microbial growth module 8

Upload: neo-mervyn-monaheng

Post on 14-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Microbial Growth Module 8

    1/94

    MICROBIAL GROWTH &

    GENETICS

  • 7/30/2019 Microbial Growth Module 8

    2/94

    GROWTH

    Increase in cellular constituents

  • 7/30/2019 Microbial Growth Module 8

    3/94

    Increase in size

    or

  • 7/30/2019 Microbial Growth Module 8

    4/94

    Increase in cell number

  • 7/30/2019 Microbial Growth Module 8

    5/94

    REPRODUCTION OF

    MICROBESAsexual

    Modes:Binary fission

    budding

    FragmentationFormation of conidiospores / sporangiospores

  • 7/30/2019 Microbial Growth Module 8

    6/94

    REPRODUCTION OF

    MICROBES Binary fission

    Bacteria

  • 7/30/2019 Microbial Growth Module 8

    7/94

    REPRODUCTION OF

    MICROBES Binary fission

    Paramecium

  • 7/30/2019 Microbial Growth Module 8

    8/94

    REPRODUCTION OF

    MICROBES Binary fission

    Giardia

  • 7/30/2019 Microbial Growth Module 8

    9/94

    REPRODUCTION OF

    MICROBES

  • 7/30/2019 Microbial Growth Module 8

    10/94

    REPRODUCTION OF

    MICROBES Binary fission

  • 7/30/2019 Microbial Growth Module 8

    11/94

    REPRODUCTION OF

    MICROBES

  • 7/30/2019 Microbial Growth Module 8

    12/94

    REPRODUCTION OF

    MICROBES Budding

    most commonly in

    yeasts

    small bud develops@ one end of cell

    bud develops intonew cell

  • 7/30/2019 Microbial Growth Module 8

    13/94

    REPRODUCTION OF

    MICROBES Budding

  • 7/30/2019 Microbial Growth Module 8

    14/94

    REPRODUCTION OF

    MICROBES Fragmentation

    occurs in

    filamentous speciesone filament small

    cells

  • 7/30/2019 Microbial Growth Module 8

    15/94

    REPRODUCTION OF

    MICROBES Fragmentation

  • 7/30/2019 Microbial Growth Module 8

    16/94

    REPRODUCTION OF

    MICROBES Conidiospores / sporangiospores

    filamentous species

  • 7/30/2019 Microbial Growth Module 8

    17/94

    REPRODUCTION OF

    MICROBES Conidiospores / sporangiospores

    sporangiahypha

  • 7/30/2019 Microbial Growth Module 8

    18/94

    REPRODUCTION OF

    MICROBES Conidiospores / sporangiospores

    Spores are enclosedin a sheath

  • 7/30/2019 Microbial Growth Module 8

    19/94

    POPULATION GROWTH

    Means of characterizing specie

    determine generation time

    different species have differentgeneration times

    Establish growth curve

  • 7/30/2019 Microbial Growth Module 8

    20/94

    POPULATION GROWTH How do we do this?

    Establish growth curve

    Why are we able to do this?

    Cell numbers increase by geometric progression

    i.e 1 21

    22

    23

    2n

    (n = no of generations)

  • 7/30/2019 Microbial Growth Module 8

    21/94

    POPULATION GROWTH

    Closed system (batch culture)

    Culture of microbes without removal of

    waste or replenishment of nutrients

  • 7/30/2019 Microbial Growth Module 8

    22/94

    POPULATION GROWTH Determination of generation time is done using

    a batch culture

    Growth curve

  • 7/30/2019 Microbial Growth Module 8

    23/94

    POPULATION GROWTH Lag phase:

    length varies

    age of inoculumtype of medium

    Time in min

    Log cell no.

    Young inoculum

    Old inoculum

  • 7/30/2019 Microbial Growth Module 8

    24/94

    POPULATION GROWTH Log phase / exponential:

    inc @constant rate

  • 7/30/2019 Microbial Growth Module 8

    25/94

    POPULATION GROWTH stationary phase:

    constant no of cellsmax cell no. 109 / ml

  • 7/30/2019 Microbial Growth Module 8

    26/94

    POPULATION GROWTH death phase: cell no. nutrients

    waste products

  • 7/30/2019 Microbial Growth Module 8

    27/94

    GENERATION TIME

    aka doubling time = g

    This is the length of time it takes for a

    population of cells to double in number.Need to determine 2 parameters before wecan determine g

    number of generations within a specifictime period

    the rate of growth (k)

