michel deza and mathieu dutour sikiric- fullerenes: applications and generalizations

Upload: flaoeram

Post on 06-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    1/94

    Fullerenes: applications andgeneralizations

    Michel Deza

    ENS, Paris, and ISM, Tokyo

    Mathieu Dutour Sikiric

    Rudjer Boskovic Institute, Zagreb, and ISM, Tokyo

    p.1/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    2/94

    I. General

    setting

    p.2/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    3/94

    Denition

    A fullerene

    is a simple polyhedron (putative carbonmolecule) whose vertices (carbon atoms) are arranged in

    pentagons and

    hexagons .The

    edges correspond to carbon-carbon bonds.

    exist for all even

    except

    .

    isomers

    for

    ,

    ,

    , . . . ,

    .preferable fullerenes, , satisfy isolated pentagon rule.

    "

    ! #

    $

    % ,"

    & #

    $

    % are only icosahedral (i.e., with

    symmetry $

    %

    or $

    ) fullerenes with

    '

    vertices

    p.3/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    4/94

    buckminsterfullerene("

    ) 0

    1

    2

    3

    4

    truncated icosahedron,soccer ball

    5 7

    6 )

    1

    8

    )

    3

    4

    elongated hexagonal barrel 5 7

    9@

    1

    8

    )

    A

    4

    p.4/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    5/94

    23

    45

    34

    3489

    4590

    23781267

    1560

    12

    15

    1560

    15

    2378

    3489

    45

    34

    4590

    1267

    1223

    Dodecahedron

    #

    $

    %

    B

    C

    D

    C #

    the smallest fullereneBonjour

    Graphite lattice

    E

    B

    F

    the largest (innite)fullerene

    p.5/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    6/94

    Small fullerenes

    24,G

    !

    H

    26,G

    %

    28,G

    28,I

    H

    30,G Q

    P

    % 30, S R 30,G

    S

    R

    p.6/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    7/94

    A T U V

    p.7/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    8/94

    What nature wants?

    Fullerenes or their dualsW

    appear in architecture andnanoworld:

    Biology: virus capsids and clathrine coated vesicles

    Organic (i.e., carbon) Chemistry

    also: (energy) minimizers in Thomson problem (for

    unit charged particles on sphere) and Skyrme problem(for given baryonic number of nucleons); maximizers, inTammes problem, of minimum distance between

    points on sphere

    Simple polyhedra with given number of faces, which are thebest approximation of sphere?

    Conjecture: FULLERENES

    p.8/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    9/94

    Gravers superfullerenes

    Almost all optimizers for Thomson and Tammesproblems, in the range

    X

    '

    '

    X

    are fullerenes.

    For Y X

    , appear`

    -gonal faces; almost always for

    Y

    .

    However, J.Graver (2005): in all large optimizers the X

    -and

    `

    -gonal faces occurs in 12 distinct clusters,corresponding to a unique underlying fullerene.

    p.9/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    10/94

    Isoperimetric problem for polyhedra

    Lhuilier 1782, Steiner 1842, Lindelf 1869, Steinitz 1927,Goldberg 1933, Fejes Tth 1948, Plya 1954

    Polyhedron of greatest volumea

    with a given numberof faces and a given surfaceb

    ?

    Polyhedron of least volume with a given number of

    faces circumscribed around a sphere?Maximize Isoperimetric Quotient for solids

    $

    c

    e

    d

    f

    g

    h

    i

    '

    (with equality only for sphere)

    p.10/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    11/94

    Isoperimetric problem for polyhedra

    polyhedron $

    c

    p

    upper boundTetrahedron

    q

    !

    r

    s

    q

    !

    r

    Cubeq

    !

    s

    X

    t

    q

    !

    Octahedronq

    r

    s

    X

    s

    `

    Dodecahedronq u

    v

    w

    g

    y

    x

    P

    w

    s

    `

    X X

    q u

    v

    w

    g

    y

    x

    P

    w

    Icosahedronq u

    C P

    r

    s

    s

    X

    IQ of Platonic solids(

    C

    r

    P

    : golden mean )Conjecture (Steiner 1842):

    Each of the X

    Platonic solids is the best of all isomorphic

    polyhedra (still open for the Icosahedron) p.10/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    12/94

    Five Platonic solids

    p.11/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    13/94

    Goldberg Conjecture

    $

    c

    $

    '

    $

    c

    !

    s

    t

    Conjecture (Goldberg 1933):

