash; E. fibuliger converted starch into fermentable sugars

Yield of 9 g (dry weight)/liter from fruit waste water obtained after protein wasremoved by heat-coagulation and filtration

Continuous production gave a yield of 38.5% based on dry matterWhen yeast was pitched into wort, synthesis of ribonucleic acid, carbohydrate,and protein started immediately while deoxyribonucleic acid synthesis wasdelayed

Utilizable sugars occurred intracellularly in free state when rate of uptake wasgreater than rate of utilization. Utilizable and nonutilizable sugars appearedto have different uptake mechanisms

Continuous propagation of yeast in two stages, plus a ripening vessel described

Production in a molasses-ammonium sulfate medium, using ammonium hydrox-ide as supplemental nitrogen source, described

Fixed and operating costs of 11.3 cents/lb estimated to produce yeast from cheesewhey in 750-gal fermentor

A 0.42-lb amount of dry yeast obtained per lb of lactose in cheese whey

Review of recent research on cytology, genetics, metabolism, fermentation proc-esses, flocculation, infections, and classification of yeasts

Querbin-process molasses found as suitable as normal beet molasses for baker'syeast production

Dissolved oxygen was measured and controlled during fermentation by ampero-metric device

Review of nutritional propertiesMultistage continuous production describedYeast production was controlled by measuring the alcohol content of the effluent

gas stream colorimetrically or refractometrically

Suitability of cane sugar bagasse and other cellulosic materials as sources of car-bohydrates for veast production examined

Littman (H24)

Fusser et al. (H15)

Lefrancois (H22)

Svensk Kem. Tid-skrift (H39)

Zelenka andCejkovA(H45)

Vasko (H42)Beran et al. (H2)

Burger and HejmovA(H6)

Distillers Co., Ltd.(H8)

Distillers Co., Ltd.(H9)

Wasserman et al.(H44)

Wasserman et al.(H43)

Bunker (H5)

Fritzler (H14)

Hefe-PatentG.m.b.H. (H18)

Lutze-Birk (H25)Pychova (H34)PatentauswertungVogelbuschG.m.b.H. (H32)

Fanti et al. (H11)

292 APPL. AMICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 21: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

TABLE 9. Polymers

Product Organism Comments Reference

Dextran

Dextran

Leuconostoc mesenteroides andAspergillus wentii

Leuconostoc mesenteroides

Dextran

Dextran

Dextran

Dextran-like

polysaccharide

Hyaluronic acid

polymers

Oligosaccharides

PhosphomannanPhosphomannan

Phosphomannan

derivative

Polyglutamic

acid

PolysaccharideB-1459

PolysaccharideB-1459 deriva-tive

Polysaccharide

Polysaccharide

Polysaccharide

Polysaccharide

Polysaccharide

Polysaccharide

Leuconostoc mesenteroides

Leuconostoc mesenteroides "L"

Pullularia pullulans

Streptococcus sp.

Streptococcus bovis

Hansenula holstiiHansenula holstii NRRL Y-2448

Hansenula sp.

Bacillus subtilis

Xanthomomas campestrisNRRL B-1459

Rhizobium sp.

Xanthomonas stewartii

Corynebacterium insidiosum

Cryptococcus laurentii var.

flavescens

Alcaligenes faecalis

Gibberella fujikuroi

Crude dextran produced by the bacteriumfrom sucrose broken down to dextran ofmolecular weight 50,000 to 100,000 by themold cultured simultaneously in the same

vesselDextran produced at temperatures as low as

-10 to 0 CBeet molasses unsuitable for dextran produc-

tion because of the coloring matter it con-

tainsProcess for production of clinical dextrandescribed

Fructose, glucose, lactic acid, and maltoseproduced in varying amounts along withdextran

Polymer produced from glucose, fructose, or

sucrose in Czapek-Dex salts media. Thia-mine and an unknown factor formed dur-ing heating of sugar solution stimulatepolysaccharide formation

Polymer produced in medium containingcasein hydrolysate, vitamins, salts, and a

nontoxic sulfated mucopolysaccharidewhich inhibits hyaluronidase

Dextran (40 g), leucrose (1.8 g), isomaltulose(0.25 g), isomaltotriulose (0.15 g), and 5-O-ca-isomaltosyl-D-fructose (0.12 g) were

formed on a yeast extract-tryptose me-

dium from 115 g of sucrose

Review of phosphomannan productionMannose only sugar component in polymer

Phosphomannan heated for 20 min at 100 Csplits hemiacetal phosphate linkage toform phosphomonoesters. Physical andchemical properties reported

Yields of 5 to 15 mg/ml obtained in 24 to 48hr when grown on a 15% wheat gluten andsalts medium at pH 6 to 7 at 33 C

Light-tan polymer produced in yields of 50%from a 3% dextrose medium in 96 hr at28 C

Polymer produced by alkaline deacetylationof polysaccharide B-1459

Polymer produced in yeast extract-mannitolmedium

Polymer containing glucose, galactose, andaldobiuronic acid units produced on yeastextract medium

Polymer containing glucose, galactose, andfucose (2:3:4) produced on yeast extractmedium

Yields of 35 to 40% based on glucose obtainedin 20-liter fermentors on 5% glucose, 0.25%yeast acetolysate, salts medium

Properties of glucose containing polymergiven

Polysaccharide containing glucose, mannose,galactose, and glucuronic acid units pro-duced on glucose medium

Method of production described

Novak and Witt (J15)

Farbwerke Hoechst A. G.(J6)

Olbrich (J16)

Behrens et al. (J1)

Kaniuga and Blechert (J13)

Farbwerke Hoechst A. G.(J7)

Warren (J21)

Bourne et al. (J2)

Dietrich (J5)Jeanes et al. (Jl1)

Slodki (J19)

Ward et al. (J20)

Rogovin et al. (J17)

Jeanes and Sloneker (J12)

Davis and Clapp (J4)

Gorin and Spencer (J10)

Gorin and Spencer (J9)

Cadmus et al. (J3)

Magee and Colmer (J 14)

Siddiqui and Adams (J18)

Zyoa es itrv ta.(8

293VOL. 1 l N 1963

Zymosan Yeast Ginterovi et al. (J8)

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 22: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 10. Gibberellins

Organism Comments Reference

Fusarium moniliforme Ultraviolet irradiation of conidia was used to obtain mutants of higher produc- Imshenetskii andtivity. Two strains of higher activity were isolated from 120 mutants Ulianova (K5)

Fusarium moniliforme Yields of 1 g/liter were obtained on a glucose-corn steep liquor-salts medium in Sanchez-MarroquinIOC-3326 50-liter fermentors. Addition of malt extract, ethanol, thiourea, and ethylene- (K8)

diaminetetraacetic acid had a slight stimulating effectFusarium moniliforme Molasses gave yields two and one-half times better than sucrose, and ammonium Sanchez- MarroquinIOC-3326 sulfate was preferred to ammonium nitrate (K9)

Gibberella fujikuroi Use of plant meal as nitrogen source patented Calam and Nixon(K3)

Gibberella fujikuroi Mevalonic acid lactone as precursor increased rate of production of gibberellic Birch et al. (KI)acid

Gibberella fujikuroi Nitrogen source found of greatest significance in determining yield. Corn steep Kuhr et al. (K6)liquor led to gibberellic acid alone, and soybean or peanut meal gave mixturesof gibberellic acid and gibberellin A

Gibberella fujikuroi Using soybean or peanut meal media at pH 4.5 to 5.0, 400 to 500 g/ml of gibberel- Fuska et al. (K4)lic acid was obtained in 8 to 10 days of submerged fermentation at 25 C

Gibberella fujikuroi Effect of glucose, nitrogen, phosphate, and magnesium deficiencies on growth Borrow et al. (K2)and metabolism in agitated culture was studied

Gibberellic acid was recovered from fermentation broths at pH 2.5 to 3.5 by ad- Podojil et al. (K7)sorption on anion-exchange resins followed by elution with 1 N formic acid

TABLE 1i. Hydrocarbons

Substrate Microorganism Comments Reference

C1 compounds Pseudomonas AM1 Isolation and characterization Peel and Quayle (L14)Propane Mycc bacterium lacticolum Carbon balance during oxidation Telegina (L20)2-Methyl hexane Pseudomonas aeruginosa Oxidation products Thijsse and Van der

Linden (L21),Van der Linden andThijsse (L22)

Hexane and heptane Pseudomonas aeruginosa Oxidation to fatty acid products Heringa (L7)Short-chain alkyl-substi- Nocardia 107-332 Oxidation to cyclic acid Davis and Raymond (L4,tuted cyclic hydrocarbons L5)

C6 to C10 alkanes Pseudomonas aeruginosa Metabolic pathway studied Senez and Azoulay (L18)n-Alkanes Candida sp., Nocardia sp. Conversion into cell tissue Raymond (L16)Liquid paraffin BP, paraffin Pseudomonas sp., Nocardia Small-scale studies of oxidation to Linday and Donald (Lii)wax, n-docosane, and n- opaca, Nocardia petrofila long-chain fatty acidsoctadecane

Alkanes Nonproliferating cells of Metabolic mechanisms Kallio et al. (L9)gram-negative coccoidalbacteria

Chromatic and aliphatic hy- Various species Oxidation products Arnaudi and Treccanidrocarbons (L1)

Olefins Incorporation of molecular oxygen Ishikura and Foster (L8)C7 to CIO paraffinic hydrocar- Pseudomonas aeruginosa Growth under anaerobic conditions Senez and Azoulay (L19)bons