  • 7/30/2019 Microbial Growth Module 8

    28/94

    GENERATION TIME

    Use exponentialphase

  • 7/30/2019 Microbial Growth Module 8

    29/94

    GENERATION TIME

    Need 2 time points on the exponential part of the graphT0 = 8 hours = 480 min Tt= 12 hours = 720 min

  • 7/30/2019 Microbial Growth Module 8

    30/94

    GENERATION TIME How many generations are produced between the 2 time

    points (i.e tt-t0)?Let No = initial cell no. @ T0 = 10 000Let Nt = cell no. @ Tt = 10 000 000

    Nt = N0 x 2n

    Log Nt = log N0 + n log 2

    log Nt - log N0n =log 2

  • 7/30/2019 Microbial Growth Module 8

    31/94

    GENERATION TIME log Nt - log N0

    n =log 2

    log 10 000 000 log 10 000n =

    log 2

    7 4 3n = = = 9.97 generations

    0.301 0.301

  • 7/30/2019 Microbial Growth Module 8

    32/94

    GENERATION TIME Next need to determine growth rate constant (k)i.e no of generations / unit time

    n 9.97 generations 9.97 generations

    k = = =t 720 - 480 min 240 min

    k = 0.0415 generations / min

  • 7/30/2019 Microbial Growth Module 8

    33/94

    GENERATION TIME Finally the generation time (g)

    1 1g = =

    k 0.0415 generations / min

    g = 24.09 min / generation

  • 7/30/2019 Microbial Growth Module 8

    34/94

    MEASURING GROWTH

    Determine

    cell numberor

    cell massor

    turbidity

  • 7/30/2019 Microbial Growth Module 8

    35/94

    CELL NUMBER

    Determine either

    total count (live and dead bacteria)or

    viable count (live bacteria only)

  • 7/30/2019 Microbial Growth Module 8

    36/94

    TOTAL COUNT

    for total count (live and dead bacteria) canuse

    a counting chamber electronic counter

  • 7/30/2019 Microbial Growth Module 8

    37/94

    TOTAL COUNT

    a counting chamber

    Improved neubauer

    Modified fuchsin

  • 7/30/2019 Microbial Growth Module 8

    38/94

    TOTAL COUNT

    a counting chamber

  • 7/30/2019 Microbial Growth Module 8

    39/94

    TOTAL COUNT

    a counting chamber

  • 7/30/2019 Microbial Growth Module 8

    40/94

    TOTAL COUNT

    a counting chamber

  • 7/30/2019 Microbial Growth Module 8

    41/94

    TOTAL COUNT

    Area: 1 mm2

    Area: 0.04 mm2

  • 7/30/2019 Microbial Growth Module 8

    42/94

    TOTAL COUNT

    Formula:counted cells x dilution factor

    Cells / ml =area counted x chamber depth

  • 7/30/2019 Microbial Growth Module 8

    43/94

    TOTAL COUNT

    a counting chamberAdvantages:

    QuickCheapEasy

    Disadvantages:Inaccurate small volume sampled

  • 7/30/2019 Microbial Growth Module 8

    44/94

    TOTAL COUNT

    Electronic counter

    Sample taken up via a probe

    Electrodes on either side of probeElectrical resistance increases when acell passes electrodes

  • 7/30/2019 Microbial Growth Module 8

    45/94

    TOTAL COUNT

    Electronic counterAdvantages:

    QuickEasy

    Disadvantages:

    probe cloggedExpensive

  • 7/30/2019 Microbial Growth Module 8

    46/94

    VIABLE COUNT Can use

    Spread / pour plates

    membrane filter counts

  • 7/30/2019 Microbial Growth Module 8

    47/94

    VIABLE COUNT Spread / pour plates

    make dilutions

  • 7/30/2019 Microbial Growth Module 8

    48/94

    VIABLE COUNT Spread / pour plates

    make dilutions

  • 7/30/2019 Microbial Growth Module 8

    49/94

    VIABLE COUNT Spread plate

    add dilution to ready made agar plate

  • 7/30/2019 Microbial Growth Module 8

    50/94

    VIABLE COUNT Spread plate

    spread dilution across the agar surfaceincubate

  • 7/30/2019 Microbial Growth Module 8

    51/94

    VIABLE COUNT Pour plate

    add dilution to empty Petri dish

  • 7/30/2019 Microbial Growth Module 8

    52/94

    VIABLE COUNT Pour plate

    add molten agar to the dilution & mix

  • 7/30/2019 Microbial Growth Module 8

    53/94

    VIABLE COUNT Pour plate

    allow agar to solidify

  • 7/30/2019 Microbial Growth Module 8

    54/94

    VIABLE COUNT Pour plate

    incubate

  • 7/30/2019 Microbial Growth Module 8

    55/94

    VIABLE COUNT Spread / Pour plate

    After incubation

    Pour plate Spread plate

  • 7/30/2019 Microbial Growth Module 8

    56/94

    VIABLE COUNT Spread / Pour plate

    After incubation, count the colonies

  • 7/30/2019 Microbial Growth Module 8

    57/94

    VIABLE COUNT Spread / Pour plate

    To calculate the original cell concentration

    In 100 there are cell count 70 colonies in 1 m there are 70 x 10 colonies = 700 colonies