    The polyhedron with

    facets with greatest

    $

    c

    is afullerene (called medial polyhedron by Goldberg)

    polyhedron $

    c

    p

    upper bound

    Dodecahedron

    #

    $

    %

    q u

    v

    w

    g

    y

    x

    P

    w

    s

    `

    X X

    q u

    v

    w

    g

    y

    x

    P

    w

    Truncated icosahedron ! #

    $

    %

    s

    X

    s

    X

    Chamfered dodecahed. & #

    $

    %

    s

    s

    Sphere

    p.12/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    14/94

    II. Icosahedral

    fullerenes

    p.13/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    15/94

    Icosahedral fullerenesCall icosahedral any fullerene with symmetry

    $

    % or $

    All icosahedral fullerenes are preferable, except

    #

    $

    %

    I

    , whereI

    (triangulation number )

    with

    ' '

    . $% for

    or

    (extended icosahedral group); $

    for

    (proper icosahedral group)

    ! #

    $

    %

    =

    -dodecahedrontruncated icosahedron

    "

    & #

    $

    %

    =

    -dodecahedronchamfered dodecahedron p.14/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    16/94

    Icosadeltahedra

    Call icosadeltahedron the dual of an icosahedral fullereneW

    #

    $

    % orW

    #

    $

    Geodesic domes: B.Fuller

    Capsids of viruses: Caspar and Klug, Nobel prize 1962

    3489

    45

    4590

    34

    1237

    15

    1560

    O

    3459 1450

    O

    1267

    2348

    12

    2378

    23

    1450

    45

    34

    3489

    2348

    1267

    1237

    1256

    2378

    23121256

    1560

    15

    3459

    4590

    DualW

    ! #

    $

    % ,

    pentakis-dodecahedronGRAVIATION (Esher 1952)omnicapped dodecahedron

    p.15/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    17/94

    Icosadeltahedra in Architecture

    j

    k

    Fullerene Geodesic dome l

    m

    k

    n

    o

    g

    k

    One of Salvador Dali houses l

    l

    k

    o

    k

    Artic Institute, Bafn Island

    m

    k

    o

    z

    {

    k

    Bachelor ofcers quarters, US Air Force, Korea |

    |

    k

    o

    g

    k

    U.S.S. Leyte }

    m

    k

    o

    i g

    k

    Geodesic Sphere, Mt Washington, New Hampshire ~

    m

    k

    o

    {

    k

    US pavilion, Kabul Afghanistan

    m

    k

    o

    v g

    k

    Radome, Artic dEW

    k

    o

    i z

    k

    Lawrence, Long Island l

    m

    k

    o

    g

    {

    k

    US pavilion, Expo 67, Montreal l

    m

    k

    o

    z

    k

    Gode du Muse des Sciences, La Villete, Paris l

    m

    k

    o

    z

    k

    Union Tank Car, Baton Rouge, Louisiana

    Alternate , Triacon and Frequency (distanceof two

    X

    -valent neighbors) are Buckminster Fullerss terms

    p.16/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    18/94

    W

    & #

    $

    % ,

    =

    (

    @ 0

    1

    2

    4

    ,1

    4

    =1

    4

    p.17/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    19/94

    W

    C & #

    $

    % ,

    Bonjour

    W

    C & #

    $

    % as omnicappedbuckminsterfullerene ! #

    p.18/9

    T i l i h i l l

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    20/94

    Triangulations, spherical wavelets

    Dualt

    -chamfered cube

    , %Dual

    t

    -cham. dodecahedronW

    P C # ,

    , $

    %

    Used in Computer Graphics and Topography of Earth

    p.19/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    21/94

    III. Fullerenes in

    Chemistry and Biology

    p.20/9

    F ll i Ch i t

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    22/94

    Fullerenes in Chemistry

    Carbon and, possibly, siliciumb

    are onlyt

    -valentelements producing homoatomic long stable chains or nets

    Graphite sheet : bi-lattice

    -Voronoi( ), innitefullereneDiamond packing : bi-lattice

    G

    -complex, -centering ofthe lattice f.c.c.=

    Fullerenes : 1985 (Kroto, Curl, Smalley): ! #

    $

    %

    trunc. icosahedron, soccerball, Nobel prize 1996.But Ozawa 1984. Cheap ! # : 1990.1991 (Iijima): nanotubes.Full. synthesized by now: ! # , # , ! , & , & , & .Fullerene alloys, stereo organic chemistry

    Carbon: semi-metal p.21/9

    All t f b

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    23/94

    Allotropes of carbon

    Diamond : cryst.tetrahedral, electro-isolating, hard,transparent. Rarely Y

    X

    carats, unique Y

    :Cullinan

    . M.Kuchner: diamond planets?