Aromatic compounds Various species Extensive review of oxidation by bac- Rogoff (L17)teria

Jet fuel Formation of microbial sludge Prince (L15)Benzene and catechol Mycobacterium rhodochrous, Oxidation products Marr and Stone (L12)

Pseudomonas aeruginosaGlucose-salt medium Polyporus tumulosus Production of phenolic acids Crowden and Ralpo (L3)Alkyl benzene sulfonates Various species Study of the influence of alkyl group Nelson (L13)

structure on biodegradabilityNitrogen compounds of crude Layer water microorganisms Studied capability for utilizing nitro- Bogdanova (L2)

oil gen compounds of oil as a nitrogensource to decomposed oil under an-aerobic conditions

Sulfur compounds of crude Thiobacillus sp. Patent for desulfurization of oil by Kirshenbaum (L10)oil bacteria

Sulfates Desulfovibrio sp. Use of sulfate-reducing bacteria in DostAlek (L6)geological study of an oil field

294 APPL. MICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 23: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION IPROCESSES

TABLE 12. Alkaloids

Product Organism Comments Reference

Colchicin derivative

2,3-Dihydroxybenzoic acid

Ergot alkaloids

Ergot alkaloids

Ergot alkaloids

10-Hydroxyyohimbine

18-Hydroxyyohimbine

Lysergic acid hydroxy-ethyl-

amide

Streptomyces griseus, Fusar-ium sp., Curvularia lunata,Corynebacterium simplex,Aspergillus niger

Claviceps paspali

Claviceps ptrpurea

Claviceps purpurea

Claviceps purpurea

Streptomyces (many sp.),Cunninghamella blakesle-eana, Sardaria fimetaria,others

Streptomyces sp.

Claviceps purpurea

Unidentified substances obtainedwith colchicin as substrate; theseare of lower toxicity and higherantimitotic activity than parentcompound

Formed concurrently with lysergicacid in yields of 200 to 350 mg/liter

Conditions favorable to nucleic acidsynthesis increased the yield ofalkaloid

Tryptophan incorporated into ergotalkaloids without prior decarboxyl-ation

Alkaloid formation believed to be as-sociated with unbalanced growth,characterized by limited accumula-tion of carbon and lipid nutrientsor reserves but not ribonucleic acidcontent

Yohimbine HCl (0.5 g/liter) was con-verted in 10 days at pH 7.2 in a soy-bean meal-glucose-calcium carbon-ate medium

Aerobic, submerged conversion ofyohimbine reported

Formed in concentration of 1 g/literduring submerged aerobic fermen-tation

Microbial transformation reported

UCLAF (M7)

Arcamone et al. (M2)

de Waart (M8)

Baxter et al. (M3)

Taber and Vining (M6)

Meyers and Pan (M5)

Weisenborn and Pan (M9)

Arcamone et al. (Ml)

VOL. 11 a1963 295

Morphine alkaloid Iizuka et al. (M4)

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 24: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

TABLE 13. Miscellaneous

Product Organism Comments Reference

Carbon monoxide

Cellulose

Chlorophenoxyacetic acids

Fat

Fat

Hydroxy fatty acid glyco-sides

Iron sulfide

3-Ketoglycosides

Miso

Protein hydrolysate

PteridinsPyrollidone carboxylic acid

Serratomolide

Spores

Sulfide

Sulfur

Aspergillus flavus

Various

Aspergillus niger

Penicillium spinulosum

Lipomyces lipofer and L.starkeyi

Torulopsis magnoliae

Desulfovibrio desuilfuricans

A Icaligenes faecalis

Saccharomyces rouxii

Saccharomyces platensis pro-teolytica

Mycobacterium aviumnPseudomonas crucivae

Serratia sp.

Bacillus and Clostridiuwn sp.

Desulfovibrio desulfuricans

Desulfovibrio desulfuricans

Produced during the degradation offlavonoids

Review of industrial significance ofits microbial degradation

A study of their metabolism

Inorganic constituents of cane molas-ses reduced yield of fat as comparedwith use of sucrose

Improved yield from single-spore iso-lates

An extracellular oil consisting of 17-hydroxydecanoic and decenoic acidglycosides formed during fermen-tation

Iron sulfides produced from iron sul-fate solutions. Under some condi-tions of intermittent continuousculture, magnetic sulfides can beobtained at rates of 150 mg ofiron per liter per hr

Obtained in yields of 12% from malt-ose and 20% from sucrose in 16 to24 hr at 35 C

Advantages of pure culture techniquediscussed

Fermentation of protein material inpresence of carbohydrate

Extracted from cellsProduced on medium containing 10 to

100 mg/ml glutamic acid at pH 6-9A pigment extracted from broth withmethylene chloride

Spores enter upper phase of systemcomposed of polyethylene glycol4000 and phosphate buffer (pH 7.1.)

Produced from sulfate-enriched spentdistillery liquor

H2 produced from sulfate-enrichedsewage sludge and then oxidized

Westlake et al. (N16)

Gascoigne (N7)

Faulkner and Woodcock(N5)

Khan and Walker (Nil)

Cullimore and Woodbine(N4)

Gorin et al. (N9)

Freke and Tate (N6)

Bernaerts and DeLey(Ni)

Hesseltine and Shibasaki(NI0)

Bertullo and Hettich (N2)

Korte and Goto (N13)Kinoshita et al. (N12)

Wasserman et al. (N15)

Sacks and Alderton (N14)

Ghose and Basu (N8)

Burgers and Wood (N3)

LITERATURE CITED

ALCOHOLS AND KETONES

Al. AGANESOVA, L. N. Spirt. Prom. 27(l):22 (1961).A2. DE ALMEIDA, J. R. Istituto Zimotecnico, University of

Sao Paulo, Sao Paulo, Brazil (1961).A3. DILLEN, S. Svensk Pappertid. 64:283 (1961).A4. ibid. 64:545 (1961).A5. ibid. 64:819 (1961).A6. FRIEDLAND, W. C. et a]. Division of Microbial Chemistry

and Technology, 140th Meeting Am. Chem. Soc.,Chicago, September, 1961.

A7. GREEN, S. R. Division of Microbial Chemistry and Tech-nology, 140th Meeting Am. Chem. Soc., Chicago, Sep-tember, 1961.

A7a. GREEN, S. R. et al. J. Biochem. Microbiol. Technol. Eng.3:351 (1961).

A8. GUYMON, J. F. et al. Arch. Biochem. Biophys. 95:163 (1961).A9. HARADA, R. J. Ferment. Assoc. (Japan) 19:673 (1961).A10. KODIN, G. S., AND G. P. REGER. Spirt. Prom. 27(6):40 (1961).All. KONOVALOV, S. A. Spirt. Prom. 27(4):14 (1961).A12. KOVATS, J., AND Z. NIESTRAWSKI. Z. Zuckerind. 11:499

(1961).

A13. KRISHNAMURTI, B. G. Indian Sugar 10:721 (1961).A14. LASKEWSKI, H. Spirt. Prom. 27(4):47 (1961).A15. LONG, S. K., AND R. PATRICK. Appl. Microbiol. 9:244 (1961).A16. MARKHOF, G. M. U.S. Patent 3,010,881 (Nov. 28, 1961).A17. MOTOE, M. et al. Annual Meeting Agr. Chem. Soc. Japan,

Fukuoka, April, 1961.A18. MOTOE, M. et al. Japan Patent 5797 (1961).A19. NORDSTROM, K. J. Inst. Brewing 67:173 (1961).A20. ONISHI, H. (Noda Industrial and Scientific Research

Laboratory.) U.S. Patent 2,986,495 (May 30, 1961).A21. ibid. 3,012,945 (Dec. 12, 1961).A22. PANDEY, S. N., AND J. P. SHUKLA. Sugar Technol. Assoc.

(India) 29th Proc., p. Ill (1961).A23. POLUYANOVA, M. T. Spirt. Prom. 27(2):12 (1961).A24. RAMACHANDRA RAO, T. N. et al. Food Sci. (Mysore) 10(4):88

(1961).A25. ROSS, D. Progr. Ind. Microbiol. 3:73 (1961)A26. RUNGALDIER, K., AND E. BRAUN. (Patentsauswertung

Vogelbusch.) U.S. Patent 3,002,894 (Oct. 3, 1961).A27. SEMUSHINA, T., AND N. I. VLADIMIROVA. Gidrolizn. i

Lesokhim. Prom. 14(4):7 (1961).A28. TEIXEIRA, C. G., AND A. SALATI. Arquiv. Ferment. 3:17

(1961).

296 APPL. MICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 25: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

A29. VENZANO, A. et al. Rev. Invest. Agr. (Argentina) 15:683(1961).

A30. ZABRODSKI, A. G. et al. Izv. Vysshikh Uchebn. ZavedeniiPishchevaya Tekhnol. (3), p. 82 (1962).

ACIDS

Bi. AGNELLO, L. A., AND R. J. KIEBER. Ind. Eng. Chem. 53:253(1961).

B2. ANONYMOUS. Industrya Vrenja 1:7 (1961).B3. BOTCHAROVA, N. N., AND R. N. GOLUBTCHINA. Vest.

Leningr. Univ. Izv. Akad. Nauk. SSSR. 26(3) :152(1961).

B4. CHOPEY, N. P. Chem. Eng. 68:122 (1961).B5. CLARK, D. S. Division of Microbial Chemistry and Tech-

nology, 140th Meeting Am. Chem. Soc., Chicago,September, 1961.