    dilution factor : 109

    original cell concentration = 7.00 x 1011 / ml

  • 7/30/2019 Microbial Growth Module 8

    58/94

    VIABLE COUNT Spread / Pour plate

    To calculate the original cell concentration

    In 1 m there are cell count 590 coloniesDilution factor : 109

    original cell concentration = 5.90 x 1011 / ml

  • 7/30/2019 Microbial Growth Module 8

    59/94

    VIABLE COUNT Membrane filter counts:

    samples with few bacteria eg water0.22 m filter

  • 7/30/2019 Microbial Growth Module 8

    60/94

    VIABLE COUNT Membrane filter counts:

    a known volume is filtered

  • 7/30/2019 Microbial Growth Module 8

    61/94

    VIABLE COUNT Membrane filter counts:

    filter is removedplaced on an agar plateincubated

  • 7/30/2019 Microbial Growth Module 8

    62/94

    VIABLE COUNT Membrane filter counts:

    colonies counted

    If 100 ml of water was filteredAnd 45 colonies grew on the membraneThen cell concentration is.

    45 cells / 100 ml

  • 7/30/2019 Microbial Growth Module 8

    63/94

    MULTIPLE

    TUBETEST

    qualitative test

    MULTIPLE

  • 7/30/2019 Microbial Growth Module 8

    64/94

    MULTIPLETUBE

    TEST

    Presumptive test

    Coliforms?

    MPN

    lactose fermentation

    Dilute water sample

    1:2

    1:10

    1:100

    MULTIPLE TUBE TEST

  • 7/30/2019 Microbial Growth Module 8

    65/94

    MULTIPLE TUBE TEST

    Acid & gas production

    Presumptive test

    MULTIPLE TUBE TEST

  • 7/30/2019 Microbial Growth Module 8

    66/94

    MULTIPLE TUBE TEST

    3 1 2

    Presumptive test

    Determine most probable number (MPN)

    MULTIPLE TUBE TEST

  • 7/30/2019 Microbial Growth Module 8

    67/94

    MULTIPLE TUBE TESTNo of tubes positive in

    MPNNo of tubes positive in

    MPNNo of tubes positive in

    MPNNo of tubes positive in

    MPN

    Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set3

    0 0 0 3 1 0 0 36 2 0 0 9.1 3 0 0 25

    0 0 1 3 1 0 1 72 2 0 1 14 3 0 1 39

    0 0 2 6 1 0 2 11 2 0 2 20 3 0 2 61

    0 0 3 9 1 0 3 15 2 0 3 26 3 0 3 95

    0 1 0 3 1 1 0 7.3 2 1 0 15 3 1 0 43

    0 1 1 6.1 1 1 1 11 2 1 1 20 3 1 1 75

    0 1 2 9.2 1 1 2 15 2 1 2 27 3 1 2 120

    0 1 3 12 1 1 3 19 2 1 3 34 3 1 3 160

    0 2 0 6.2 1 2 0 11 2 2 0 21 3 2 0 93

    0 2 1 9.3 1 2 1 15 2 2 1 28 3 2 1 150

    0

    2

    2

    12

    1

    2

    2

    20

    2

    2

    2

    35

    3

    2

    2

    210

    0 2 3 16 1 2 3 24 2 2 3 42 3 2 3 290

    0 3 0 9.4 1 3 0 16 2 3 0 29 3 3 0 240

    0 3 1 13 1 3 1 20 2 3 1 36 3 3 1 460

    0 3 2 16 1 3 2 24 2 3 2 44 3 3 2 1100

    0 3 3 19 1 3 3 29 2 3 3 53 3 3 3 2400

  • 7/30/2019 Microbial Growth Module 8

    68/94

    CELL MASS

    Wet weightscrape cells off agarweigh

    Dry weightuse a broth culturewash cells in distilled water

    Dry cells in an oven and weigh.

  • 7/30/2019 Microbial Growth Module 8

    69/94

    TURBIDITY

    Spectrophotometer is used to measureabsorbance of light in a tube of bacteriaConcentration of bacteria > 107/ml

    All bacteria of the same specie have thesame sizeBacteria scatter lightThe greater the absorbance, the greater the

    cell no.