    Graphite : cryst.hexagonal, soft, opaque, el. conductingFullerenes : 1985, spherical

    Nanotubes : 1991, cylindrical

    Carbon nanofoam : 1997, clusters of aboutt

    atomslinked in graphite-like sheets with some

    `

    -gons(negatively curved), ferromagnetic

    Amorphous carbon (no long-range pattern): synthetic;coal and soot are almost such

    White graphite (chaoite): cryst.hexagonal; 1968, inshock-fused graphite from Ries crater, Bavaria p.22/9

    Allotropes of carbon

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    24/94

    Allotropes of carbon

    Carbon(VI) : cr.hex.??; 1972, obtained with chaoiteSupersized carbon : 2005, 5-6 nm supermolecules(benzene rings "atoms", carbon chains "bonds")

    Hexagonal diamond (lonsdaleite): cryst.hex., very rare;1967, in shock-fused graphite from several meteorites

    ANDR (aggregated diamond nanorods): 2005,Bayreuth University; hardest known substance

    graphite: diamond: p.22/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    25/94

    La"

    &

    rst Endohedral Fullerenecompound

    (

    0

    Exohedral Fullerenecompound (rst with a single

    hydroxy group attached)

    p.23/9

    A quasicrystalline cluster (H Terrones)

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    26/94

    A quasicrystalline cluster (H. Terrones)

    In silico: from ! #

    and

    #

    I

    H

    (dark); cf. 2 atoms inquasicrystals p.24/9

    Onion like metallic clusters

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    27/94

    Onion-like metallic clusters

    Palladium icosahedral -cluster

    Outer shell Total # of atoms # Metallic cluster

    -

    -

    -

    -

    -

    -

    Icosahedral and cuboctahedral metallic clusters p.25/9

    Nanotubes and Nanotechnology

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    28/94

    Nanotubes and Nanotechnology

    Helical graphite Deformed graphite tube

    Nested tubes (concentric cylinders) of rolled graphite;use(?): for composites and nanowires p.26/9

    Other possible applications

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    29/94

    Other possible applications

    Superconductors: alcali-doped fullerene compounds

    "

    ! # at

    , . . . ,

    "

    ! # at

    but still too low transitionI

    HIV-1 : Protease Inhibitor since derivatives of ! #

    arehighly hydrophobic and have large size and stability;2003: drug design based on antioxydant property of

    fullerenes (they soak cell-damaging free radicals)Carbon nanotubes

    ? superstrong materials

    ? nanowires! already soon: sharper scanning microscope

    But nanotubes are too expensive at present p.27/9

    Chemical context

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    30/94

    Chemical context

    Crystals : from basic units by symm. operations, incl.translations , excl. order

    X

    rotations (cryst. restriction).Units: from few (inorganic crystals) to thousands

    (proteins) atomsOther very symmetric mineral structures: quasicrystals ,fullerenes and like, icosahedral packings (no

    translations but rotations of order X

    )Fullerene-type polyhedral structures (polyhedra,nanotubes, cones, saddles, . . . ) were rst observed

    with carbon. But also inorganic ones: boron nitrides,tungsten, disulphide, allumosilicates and, possibly,uorides and chlorides.

    p.28/9

    Stability

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    31/94

    Stability

    Minimal total energy: $

    -energy and

    the strain in the -system.

    Hckel theory of $

    -electronic structure: every eigenvalue

    of the adjacency matrix of the graph corresponds to anorbital of energy

    . : Coulomb parameter (same for all sites)

    : resonance parameter (same for all bonds)The best

    $

    -structure: same # of positive and negative

    eigenvalues

    p.29/9

    Skyrmions and fullerenes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    32/94

    Skyrmions and fullerenes

    Conjecture (Sutcliffe et al.):any minimal energy Skyrmion (baryonic density isosurfacefor single soliton solution) with baryonic number (the

    number of nucleons)

    `

    is a fullerene

    &

    .Conjecture :there exist icosahedral minimal energy Skyrmion for any

    X

    with integers

    '

    ,

    (not any icosahedral Skyrmion has minimal energy).