B6. CLARK, D. S., AND C. P. LENTZ. Can. J. Microbiol. 7:447(1961).

B7. ELS, H., AND F. MARTENS. (Heinrich Frings Kommand-ditgesellschaft.) U.S. Patent 3,014,804 (Dec. 26, 1961).

B8. JANKE, H. Arch. Mikrobiol. 41:79 (1961).B9. JANUSZEWICZ, I., AND M. BRZOZOWSKA. Przemysl

Spozywczy 15(10):35 (1961).B10. KASATKINA, I. D. Mikrobiologiya 30:444 (1961).Bil. KINOSHITA, S. et al. (Kyowa Hakko Kogyo Kabushiki

Kaisha.) U.S. Patent 2,973,303 (Feb. 28, 1961).B12. ibid. 2,993,838 (July 25, 1961).B13. KOBAYASHI, T. Japan. Patent 19744 (1961).B14. KOBAYASHI, T. et al. J. Agr. Chem. Soc. Japan 35:541 (1961).B15. KOVATS, J. Acta Microbiol. Polon. 9:275 (1960).B16. ibid. Przemysl Spozywczy 15(9):38 (1961).B17. KoVATS, J., AND Z. NIESTRAWSKI. Z. Zuckerind. 11:495

(1961).B18. KUSIURINA, L. A. Mikrobiologiya 30:897 (1961).B19. LASKOWSKI, H. Przemysl Ferment. 5(4):67 (1961).B20. LEOPOLD, H., AND S. VALTR. Zentr. Bakteriol. Parasitenk.

Abt. II. 114:45 (1961).B21. LOITIANSKAYA, M. S. et al. Mikrobiologiya 30:1065 (1961).B22. LOPEZ, A. et al. Appl. Microbiol. 9:425 (1961).B23. MARTIN, M. E. et al. Can. J. Microbiol. 7:341 (1961).B24. MASTROPIETRO CANCELLIERI, M. F., AND G. F. TIECCO.

Rend. Ist. Super. Sanita 24:754 (1961).B25. NOGUCHI, Y., AND M. J. JOHNSON. J. Bacteriol. 82:538

(1961).B26. OKADA, H. et al. J. Gen. Appl. Microbiol. (Tokyo) 7:177

(1961).B27. OPUSZYNSKA, H. Przemysl Spozywczy 15(7):41 (1961).B28. PAN, S. C., AND L. J. LERNER. (Olin Mathieson Chemical

Corp.) U.S. Patent 3,010,878 (Nov. 28, 1961).B29. RAINBOW, C. Progr. Ind. Microbiol. 3:45 (1961).B30. SAITOH, T. et al. J. Agr. Chem. Soc. Japan 35:313 (1961).B31. SCHWEIGER, L. B. (Miles Laboratories.) U.S. Patent

2,970,084 (Jan. 31, 1961).B32. SUOMALAINEN, H. Brauwissenschaft 14:95 (1961).B33. TENGERDY, R. P. J. Biochem. Microbiol. Technol. Eng.

3:241 (1961).B34. ibid. 3:255 (1961).B35. TOLMAN, V. Kvasny Prumysl 7:13 (1961).B36. ZAGRODSKI, S. et al. Przemysl Spozywczy 15(9):26 (1961).B37. ZHURAVSKY, G. I., AND I. V. AGLISH. Mikrobiologiya

30:886 (1961).B38. ZMACZYNSKI, K., AND J. ZIOBROWSKI. Przemysl. Ferment.

5(4):53 (1961).

AMINO ACIDS

Cl. AJINOMOTO AND SANRAKU DISTILLERS Co. Brit. Patent876,943 (July 19, 1961).

C2. AJINOMOTO AND SANRAKu DISTILLERS Co. Brit. Patent873,448 (June 7, 1961).

C3. ibid. Indian Patent 68268. (1961).C4. BAGNIEWSKI, T. Przemysl Ferment. 5(1):16 (1961).C5. BROQUIST, H. P. et al. Appl. Microbiol. 9:1 (1961).C6. ibid. (American Cyanamid Co.) Can. Patent 620,700 (May

23, 1961).C7. ibid. 620,701 (May 23, 1961).C8. ibid. 620,702 (May 23, 1961).C9. ibid. U.S. Patent 2,980,590 (April 18, 1961).CIO. CHAS. PFIZER. Brit. Patent 863,765 (Feb. 1, 1961).Cll. ibid. Indian Patent 66942 (1961).C12. EHRLICH, J. et al. (Parke, Davis and Co.) U.S. Patent

2,996,435 (Aug. 15, 1961).C13. GOOD, R. C., AND I. C. GUNSALUS. (International Minerals

and Chemicals.) Can. Patent 614,484 (Feb. 14, 1961).C14. GORTON, B. X., AND N. L. HAUSE. (E. I. duPont de

Nemours.) U.S. Patent 2,976,218 (Mar. 21, 1961).C15. HOFMAN, J. Folia Microbiol. (Prague) 6:64 (1961).C16. HUANG, H. T. Appl. Microbiol. 9:419 (1961).C17. ibid. (Chas. Pfizer and Co., Inc.) Can. Patent 612,851

(Jan. 17, 1961).C18. ibid. U.S. Patent 2,973,304 (Feb. 28, 1961).C19. ibid. 2,975,105 (March 14, 1961).C20. JENSEN, A. P., AND P. SHU. Appl. Microbiol. 9:12 (1961).C21. KINOSHITA, S., AND S. AKITA. (Kyowa Hakko Kogyo.)

U.S. Patent 3,002,889 (Oct. 3, 1961).C22. KINOSHITA, S. et al. (Kyowa Hakko Kogyo.) Can. Patent

620,449 (May 16, 1961).C23. KINOSHITA, S. et al. Japan. Patent 6499 (1961).C24. ibid. 18500 (1961).C24a. ibid. (Kyowa Hakko Kogyo.) U.S. Patent 2,979,439

(April 11, 1961).C25. ibid. 2,988,489 (June 13, 1961).C26. ibid. 3,003,921 (Oct. 10, 1961).C27. ibid. 3,003,922 (Oct. 10, 1961).C28. ibid. 3,003,923 (Oct. 10, 1961).C29. ibid. 3,003,925 (Oct. 10, 1961).C30. KRASILNIKOV, N. A. Usp. Sovrem. Biol. 52:149 (1961).C31. MALIN, B. (Eli Lilly and Co.) U.S. Patent 2,999,051

(Sept. 5, 1961).C32. MASUO, E. et al. (Shionogi.) Can. Patent 633,170 (Dec. 19,

1961).C33. MCCORMICK, J. R. et al. Division of Microbial Chemistry

and Technology, 140th Meeting Am. Chem. Soc., Chi-cago, Sept., 1961.

C34. MOORE, A. M. et al. (Parke, Davis and Co.) Can. Patent615,368 (Feb. 28, 1961).

C35. MOTOZAKI, S. et al. Japan. Patent 24047 (1961).C36. NAKAYAMA, K., AND S. KINOSHITA. J. Gen. Appl. Microbiol.

(Tokyo) 7:161 (1961).C37. NAKAYAMA, K. et al. J. Gen. Appl. Microbiol. (Tokyo)

7:41 (1961).C38. ibid. 7:52.C39. ibid. 7:145.C40. NARA, T. et al. Agr. Biol. Chem. (Tokyo) 25:532 (1961).C41. NUBEL, R. C. (Chas. Pfizer and Co., Inc.) U.S. Patent

2,968,594 (Jan. 17, 1961).C42. OGAWA, T. et al. (Ajinomoto.) U.S. Patent 2,971,890

(Feb. 14, 1961).C43. RHODES, R. A. et al. Appl. Microbiol. 9:181 (1961).C44. SAMEJIMA, H. et al. J. Gen. Appl. Microbiol. (Tokyo) 7:327

(1961).C45. SAMESHIMA, K. et al. Regional Meeting Agr. Chem. Soc.

Japan, Jan., 1961.C46. TERUI, G. et al. Symp. Amino Acids, October 1961.C47. TSUNODA, T. et al. Japan. Patent 1146 (1961).

VOL. 11, 1963 297

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 26: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

C48. TSUNODA, T. et al. J. Gen. Appl. Microbiol. (Tokyo) 7:18(1961).

C49. ibid. 7:30.C50. WAKISAKA, Y. et al. Shiongi Kenkyusho Nempo 11:87 (1961).C51. YAMADA, K. U.S. Patent 2,978,383 (April 4, 1961).C52. ibid. 2,978,384 (April 4, 1961).C53. YAMADA, K., AND Y. SU. (Ajinomoto.) Can. Patent

625,387 (Aug. 8,1961).C54. YOSHINO, D. et al. J. Ferment. Technol. (Japan) 39:273

(1961).

ANTIBIOTICS

DI. ABRAHAM, E. P., AND G. G. NEWTON (National ResearchDevelopment Corp.) Can. Patent 616,233 (March 14,1961).