  • 7/30/2019 Microbial Growth Module 8

    70/94

    TURBIDITY

    OD 550 600 nmFirst need to establish a std curve

    Cell numberX 10 6

    absorbance

    (Obtained fromspread/pour plate)

    (obtained from spec)

  • 7/30/2019 Microbial Growth Module 8

    71/94

    METABOLIC ACTIVITY

    Cell concentration may also be measured by

    o ATP

    o ATPase activity

    o pH

    o Oxygen production or consumptiono Carbon dioxide production or consumption

  • 7/30/2019 Microbial Growth Module 8

    72/94

    McFarlands StandardsMcFarland

    standard number0.5 1 2 3 4

    Volume of 1 %

    Barium chloride0.05 0.1 0.2 0.3 0.4

    Volume of 1%sulphuric acid

    9.95 9.9 9.8 9.7 9.6

    Approximate cell

    density

    1x108CFU/ml

    1.5 3 6 9 12

    % Transmittance 74.3 55.6 35.6 26.4 21.5

    Absorbance0.13

    2

    0.257 0.451 0.582 0.669

  • 7/30/2019 Microbial Growth Module 8

    73/94

    ENVIRONMENTAL FACTORS

    Water activitypHTemperature

    OxygenPressure

  • 7/30/2019 Microbial Growth Module 8

    74/94

    TEMPERATURE

    Affects enzyme & protein activity temp disrupts membrane

    Cardinal temp range

  • 7/30/2019 Microbial Growth Module 8

    75/94

    TEMPERATURE

    Used as a means of killing

  • 7/30/2019 Microbial Growth Module 8

    76/94

    TEMPERATURE

    Different species of bacteria grow @different temperatures

  • 7/30/2019 Microbial Growth Module 8

    77/94

    OXYGEN

  • 7/30/2019 Microbial Growth Module 8

    78/94

    OXYGEN

  • 7/30/2019 Microbial Growth Module 8

    79/94

    OXYGEN

  • 7/30/2019 Microbial Growth Module 8

    80/94

    OXYGEN

  • 7/30/2019 Microbial Growth Module 8

    81/94

  • 7/30/2019 Microbial Growth Module 8

    82/94

    OXYGEN

  • 7/30/2019 Microbial Growth Module 8

    83/94

    OXYGEN

  • 7/30/2019 Microbial Growth Module 8

    84/94

    pH

    acidophile

    neutrophile

    alkalophile

  • 7/30/2019 Microbial Growth Module 8

    85/94

    pH

    Most bacteria grow at neutral pH

  • 7/30/2019 Microbial Growth Module 8

    86/94

    pH

  • 7/30/2019 Microbial Growth Module 8

    87/94

    pH

    Enzyme activity is pH dependent

  • 7/30/2019 Microbial Growth Module 8

    88/94

    pH

    Adverse effects of great change in pHdamage to plasma membrane, enzymes &proteases

    Internal pH kept neutralin neutrophiles by exchanging K+ for H+

    extreme alkalophiles by exchanging Na+ (int)

    for H+ ions (ext)

  • 7/30/2019 Microbial Growth Module 8

    89/94

    pH

    Microbes also contribute to change in pHproduce waste products

    Adapt to change in environmental pH byusing K & Na ion gradientsother mechanisms

    acidic tolerance response

    chaperone proteins

  • 7/30/2019 Microbial Growth Module 8

    90/94

    WATER ACTIVITY

    awavailability of free water in themicrobes habitat

    inversely related to osmotic Pa

    Psolution vapour=

    Pvapour pure water

  • 7/30/2019 Microbial Growth Module 8

    91/94

    WATER ACTIVITY

    Hypertonic environment has low aw

    Would expect plasmolysis to occur

    Bacteria avoid this by internal osmotic conc

    Done by [compatible solute]

  • 7/30/2019 Microbial Growth Module 8

    92/94

    WATER ACTIVITY

    Most bacteria grow @ aw = 0.98

  • 7/30/2019 Microbial Growth Module 8

    93/94

    WATER ACTIVITY

    Osmotolerant microbes:grow over a wide range of awS. aureus

    Halophiles:live in high salt conc (2.8 6.2 M)modify protein & membrane structure

  • 7/30/2019 Microbial Growth Module 8

    94/94

    WATER ACTIVITY

    Extreme halophiles:increase their uptake of K+ to 4 7 M stabilise enzymes, ribosomes & permeases

    Na+ stabilise cell wall, plasma membrane