    Skyrme model (1962) is a Lagrangian approximatingc

    G

    (a gauge theory based on

    b

    group). Skyrmions arespecial topological solitons used to model baryons.

    p.30/9

    Life fractions

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    33/94

    Life fractions

    life: DNA and RNA (cells)

    -life: DNA or RNA (cell parasites: viruses)

    naked RNA, no protein (satellite viruses, viroids)DNA, no protein (plasmids, nanotech, junk DNA, ...)

    no life: no DNA, nor RNA (only proteins, incl. prions)

    Atom DNA Cryo-EM Prion Viruses

    size 0.2-0.3 s

    s

    X

    X

    t

    nm B-19, HIV, MimiVirion: protein capsid (or env.spikes) icosadeltahedron

    W

    #

    ,I

    (triangulation number)

    p.31/9

    Digression on viruses

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    34/94

    Digression on viruses

    life

    -life . . . viroids . . . non-lifeDNA and RNA DNA or RNA neither DNA, nor RNA

    Cells Viruses Proteins, incl. prionsSeen in 1930 (electronic microscope): tobacco mosaic.

    of seawater has s

    million viruses; all seagoingviruses s

    `

    million tons (more 20 x weight of all whales).Origin : ancestors or vestiges of cells, or gene mutation?Or, evolved in parallel with cellular forms fromself-replicating molecules in prebiotic RNA world"

    Virus: virion, then (rarely) cell parasiteVirion: capsid (protein coat), capsomers structureNumber of protein subunits is

    I

    , but EM resolves onlyclusters-capsomers (

    I

    vertices ofW

    #

    ), including

    pentamers ( X

    -valent vertices) at minimal distance

    p.32/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    35/94

    1954, Watson and Crick conjectured: symmetry cylindricaland icosahedral: dual

    $

    , $

    % fullerenes

    AIDS: icosahedral, but

    ? Plant viruses? Chirality? nm:

    typical molecule;

    Parvovirus

    -

    ,t

    Mimivirus;150 minimal cell (bacterium Micoplasma genitalium);90 smallest feature of computer chip (= diam. HIV-1).

    Main defense of multi-cellular organism, sexualreproduction, is not effective (in cost, risk, speed) butarising mutations give some chances against viruses.

    p.33/9

    Capsids of viruses

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    36/94

    Capsids of viruses

    j

    k

    Fullerene Virus capsid (protein coat) l

    m

    k

    n

    o

    g

    k

    Gemini virus l

    l

    k

    o

    k

    turnip yellow mosaic virus |

    m

    k

    o

    z

    k

    hepatitis B, Bacteriophage

    |

    l

    k

    o

    k

    HK97, rabbit papilloma virus l

    |

    k

    o

    k

    human wart virus

    l

    k

    o

    g

    k

    rotavirus }

    m

    k

    o

    i g

    k

    herpes virus, varicella ~

    m

    k

    o

    k

    adenovirus

    m

    k

    o

    vg

    k

    infectious canine hepatitis virus, HTLV-1

    m

    k

    o

    g

    k

    Tipula virus

    k

    ?

    o

    g

    k

    HIV-1

    k

    ?

    o

    g

    k

    iridovirus

    p.34/9

    Some viruses

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    37/94

    Some viruses

    IcosadeltahedronW

    #

    $

    % ,the icosahedral structure of

    the HTLV-1

    Simulated adenovirusW

    P # #

    $

    % with its spikes

    X

    -dodecahedron P # #

    $

    %

    p.35/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    38/94

    IV. Some

    fullerene-like3-valent maps

    p.36/9

    Mathematical chemistry

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    39/94

    y

    use following fullerene-like -valent maps:Polyhedra

    P

    !

    for t

    ,`

    or

    ( S

    t

    ,

    ,

    t

    )Aulonia hexagona (E. Haeckel 1887): plankton skeleton

    Azulenoids

    P

    on torus

    ; so, P

    azulen is an isomer

    of naftalen

    ,

    ,

    p.37/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    40/94

    ' -surfaces

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    41/94

    (

    )1

    0

    )

    2

    ) 3 4

    : putativecarbon, 1992,

    (Vanderbilt-Tersoff)

    (

    51

    0

    2

    Bonjour

    (

    )1

    0

    2

    Bonjour(

    0

    $

    2

    , $

    6

    & 3

    $

    & 3

    (

    7

    6

    8

    6

    8

    7

    2

    Unit cell of(

    )

    0

    5

    2

    :

    & 3

    - Klein regular map(

    9

    @

    2

    p.39/9

    ' -surfaces

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    42/94

    (

    )1

    0

    )

    2

    Bonjour

    (

    51

    0

    2

    %

    ) A

    , $ 4 5

    (

    )1

    0

    2

    Bonjour(

    0

    $

    )