D2. AGATOV, P. A. Mikrobiologiya 30:877 (1961).D3. ALIKHANIAN, N. I. et al. Antibiotiki 6(10):867 (1961).D4. ALIKHANIAN, N. I. et al. Antibiotiki 6(12):1055 (1961).D5. AMERICAN CYANAMID Co. Brit. Patent 863,418 (Jan. 25,

1961).D6. AMERICAN CYANAMID Co. Brit. Patent 863,419 (Jan. 25,

1961).D7. AMERICAN CYANAMID CO. Indian Patent 62958 (1961).D8. AMERICAN CYANAMID CO. Indian Patent 70120 (1961).D9. ANONYMOUS, Chem. Ind. (London), p. 1173 (1961).D10. ANONYMOUS, Med. Doswiadczalna Mikrobiol. 13(2):183

(1961).Dll. ANONYMOUS. New Scientist 288:815 (1961).D12. ANZAI, K. et al. J. Antibiotics (Tokyo) Ser. A 14:340 (1961).D13. ARCAMONE, F. et al. Giorn. Microbiol. 9:83 (1961).D14. ASHESHOV, I. N., AND J. J. GORDON. Biochem. J. 81:101

(1961).D15. BALDACCI, E. Advan. Appl. Microbiol. 3:257 (1961).D16. BALL, S. (Glaxo Laboratories.) Can. Patent 613,154 (Jan.

17, 1961).D17. BAMFORD, P. C. B. et al. Brit. Mycol. Soc. Trans. 44:354

(1961).D18. BATCHELOR, F. R. et al. Proc. Roy. Soc. (London) Ser. B

154:478 (1961).D19. ,bid. 154:514 (1961).D20. ibid. 154:522 (1961).D21. BECK, D., AND G. M. SHULL (Chas. Pfizer and Co., Inc.)

U.S. Patent 2,970,087 (Jan. 31, 1961).D22. BECKER, Z. E. et al. Antibiotiki 6(2):108 (1961).D23. BEECHAM RESEARCH LABORATORIES, LTD. Brit. Patent

870,396 (April 26, 1961).D24. ibid. 873,244 (May 31, 1961).D25. BEECHAM RESEARCH LABORATORIES, LTD. Indian Patent

70550 (1961).D26. BELOUSOVA, I. I., AND L. A. POPOVA, Antibiotiki 6(2):115

(1961).D27. ibid. 6(4):302 (1961).D28. BENZ, F. et al. (CIBA, Ltd.) Can. Patent 614,041 (Jan. 31,

1961).D29. BEPPU, T. et al. Ann. Meeting Agr. Chem. Soc. Japan,

Tokyo, April, 1961.D30. BERGY, M. E. et al. Antibiot. Chemotherapy 11:661 (1961).D31. BESSELL, C. J. et al. (Glaxo Labs.) U.S. Patent 3,013,947

(Dec. 19, 1961).D32. BHUYAN, B. K. et al. Appl. Microbiol. 9:85 (1961).D33. BIOCHEMIE G. M. B. H. Brit. Patent 864,134 (Feb. 1, 1961).D34. BOOTHROYD, B. Biochem. J. 80:34 (1961).D35. BOYD, A. N. Mfg. Chemist 32:318 (1961).D36. ibid. 32:505 (1961).D37. BRANDL, E. et al. Rend. Ist. Super. Sanita 24:205 (1961).D38. ibid. 24:222 (1961).

D39. BRINBERG, S. L., AND 0. Z. GRABORSKAYA. Antibiotiki6(3):203 (1961).

D40. BRISTOL LABORATORIES, INC. Indian Patent 69497 (1961).D41. BU'LOCK, J. D. Advan. Appl. Microbiol. 3:293 (1961).D42. CHAS. PFIZER AND CO., INC. Brit. Patent 862,685 (Jan. 18,

1961).D43. ibid. 866,600 (March 8, 1961).D44. CHAS. PFIZER AND CO., INC. Indian Patent 70347 (1961).D45. CHATURBHUJ, K. et al. Hindustan Antibiot. Bull. 3:144

(1961).D46. CHERTOW, B. (Bristol-Myers Co.) U.S. Patent 2,970,946

(Feb. 7, 1961).D47. CIBA, LTD. Brit. Patent 868,972 (April 6, 1961).D48. ibid. 876,096 (July 12, 1961).D49. CIBA, LTD. Indian Patent 67507 (1961).D50. Tbhd. 67961 (1961).D51. ibid. 68053 (1961).D52. ibid. 68654 (1961).D53. COLE, M., AND G. N. ROLINSON. Proc. Roy. Soc. (London)

Ser. B 154:490 (1961).D54. CRAVER, R., AND G. GIOLITTI. (Montecatini.) Can. Patent

618,931 (April 25, 1961).D55. DAS GUPTA, S. K. et al. Hindustan Antibiot. Bull. 3:3

(1961).D56. DONOVICK, R. et al. (Olin Matheison Chemical Corp.) U.S.

Patent 2,990,325 (June 27, 1961).D57. DOYLE, F. P. Mfg. Chemist 32:533 (1961).D58. EGEBERG, M. C. et al. Science 134:472 (1961).D59. EJIMENKO, 0. M. et al. Antibiotiki 6(3):215 (1961).D60. ERICKSON, R. C., AND R. E. BENNETT. Bacteriol. Proc.,

p. 65 (1961).D61. FARBENFABRIKEN BAYER A. G. Brit. Patent 864,814 (Feb.

8, 1961).D62. FUKUMOTO, J. et al. Japan. Patent 1149 (1961).D63. GADO, I. et al. Acta Microbiol. Acad. Sci. Hung. 8:291 (1961).D64. GAEUMANN, E., AND F. BENZ. (CIBA) Can. Patent 616,007

(March 7, 1961).D65. GAEUMANN, E., et al. (CIBA) Can. Patent 628,006 (Sept.

26, 1961).D66. ibid. 633,591 (Dec. 26, 1961).D67. GAEUMANN, E., AND V. PRELOG. (CIBA) Can. Patent

613,953 (Feb. 7, 1961).D68. GAEUMANN, E., AND W. VOSER. (CIBA) Can. Patent 616,010

(March 7, 1961).D69. GATTANI, M. L. Can. Patent 630,914 (Nov. 14, 1961).D70. GATTANI, M. L. U.S. Patent 2,990,330 (June 20, 1961).D71. GHIONE, M. et al. Giorn. Microbiol. 9:73 (1961).D72. GHOSH, D., AND B. N. GANGULI. Appl. Microbiol. 9:252

(1961).D73. GHOSH, D., AND P. S. BARKAR. Hindustan Antibiot. Bull.

3:85 (1961).D74. GHOSH, D., AND V. L. VINZE. Hindustan Antibiot. Bull.

3:110 (1961).D75. GLAXO LABORATORIES, LTD. Brit. Patent 868,958 (April 6,

1961).D76. ibid. 875,701 (July 5, 1961).D77. GLAXO LABORATORIES, LTD. Indian Patent 70825 (1961).D78. ibid. 71261 (1961).D79. GOLYAKOV, P. N. Antibiotiki 6(4):287 (1961).D80. GORSKAYA, S. V., AND V. A. SERVERIN. Antibiotiki 6(3):210

(1961).D81. HARRIS, D. A. et al. (Merck & Co., Inc.) Can. Patent

627,541 (Sept. 19, 1961).D82. HATA, F. et al. Japan. Patent 12198 (1961).D83. HESSELTINE, C. W. et al. Bacteriol. Proc., p. 65 (1961).D84. HINDUSTAN ANTIBIOTICS, LTD. Indian Patent 70614 (1961).

298 APPL. M9ICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 27: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

D85. HOEKSEMA, H., AND C. G. SMITH. Progr. Ind. Microbiol.3:93 (1961).

D86. ISHIDA N., AND M. RIKIMARU. Meeting Japan AntibioticsRes. Assoc., Tokyo, July, 1961.

D87. ISONO, K. et al. Ann. Meeting Agr. Chem. Soc. Japan,Tokyo, April, 1961.

D88. IVANITSKAYA, L. P. et al. Antibiotiki 6(5):393 (1961).D89. JAN, Z. et al. Biologia 16:53 (1961).D90. JAN, Z., AND P. LIBUSE. Biologia 16:623 (1961).D91. KAMADA, H. et al. (Kyowa Hakko Kagyo.) Can. Patent

626,856 (Sept. 5, 1961).D92. KATAGIRI, K. et al. Japan. Patent 8697 (1961).D93. KATAGIRI, K. et al. Japan. Patent 9150 (1961).D94. KATZ, E., L. H. PUGH. Appl. Microbiol. 9:263 (1961).D95. KLITE, P. D., AND G. R. GALE. Antibiot. Chemotherapy

11:256 (1961).D96. KNOX, R. Nature 192:492 (1961).D97. KUROYA, M. et al. Japan. Patent 4598 (1961).D98. LABORATOIRES FRANCAIS DE CHEMIOTHERAPIE. Brit. Patent

876,639 (July 19, 1961).D99. LEES, K. A. et al. (Glaxo Lab.) Can. Patent 613,149 (Jan.

24, 1961).D100. LEPETIT S.p.A. Brit. Patent 877,732 (August 2, 1961).D101. LEPETIT, S.p.A. Indian Patent 68713 (1961).D102. LEVITOV, M. M. et al. Antibiotiki 6(7):575 (1961).D103. ibid. 6(12):1058 (1961).D104. LEVITOV, M. M. et al. Med. Prom. SSSR 15:12 (1961).D105. LOMAKINA, N. N. Antibiotiki 6(7):609 (1961).D106. MAcDONALD, J. C. J. Biol. Chem. 236:512 (1961).D107. MAKAREVICH, V. G., AND T. N. LAZNIKOVA. Antibiotiki

6(4):308 (196a).D108. ibid. 6(11):994 (1961).D109. MARGALITH, P., AND H. PAGANI. Appl. Microbiol. 9:320

(1961).D110. ibid. 9:325 (1961).Dlll. MARGALITH, P., AND P. SENSI. (Lepetit S.p.A.) U.S. Patent

2,988,490 (June 13, 1961).D112. MARSH, W. S. et al. (Chas. Pfizer and Co., Inc.) Can.

Patent 617,982 (April 11, 1961).D113. MARSH, W. S., AND J. B. ROUTIEN. (Chas. Pfizer and Co.,

Inc.) Can. Patent 617,993 (April 11, 1961).D114. MASON, D. J. et al. Antibiot. Chemotherapy 11:118 (1961).D115. MCCORMICK, J. R. D. et al. (American Cyanamid Co.)

U.S. Patent 2,970,947 (Feb. 7, 1961).D116. ibid. 2,998,352 (Aug. 22, 1961).D117. MCCORMICK, J. R., AND V. HIRSCH. (American Cyanamid

Co.) Can. Patent 616,818 (March 21, 1961).D118. MCCORMICK, M. H., AND J. M. MCGUIRE (Eli Lilly and Co.)

Can. Patent 622,264 (June 20, 1961).D119. McGUIRE, J. M. et al. Antibiot. Chemotherapy 11:320

(1961).D120. MCVEIGH, I., AND C. R. REYES. Antibiot. Chemotherapy

11:312 (1961).D121. MILLER, P. A. et al. (American Cyanamid Co.) U.S. Patent

2,987,449 (June 6, 1961).D122. MINDLIN, S. Z. et al. Appl. Microbiol. 9:349 (1961).D123. MURASE, M. et al. J. Antibiotics (Tokyo) Ser. A 14:113

(1961).D124. MUSILEK, V., AND V. SEVCIK. Antibiotiki 6(10):887 (1961).D125. NAKAMURA, G. J. Antibiotics (Tokyo) Ser. A 14:90 (1961).D126. NAKAMURA, S. et al. J. Antibiotics (Tokyo) Ser. A 14:103

(1961).D127. NINET, L. et al. U.S. Patent 3,000,785 (Sept. 19, 1961).D128. NISHIMURA, H. et al. J. Antibiotics (Tokyo) Ser. A 14:255

(1961).D129. OHTANI, S. et al. Japan. Patent 11297 (1961).D130. OKA, Y. et al. Ann. Rept. Takeda Res. Lab. 20:207 (1961).

D131. OKANISHI, A. et al. Meeting Japan Antibiot. Res. Assoc.Tokyo, Sept., 1961.

D132. OLIVER, T. J. et al. U.S. Patent 2,972,569 (Feb. 21, 1961).D133. ORLOVA, N. V. Mikrobiologiya 30(4):710 (1961).D134. OSTROWSKA-KRYSIAK, B. et al. Med. Doswiadczalna Mikro-

biol. 13(2): 159 (1961).D135. PARKE, DAVIS Co. Brit. Patent 875,011 (June 28, 1961).D136. PARKE, DAVIS Co. Indian Patent 70440 (1961).D137. PASZKIEWICZ, A. et al. Med. Doswiadczalna Mikrobiol.

13(4):377 (1961).D138. PERLMAN, D. et al. J. Am. Chem. Soc. 83:4481 (1961).D139. PERRY, J. J. Bacteriol. Proc., p. 65 (1961).D140. PERRY, J. J. Can. J. Microbiol. 7:777 (1961).D141. PETROVA, E. B. et al. Antibiotiki 6(6):492 (1961).D142. PHILIP, J. E., AND J. R. SCHENK. (Abbott Laboratories.)

Can. Patent 611,899 (Jan. 3, 1961).D143. PHILIP, J. E., AND J. R. SCHENK (Abbott Laboratories)

U.S. Patent 2,990,329 (June 27, 1961).D144. ibid. 3,006,813 (Oct. 24, 1961).D145. PLATT, T. B. (Olin Mathieson Chemical Corp.) U.S. Patent

2,982,698 (May 2, 1961).D146. POPOVA, L. A. et al. Antibiotiki 6(11):989 (1961).D147. PRELOG, V. et al. (CIBA) Can. Patent 614,459 (Feb. 7, 1961).D148. PRELOG, V., AND E. GAEUMANN (CIBA) Can. Patent 629,678

(Oct. 24, 1961).D149. RHODES, A. et al. Biochem. J. 81:28 (1961).D150. RHODES, A. et al. Nature 192:952 (1961).D151. ROLINSON, G. N. et al. U.S. Patent 3,014,845 (Dec. 26, 1961).D152. ibid. 3,014,846 (Dec. 26, 1961).D153. SAITOH, R. et al. Japan. Patent 2149 (1961).D154. SAKAGAMI, Y. et al. Ann. Meeting Agr. Chem. Soc. Japan,

Tokyo, April, 1961.D155. SANTORO, T., AND L. E. CASIDA, JR. Bacteriol. Proc.,

p. 64 (1961).D156. SCHERING A. G. German Patent 1,109,836 (July 29, 1961).D157. SEGEL, I. H., AND M. J. JOHNSON. J. Bacteriol. 81:91 (1961).D158. SEN, G. et al. Hindustan Antibiot. Bull. 3:105 (1961).D159. SEN, S. R., AND J. D. ADHIA. Hindustan Antibiot. Bull.

4:44 (1961).D160. SENSI, P. et al. Farmaco (Pavia) Ed. Sci. 16:165 (1961).D161. SERCHI, G., AND L. SANCIO-TULUI. Chimica 11:589 (1961).D162. SGARZI, A. et al. Antibiot. Chemotherapy 11:97 (1961).D163. SHIBATA, M. et al. Meeting Japan Antibiot. Res. Assoc.,

Tokyo, Sept., 1961.D164. SILAEV, A. B. Antibiotiki 6(10):871 (1961).D165. SOBIN, B. A. (Chas. Pfizer & Co. Inc.) Can. Patent 621,823

(June 13, 1961).D166. SOCIfTk ANONYME OLETTA. French Patent 1,252,078 (Dec.

19, 1960).D167. SOCIETE DES USINES CHIMIQUES RH6NE-POULENC. Brit.

Patent 872,261 (May 17, 1961).D168. SOCIPTP DES USINES CHIMIQUES RH6NE-POULENC. French

Patent 1,259,976 (March 27, 1961).D169. ibid. 1,259,981 (March 17, 1961).D170. ibid. 1,259,983 (March 27, 1961).D171. ibid. 1,262,571 (April 24, 1961).D172. SOCIETA FARMACEUTICI ITALIA. Brit. Patent 872,734 (May

25, 1961).D173. ibid. 876,635 (July 19, 1961).D174. SOMERSON, N. L. Arch. Biochem. Biophys. 93:238 (1961).D175. STARK, W. M., AND R. L. SMITH. Progr. Ind. Microbiol.

3:212 (1961).D176. STURGEN, N. O., AND L. E. CASIDA, JR. Bacteriol. Proc.,

P. 64 (1961).D177. SUI-TSZIN. Antibiotiki 6(3) :206 (1961).D178. SUMIK1, Y., AND H. UMEZAWA. Japan. Patent 10698 (1961).D179. SUMINA, I. et al. Ann. Rept. Takeda Res. Lab. 20:53 (1961).

299VOL. III 1.963

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 28: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

D180. SZUMSKI, S. A. (American Cyanamid Co.) U.S. Patent3,012,946 (Dec. 12, 1961).

D181. TAGUCHI, H., AND K. YOSHIKAWA. J. Ferment. Technol.39:44 (1961).

D182. TAKAHASHI, S. J. Antibiotics (Tokyo) Ser. B. 14:49 (1961).D183. TAKEDA PHARMACEUTICAL INDUSTRIES, INC. Brit. Patent

873,893 (June 14, 1961).D184. TANNER, F. W. et al. (Chas. Pfizer and Co.) Can. Patent

613,257 (Jan. 24, 1961).D185. ibid. 619,094 (April 25, 1961).D186. TATSUOKA, S. et al. J. Antibiotics (Tokyo) Ser. A 14:39

(1961).D187. THE DISTILLERS CO., LTD. Indian Patent 69811 (1961).D188. TOROPOVA, E. G. Antibiotiki 6(2):105 (1961).D189. TREIBS, W., AND K. ECKARDT. Naturwissenschaften 48:430

(1961).D190. TYE, M. et al. Med. Doswiadczalna Mikrobiol. 13(3):285

(1961).D191. UMEZAWA, H. et al. Indian Patent 65958 (1961).D192. UMEZAWA, H. et al. Japan. Patent 8695 (1961).D193. ibid. 18098 (1961).D194. VANVUUREN, P. J. et al. Arch. Biochem. Biophys. 95:251

(1961).D195. VINZE; V. L., AND D. GHOSH. Hindustan Antibiot. Bull.

4:37 (1961).D196. WAKSMAN, S. A., AND H. A. LECHEVALIER (Rutgers Re-

search and Educational Foundation) U.S. Patent2,992,162 (July 11, 1961).

D197. WEINDLING, R. (American Cyanamid Co.) U.S. Patent2,985,564 (May 23, 1961).

D198. WOOLDRIDGE, W. E. Can. Patent 624,441 (Aug. 1, 1962).D199. WOZNICKA, W. et al. Med. Doswiadczalna Mikrobiol.

13(1):47 (1961).D200. YAKIMOV, P. A., AND E. V. NESHATACRA. Antibiotiki 6(10):

891 (1961).D201. YAMAMOTO, K. et al. Japan. Patent 3649 (1961).D202. ZYGMUNDT, W. A. Appl. Microbiol. 9:502 (1961).D203. ZYGMUNDT, W. A. Bacteriol. Proc., p. 65 (1961).

VITAMINSEl. BECHER, E. et al. (Hoffmann-La Roche.) U.S. Patent

2,976,200 (March 21, 1961).E2. ibid. 2,976,221 (March 21, 1961).E3. ibid. 2,976,222 (March 21, 1961).E4. CIEGLER, A. et al. Bacteriol. Proc., p. 66 (1961).E5. CORDS, H. et al. (Olin Mathieson Chemical Corp.) U.S.

Patent 2,971,891 (Feb. 14, 1961).E6. DIMARCO, A. et al. (Societa Farmaceutici Italia.) Brit.

Patent 883,230 (Oct. 4, 1961).E7. EMANUILOV, I. Mikrobiologiya 30:308 (1961).E8. FARROW, W. M., AND B. TABENKIN. (Hoffmann-La Roche)

U.S. Patent 2,974,044 (Mar. 7, 1961).E9. HOFFMANN-La ROCHE. Brit. Patent 866,488 (Mar. 8, 1961).

EIO. ibid. 867,472 (Mar. 22, 1961).Eli. HOFFMANN-LA ROCHE. Indian Patent 69407 (1961).E12. ibid. 69907 (1961).E13. INTERNATIONAL HORMONES. Brit. Patent 875,400 (June 28,

1961).E14. KANZAKI, T. et al. J. Agr. Chem. Soc. Japan 35:338 (1961).E15. KARLSTROM, 0. et al. Arkiv Kemi 16:299 (1961).E16. KELEMEN, A., AND A. SIMON. Acta Microbiol. Acad. Sci.

Hung., 8:223 (1961).E17. ibid. 8:231 (1961).E18. ibid. 8:237 (1961).E19. KONOVA, I. V., AND A. I. BORISOVA. Mikrobiologiya 30:26

(1961).E20. LABORATOIRE ROGER BELLON. French Patent 1,260,813

(April 4, 1961).

E21. MASUDA, T. et al. (Takeda Pharmaceutical Industry) U.S.Patent 2,973,305 (Feb. 28, 1961).

E22. McDANIEL, L. E. (Merck and Co., Inc.) U.S. Patent3,000,793 (Sept. 19, 1961).

E23. MIESCHER, G. M. (Commercial Solvents Corp.) U.S.Patent 3,001,912 (Sept. 26, 1961).

E24. MILLER, I. M., AND F. M. ROBINSON (Merck and Co.,Inc.) Can. Patent 625,554 (Aug. 15, 1961).

E25. MUSILKOVA, M. Folia Microbiol. (Prague) 6:175 (1961).E26. PERLMAN, D. (Olin Mathieson Chemical Corp.) U.S. Patent

2,980,591 (April 18, 1961).E27. ibid. 2,995,498 (Aug. 8, 1961).E28. SHUKLA, J. P., AND K. A. PRABHU J. SCi. Ind. Res. (India)

20C:40 (1961).E29. Soc. FARMACEUTICI ITALIA. Indian Patent 68,510 (1961).E30. SUDARSKY, J., AND R. A. FISCHER (Bioferin Corp.) U.S.

Patent 2,984,601 (May 16, 1961).E31. TAKAHASHI, T. et al. J. Agr. Chem. Soc. Japan 35:51 (1961).E32. ibid. Japan. Patent 21,500 (1961).E33. UCLAF. Brit. Patent 867,537 (March 22, 1961).E34. ibid. French Patent 1,264,016 (May 8, 1961).E35. VOROBlEVA, L. S. Dokl. Akad. Nauk SSSR 138:450 (1961).

STEROIDS

Fl. ALLEN, W. S., AND L. I. FELDMAN. (American CyanamidCo.) U.S. Patent 3,010,877 (Nov. 28, 1961).

F2. ASAI, T. et al. J. Agr. Chem. Soc. Japan 35:122 (1961).F3. BADIA, D. J., AND J. L. SARDINAS. (Chas. Pfizer and Co.,

Inc.) U.S. Patent 3,010,876 (Nov. 28, 1961).F4. BARMENKOV, A. S. et al. Med. Prom. SSSR 15(3):39 (1961).F5. BLANK, R. H. et al. (American Cyanamid Co.) U.S.

Patent 2,982,695 (May 2, 1961).F6. BROWN, W. E. et al. Division of Microbial Chemistry and

Technology, 140th Meeting Am. Chem. Soc., Chicago,Sept., 1961.

F7. CAPEK,A.,AND O.HAN6. Folia Microbiol. (Prague) 6:237 (1961).F8. CARVAJAL, F. (Schering Corp.) U.S. Patent 2,985,563

(May 23, 1961).F9. CHAS. PFIZER AND CO., INC. Indian Patent 67019 (1961).

FIO. DODSON, R. M., AND R. D. MUIR. J. Am. Chem. Soc. 83:4627(1961).

Fil. ibid. 83:4631.F12. DULANEY, E. L., AND W. J. McALEER. (Merck and Co.,

Inc.) U.S. Patent 2,970,085 (Jan. 31, 1961).F13. EROSHIN, A. M., AND N. A. KRASILNIKOV. I)okl. Akad. Nauk

SSSR 137:968 (1961).F14. FELDMAN, L. I. et al. (American Cyanamid Co.) U.S.

Patent 2,962,423 (Nov. 29, 1960).F15. FONKEN, G. S., AND H. C. MURRAY (The Upjolhn Co.) U.S.

Patent 2,967,803 (Jan. 10, 1961).F16. ibi.dI. 2,981,659 (April 25, 1961).F17. G. D. SEARLE CO., INC. Brit. Patent 862,701 (Jan. 18, 1961).F18. GOODMAN, J. J., AND L. L. SMITH. Appl. Microbiol. 9:372

(1961).F19. GOODMAN, J. J., AND M. MATRISHIN (American Cyanamid

Co.) U.S. Patent 2,982,693 (April 25, 1961).F20. GREENSPAN, G., AND C. P. SCHAFFNER (Rutgers Research

and Education Foundation) U.S. Patent 2,968,595 (Jan.17, 1961).

F21. HANC, 0. et al. Folia Microbiol. (Prague) 6:392 (1961).F21a. HOLMLUND, C. E., et al. J. Am. Chem. Soc. 81:2586 (1961).F22. IIZUKA, H. et al. J. Gen. Appl. Microbiol. (Tokyo) 7:118

(1961).F23. ILAVSKY, J., AND H. L. HERZOG (Schering Corp.) U.S.

Patent 3,013,945 (Dec. 19, 1961).F24. ISONO, M., AND M. ABE. J. Agr. Chem. Soc. Japan 35:672

(1961).

300 APPL. MICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 29: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

FERMENTATION PROCESSES

F25. KITA, D. A. (Chas. Pfizer and Co., Inc.) U.S. Patent2,991,230 (July 4, 1961).

F25a. KITA, D. A. et al. Nature 190:627 (1961).F26. KONDO, E., AND E. MASUO. J. Gen. Appl. Microbiol. (Tokyo)

7:113 (1961).F27. LkBLER, L., AND F. SORM. Chem. Ind. (London), p. 1114.

(1961).F28. LASKIN, A. I. et al. (Olin Mathieson.) U.S. Patent 2,977,286

(Mar. 28, 1961).F29. LES LABORATOIRES FRANCAIS DE CHEMIOTHERAPIE. French

Patent 1,222,408 (June 9, 1961).F30. LINCOLN, F. H. et al. (The Upjohn Co.) Can. Patent 625,744

(Aug. 15, 1961).F31. MAGERLEIN, B. J. et al. Can. Patent 620,004 (May 9, 1961).F32. MCALEER, W. J., AND T. H. STOUDT (Merck and Co.,

Inc.) Can. Patent 624,000 (July 18, 1961).F33. MEISTER, P. D., AND H. C. MURRAY (The Upjohn Co.) U.S.

Patent 2,968,596 (Jan. 17, 1961).F34. MONIZ DE ARAGAO, R. Arquiv. Ferment. 3:21 (1961).F35. MURRAY, H. C., AND L. M. REINEKE. (The Upjohn Co.) U.S.

Patent 3,011,951 (Dec. 5, 1961).F36. MURRAY, H. C. et al. (The Upjohn Co.) U.S. Patent 2,992,972

(July 18, 1961).F37. NOZAKI, Y. Agr. Biol. Chem. 25:879 (1961).F38. OLIN MATHIESON CHEMICAL CORP. Indian Patent 67295.

(1961).F39. SHIRASAKA, M. Chem. Pharm. Bull. (Tokyo) 9:54 (1961).F40. ibid.9:152.F41. Shirasaka, M., AND M. OZAKI. J. Ferment. Assoc. Japan

19:389 (1961).F42. SHIRASAKA, M., AND M. TSURUTA. Chem. Pharm. Bull.

(Tokyo) 9:238 (1961).F43. SHIRASAKA, M. et al. J. Gen. Appl. Microbiol. (Tokyo) 7:341

(1961).F44. SOKOLOVA, L. V. et al. Med. Prom. SSSR 15(11):29 (1961).F45. STOUDT, T. H. et al. (Merck and Co., Inc.) U.S. Patent

2,982,694 (May 2, 1961).F46. TAUSK, M. Chem. Ind. (London), p. 1326 (1961).F47. TERUMICHI, J. (Takeda Pharmaceutical Industries.) U.S.

Patent 2,992,973 (July 18, 1961).F48. TITUS, E. Advan. Appl. Microbiol. 3:279 (1961).F49. TSUDA, T. et al. Japan. Patent 7024 (1961).F50. VALCAfI, V., AND E. ZANNINI. Gazz. Chim. Ital. 91:958

(1961).F51. WENDLER, N. L., AND D. TAUB. Can. Patent 620,197 (May

16, 1961).F52. WETTSTEIN, A., AND E. VISCHER. (CIBA Pharmaceutical

Products.) U.S. Patent 2,972,568 (Feb. 31, 1961).F53. WETTSTEIN, A. et al. (CIBA Pharmaceutical Products.)

U.S. Patent 2,969,304 (Jan. 24, 1961).F54. ibid., 2,969,305 (Jan. 24, 1961).F55. Wix, G., AND K. ALBRECHT. Acta Microbiol. Acad. Sci. Hung.

8:339 (1961).F56. ibid. J. Biochem. Microbiol. Technol. Eng. 3:325 (1961).

ENZYMES

Gi. ABE, S. et al. Japan. Patent 8691 (1961).G2. ARMBRUSTER, F. C. (Corn Products Co.) U.S. Patent

3,012,944 (Dec. 12, 1961).G3. BILLIMORIA, M. H., AND J. V. BHAT. J. Indian Inst. Sci.

43(1):16 (1961).G4. DWORSCHACK, R. G., AND L. J. WICKERHAM. Appl. Microbiol.

9:291 (1961).G5. ENDOH, A. Regional Meeting, Agr. Chem. Soc. Japan,

Niigata (Sept., 1961).G6. FARBENFABRIKEN BAYER A. G. German Patent 1,114,766

(Sept. 24, 1959).

G7. FELDMAN, L. 1. et al. Div. Microbial Chem. Technol., 140thMeeting Am. Chem. Soc. Chicago, Sept., 1961.

G8. FIELDS, M. L. et al. Appl. Microbiol. 9:10 (1961).G9. HUANG, H. T. Appl. Microbiol. 9:419 (1961).G10. IKEMIYA, M. et al. J. Ferment. Technol. (Japan) 39:332

(1961).Gll. IWAI, M. et al. Regional Meeting Agr. Chem. Soc. Japan,

Gifu (May, 1961).G12. KIMURA, K. et al. Symp. Amino Acids, Osaka, Japan (Oct.,

1961).G13. KUJAWSKI, M., AND K. PILLER. Przemysl Spozywczy 15(4):

12 (1961).G14. LEWIS, J. C. (USDA.) U.S. Patent 3,005,757 (Oct. 24, 1961).G15. LEWIS, J. C., AND P. A. THOMPSON. Appl. Microbiol. 9:205

(1961).G16. MALKOV, A. M., AND V. E. DEEVA. Mikrobiologiya 30:229

(1961).G17 MATSUI, H. et al. Bull. Fac. Eng. Hiroshima Univ. 10:99

(1961).G18. MATSUSHIMA, K., AND K. SHIMADA. Regional Meeting Agr.

Chem. Soc. Japan, Nagoya (Dec. 1961).G19. McDONALD, I. J. Can. J. Microbiol. 7:111 (1961).G20. MILL, P. J., AND R. TUTTOBELLO. Biochem. J. 79:57 (1961).G21. MINODA, Y. et al. Ann. Meeting Agr. Chem. Soc. Japan,

Fukuoka (April, 1961).G22. MIURA, Y. Japan. Patent 18088 (1961).G23. PONTREMOLI, S. et al. Proc. Nat]. Acad. Sci. U.S. 47:1942

(1961).G24. RICHOU, R. et al. Compt. Rend. 253:339 (1961).G25. RZEDOWSKI, W. Przemysl Spozywczy 15(11):18 (1961).G26. STJERNHOLM, R., AND H. G. WOOD. Proc. Natl. Acad. Sci.

U.S. 47:303 (1961).G27. TABATA, S., AND G. TERUI. Ann. Meeting Agr. Chem. Soc.

Japan, Tokyo (April, 1961).G28. TAKIGUCHI, Y. Regional Meeting, Agr. Chem. Soc. Japan,

Nagoya (Dec., 1961).G29. TERUI, G. et al. Ann. Meeting Soc. Ferment. Technol.

Japan, Osaka (Nov., 1961).G30. TRAININA, T. I. et al. Microbiologiya 30:540 (1961).G31. TSURU, D., AND J. FUKOMOTO. Regional Meeting Agr.

Chem. Soc. Tokyo, Japan (April, 1961).G32. TUTTOBELLO, R., AND P. J. MILL. Biochem. J. 79:51 (1961).G33. UCHINO, F., AND S. DoI. Ann. Meeting Agr. Chem. Soc.

Japan, Fukuoka (April, 1961).G34. UNDERKOFLER, L. A. et al. Develop. Ind. Microbiol. 2:171

(1961).G35. WARREN, G. H., AND J. GRAY. Nature 192:755 (1961).G36. YAMADA, K. U.S. Patent 2,976,219 (March 21, 1961).G37. YAMAMOTO, K. Agr. Biol. Chem. 25:453 (1961).

CELLS AND TISSUE

Hi. ARIGA, K. Japan. Patent 17381 (1961).H2. BERAN, K. et al. Folia Microbiol. (Prague) 6:86 (1961).H3. BIOCHEMIE G.M.B.H. British Patent 867,732 (1961).H4. BRYANT, J. C. et al. Div. Microbial Chem. Technol. 140th

Meeting Am. Chem. Soc., Chicago (Sept., 1961).H5. BUNKER, H. J. Progr. Ind. Microbiol. 3:1 (1961).H6. BURGER, M., AND L. HEJMOVX. Folia Microbiol. (Prague)

6:80 (1961).H7. DENISON, F. W., JR. et al. Div. Microbial Chem. Technol.

140th Meeting Am. Chem. Soc., Chicago (Sept. 1961).H8. DISTILLERS Co., LTD. Indian Patent 69353 (1961).H9. ibid. 69391 (1961).HIO. EMERY, J. B. (Dow Chem. Co.) U.S. Patent 3,000,788

(Sept. 19, 1961).Hll. FANTI, 0. D. et al. Rev. de Invest. Agr. 15:157 (1961).H12. FREDERICKSON, A. G. et al. ARS J., p. 1429 (1961).

VOL. 11) 1963 301

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 30: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

DEINDOERFER, MATELES, AND HUMPHREY

H13. FREEMAN, R. R. J. Biochem. Microbiol. Technol. Eng. 3:339(1961).

H14. FRITZLER, B. Zucker 14:382 (1961).H15. FtSSER, H. et al. Brauwissenschaft 15:1 (1962).H16. GILBERT, F. A. Mycologia 52:201 (1960).H17. HAAS, H. F., AND D. CRAWFORD. M. Div. Microbial Chem.

Technol., 140th Meeting Am. Chem. Soc., Chicago (Sept.,1961).

H18. HEFE-PATENT G.M.B.H. German Patent 1,107,172 (Oct. 10,1959).

H19. HOLME, T., AND L. EDEBO. Acta Pathol. Microbiol. Scand.51:164 (1961).

H20. HUNTER, E. O., JR., AND I. MCVEIGH. Am. J. Botany 48:179(1961).

H21. JOHNSON, I. S. et al. Div. Microbial Chem. Technol., 140thMeeting Am. Chem. Soc., Chicago (Sept., 1961).

H22. LEFRANCOIS, L. Gidrolizn. i Lesokhim. Prom. 14(7) :14(1961).

H23. LITCHFIELD, J. H. et al. Div. Microbial Chem. Technol.,140th Meeting Am. Chem. Soc., Chicago (Sept., 1961).

H24. LITTMAN, M. L. (Media, Inc.) U.S. Patent 3,010,879 (Nov.18, 1961).

H25. LUTZE-BIRK, A. Przemysl Ferment. 5(1-3):19 (1961).H26. McLAUGHLIN, J. J. A. et al. Ann. N.Y. Acad. Sci. 90:837

(1960).H27. MEGNA, J. C. et al. Div. Microbial Chem. Technol., 140th

Meeting Am. Chem. Soc., Chicago (Sept., 1961).H28. MERCHANT, D. J., AND C. R. EIDAM. Advan. Appl. Micro-

biol. 3:109 (1961).H29. MIKA, L. A., AND J. B. PIRSCH. Appl. Microbiol. 9:545 (1961).H30. MYERS, J., Div. Microbial Chem. Technol., 140th Meeting

Am. Chem. Soc., Chicago (Sept., 1961).H31. OKER-BLOM, N. Acta Pathol. Microbiol. Scand. 5(Suppl.

144):15 (1961).H32. PATENTAUSWERTUNG VOGELBUSCH G.M.B.H. Brit. Patent

822,476 (1961).H33. PINEVICH, V. V. et al. Vestn. Leningr. Univ. Ser. Biol. 9:16

(1961).H34. PYCHOVA, S. V. Spirt. Prom. 27(1):5 (1961).H35. RETOVSKY, R., AND I. KLkATERSKi. Folia Microbiol.

(Prague) 6:127 (1961).H36. SALZMAN, N. P. Science 133:1559 (1961).H37. STEWARD, F. C. Div. Microbial Chem. Technol., 140th Meet-

ing Am. Chem. Soc., Chicago (Sept., 1961).H38. SCHINDLER, R. Experientia 17:97 (1961).H39. Svensk Kem. Tidskr. 73:540 (1961).H40. TULECKE, W. Div. Microbial Chem. Technol., 140th Meeting

Am. Chem. Soc., Chicago (Sept., 1961).H41. TYTELL, A. A., AND R. E. NEUMAN. Div. Microbial Chem.

Technol., 140th Meeting Am. Chem. Soc., Chicago (Sept.1961).

H42. VASKO, T. P. Spirt. Prom. 27(2):34 (1961).H43. WASSERMAN, A. E. et al. J. Dairy Sci. 44:387 (1961).H44. WASSERMAN, A. E. et al. Water Polution Control Federa-

tion J. 33:1090 (1961).H45. ZELENKA, S., AND R. CEJKOVX. Staerke 13:240 (1961).

POLYMERS

Jl. BEHRENS, U. et al. J. Biochem. Microbiol. Technol. Eng.3:199 (1961).

J2. BOURNE, E. J. et al. Biochem. J. 79:549 (1961).J3. CADMUS, M. C. et al. Bacteriol. Proc., p. 67 (1961).J4. DAVIS, R. J., AND C. E. CLAPP. Appl. Microbiol. 9:519 (1961).J5. DIETRICH, K. R. Staerke 14:10 (1962).J6. FARBWERKE HOECHST A. G. German Patent 1,089,711 (Feb.

2, 1957).J7. ibid. 1,096,850 (Jan. 1, 1961).

J8. GINTEROVk, A. et al. Chem. Zvesti 15:922 (1962).J9. GORIN, P. A. J., AND J. F. T. SPENCER. Can. J. Chem. 39:2274

(1961).J10. ibid. 39:2282 (1961).Jil. JEANES, A. et al. Arch. Biochem. Biophys. 92:343 (1961).J12. JEANES, A., AND J. H. SLONEKER. (USDA.) U.S. Patent

3,000,790 (Sept. 19, 1961).J13. KANIUGA, B., AND A. BLECHERT. Acta Microbiol. Polon.

10:109 (1961).J14. MAGEE, L. A., AND A. R. COLMER. J. Bacteriol. 81:800 (1961).J15. NOVAK, L. J., AND E. E. WITT. (Commonwealth Eng. Co.

of Ohio.) U.S. Patent 2,972,567 (Feb. 21, 1961).J16. OLBRICH, H. Branntweinwirtschaft 101:700 (1961).J17. ROGOVIN, S. P. et al. J. Biochem. Microbiol. Technol. Eng.

3:51 (1961).J18. SIDDIQUI, I. R., AND G. A. ADAMS. Can. J. Chem. 39:1683

(1961).J19. SLODKI, M. E. Div. Agr. Food Chem., 140th Meeting Am.

Chem. Soc., Chicago, Sept., 1961.J20. WARD, R. M. et al. Bacteriol. Proc., p. 66 (1961).J21. WARREN, G. H. (American Home Products Corp.) U.S.

Patent 2,975,104 (March 14, 1961).

GIBBERELLINS

Kl. BIRCH, A. J. et al. (Imperial Chemical Industries, Ltd.),U.S. Patent 2,977,285 (March 28, 1961).

K2. BORROW, A. et al. Can. J. Microbiol. 7:227 (1961).K3. CALAM, C. T., AND I. S. NIXON. (Imperial Chem. Indus-

tries, Ltd.) U.S. Patent 2,990,337 (June 27, 1961).K4. FUSKA, J. et al. Folia Microbiol. (Prague) 6:18 (1961).K5. IMSHENETSKII, A. A., AND 0. M. ULIANOVA. Dokl. Akad.

Nauk SSSR 138:1204 (1961).K6. KUHR, I. et al. Folia Microbiol. (Prague) 6:179 (1961).K7. PODOJIL, M. et al. Folia Microbiol. (Prague) 6:273 (1961).K8. SANCHEZ-MARROQUIN, A. 2nd Latin Am. Congr. Micro} io..,

San Jose, Costa Rica (1961).K9. SANCHEZ-MARROQUIN, A. 2nd Latin Am. Cong: Microbiol.,

San Jose, Costa Rica (1961).

HYDROCARBONS

Li. ARNAUDI, C., AND V. TRECCANI. Sci. Rept. Ist. Super. Sanita1:378 (1961).

L2. BOGDANOVA, V. M. Mikrobiologiya 30:299 (1961).L3. CROWDEN, R. K., AND B. J. RALPH. Australian J. Chem.

14:475 (1961).L4. DAVIS, J. B., AND R. L. RAYMOND. Bacteriol. Proc., p. 55

(1961).L5. DAVIS, J. B., AND R. L. RAYMOND. Appl. Microbiol. 9:383

(1961).L6. DOSTXLEK, M. Folia Microbiol. (Prague) 6:10 (1961).L7. HERINGA, J. W. et al. Antonie van Leeuwenhoek J. Micro-

biol. Serol. 27:51 (1961).L8. ISHIKURA, I., AND J. W. FOSTER. Nature 192:892 (1961).L9. KALLIO, R. E. et al. Bacteriol. Proc., p. 43 (1961).

L10. KIRSHENBAUM, I. (Esso Research and Engineering Co.)U.S. Patent 2,975,103 (Mar. 14, 1961).

Lii. LINDAY, E. M., AND M. B. DONALD. J. Biochem. Microbiol.Technol. Eng. 3:219 (1961).

L12. MARR, E. K., AND R. W. STONE. J. Bacteriol. 81:425 (1961).L13. NELSON, J. F. et al. Develop. Ind. Microbiol. 2:93 (1961).L14. PEEL, D., AND J. R. QUAYLE. Biochem. J. 81:465 (1961).L15. PRINCE, A. E. Develop. Ind. Microbiol. 2:197 (1961).L16. RAYMOND, R. L. Develop. Ind. Microbiol. 2:23 (1961).L17. ROGOFF, M. H. Advan. Appl. Microbiol. 3:193 (1961).L18. SENEZ, J. C., AND E. AZOULAY. Bacteriol. Proc., p. 43 (1961).L19. SENEZ, J. C., AND E. AZOULAY. Biochim. Biophys. Acta

47:307 (1961).

302 APPL. MICROBIOL.

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from

Page 31: Microbiological Process Report · Microbiological Process Report 1961 Fermentation Process Review FRED H. DEINDOERFER, RICHARD I. MATELES, AND ARTHUR E. HUMPHREY Industrial Biochemicals,

VFERMENTATION PROCESSES

L20. TELEGINA, Z. P. Mikrobiologiya 30:912 (1961).L21. THIJSSE, G. J. E., AND A. C. VAN DER LINDEN. Antonie van

Leeuwenhoek J. Microbiol. Serol. 27:171 (1961).L22. VAN DER LINDEN, A. C., AND G. J. E. THIJSSE. Bacteriol.

Proc., p. 43 (1961).

ALKALOIDS

Ml. ARCAMONE, F. et al. Proc. Roy. Soc. (London) Ser. B 155:26(1961).

M2. ARCAMONE, F. et al. Nature 192:552 (1961).M3. BAXTER, R. M. et al. Chem. Ind. (London), p. 1453 (1961).M4. IizuKA, K. et al. Ann. Meeting Agr. Chem. Soc. Japan,

Fukuoka, April, 1961.M5. MEYERS, E., AND S. C. PAN. J. Bacteriol. 81:504 (1961).M6. TABER, W. A., AND L. C. VINING. Bacteriol. Proc., p. 66

(1961).i17. UCLAF. Belgian Patent 591,057 (Nov. 21, 1961).M8. DE WAART, C. Can. J. Microbiol. 7:883 (1961).M9. WEISENBORN, F., AND S. C. PAN. (Olin Mathieson Chemical

Corp.) U.S. Patent. 3,003,926 (Oct. 10, 1961).

MISCELLANEOUS

Ni. BERNAERTS, M. J., AND J. DELEY. Antonie van Leeuwen-hoek J. Microbiol. Serol. 27:247 (1961).

N2. BERTULLO, V. H., AND F. P. HETTICH. U.S. Patent 3,000,789(Sept. 19, 1961).

N3. BURGERS, S. G., AND L. B. WOOD. J. Sci. Food Agr. 12:326(1961).

N4. CULLIMORE, D. R., AND M. WOODBINE. Nature 190:1022(1961).

N5. FAULKNER, J. K., AND D. WOODCOCK. Chem. Ind. (London),p. 1366 (1961).

N6. FREKE, A. M., AND D. J. TATE. J. Biochem. Microbiol. Tech-nol. Eng. 3:29 (1961).

N7. GASCOIGNE, J. A. Chem. Ind. (London), p. 792 (1961).N8. GHOSE, T. K., AND S. K. BASU. Folia Microbiol. (Prague)

6:335 (1961).N9. GORIN, P. A. J. et al. Can. J. Chem. 39:846 (1961).NIO. HESSELTINE, C. W., AND K. SHIBASAKI. Appl. Microbiol.

9:515 (1961).Nll. KHAN, A. W., AND T. K. WALKER. Can. J. Microbiol. 7:895

(1961).N12. KINOSHITA, S. et al. (Kyowa Hakko Kogyo Co., Ltd.)

U.S. Patent 3,003,922 (Oct. 10, 1961).N13. KORTE, F., AND M. GOTO. Tetrahedron Letters 2:55 (1961).N14. SACKS, L. E., AND G. ALDERTON. J. Bacteriol. 82:331 (1961).N15. WASSERMAN, H. H. et al. J. Am. Chem. Soc. 83:4107 (1961).N16. WESTLAKE, D. W. S. et al. Nature 189:510 (1961).

VOL . 111963 303

on January 16, 2020 by guesthttp://aem

.asm.org/

Dow

nloaded from