    2

    , $

    6

    #

    $

    4

    (

    7

    6

    8

    6

    8

    7

    2

    (

    )1

    0

    5

    2

    : $

    Unit cell of $ 5

    : $ #

    - Dyck regular map(

    4

    @

    2

    p.40/9

    More ' -surfaces

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    43/94

    B

    C1

    D

    E

    F

    G

    H

    I E C

    , P Q H R R

    B

    I

    D

    E

    F

    BonjourB

    P

    Q

    D

    P

    S

    H

    I E

    F

    , G H E

    P

    Q

    T

    U E

    H

    U C

    B

    P

    V

    T

    P W

    T

    W

    V

    F

    Unit cell ofP

    Q

    H

    C

    :G

    H

    U E

    - Dyck regular map

    B

    X

    Y

    F

    p.41/9

    Polycycles (with Dutour and Shtogrin)

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    44/94

    A nite(

    0

    8

    2

    -polycycle is a plane

    -connected nite graph,such that :

    all interior faces are (combinatorial) -gons,

    all interior vertices are of degree 8 ,

    all boundary vertices are of degree in`

    0

    8

    a

    .

    a(

    &

    0

    #

    2

    -polycycle

    p.42/9

    Examples of ' -polycycles

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    45/94

    $

    #c

    b

    #

    @

    0

    #

    @e

    d

    0

    #

    @

    d

    f

    ;

    $

    b

    @

    0

    @e

    d

    0

    @

    d

    f

    0

    %

    7

    g

    h

    (h

    $

    %p

    i

    q

    ,%s

    r ,%s

    t )

    Continuum for any

    "

    &

    .But# A

    proper(

    &

    0

    #

    2

    -polycycles, i.e., partial subgraphs ofDodecahedron

    $

    3

    : polyhexes=benzenoids

    Theorem(i) Planar graphs admit at most one realization as

    (

    0

    #

    2

    -polycycle(ii) any unproper(

    0

    #

    2

    -polycycle is a(

    0

    #

    2

    -helicene

    (homomorphism into the plane tilingu

    @w

    v

    by regular -gons)

    p.43/9

    Icosahedral fulleroids (with Delgado)

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    46/94

    #

    -valent polyhedra with

    $

    (

    0

    i

    x

    2

    and symmetryy

    ory

    orbit size 3 5 # 5 5 )

    # of orbits any ) ) )

    -gonal face any#

    &

    h

    i

    b

    (

    0

    i

    2

    $

    (

    )

    6

    3 5

    0

    i

    2

    with"

    )

    ,

    3

    i

    b

    (

    0

    i

    2

    $

    (

    3 5

    0

    )

    i

    2

    with"

    )

    , $ &

    &

    p.44/9

    -fulleroids

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    47/94

    of Sym j

    k

    l

    m

    lo

    n

    m m

    k

    l

    m

    n

    m

    z

    {

    k

    l

    m |

    n

    m

    z

    }

    k ~

    k

    n

    m

    z

    k k

    m

    n

    l

    k

    m m

    n

    m

    k

    | m m

    n

    z

    k

    m

    n

    |

    k

    m m

    n

    z

    }

    k

    m

    n

    m m

    p.45/9

    First ' -sphere icosahedral

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    48/94

    (

    y

    2

    $

    %

    (

    (

    y

    2 2

    ; $ 3 5

    p.46/9

    Second ' -sphere icosahedral

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    49/94

    (

    y

    2

    $

    (

    (

    y

    2 2

    ; $ 3 5

    p.47/9

    ' -sphere icosahedral

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    50/94

    (

    y

    2

    $

    %

    (

    (

    y

    2 2

    ; $ 5 5

    p.48/9

    ' -sphere icosahedral

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    51/94

    (

    y

    2

    $

    %

    (

    (

    y

    2 2

    ; $ ) 4 5

    p.49/9

    ' -sphere icosahedral

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    52/94

    (

    y

    2

    $

    (

    (

    y

    2 2

    ; $ ) 5

    p.50/9

    ' -sphere icosahedral

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    53/94

    7

    (

    y

    2

    $

    @

    (

    (

    y

    2 2

    ; $ 5

    p.51/9

    ' -sphere icosahedral

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    54/94

    (

    y

    2

    $

    %

    (

    7

    (

    y

    2 2

    ; $ & 3 5

    p.52/9

    ' -sphere icosahedral

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    55/94

    (

    y

    2

    $

    7

    (

    (

    y

    2 2

    ; $ 3 5

    p.53/9

    All seven -isohedral ' -planes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    56/94

    A(

    &

    0

    2

    -plane is a#

    -valentplane tiling by

    &

    - and -

    gons.A plane tiling is 2-homohedral if its facesform 2 orbits under groupof combinatorial automor-phisms

    h

    .It is 2-isohedral if, more-

    over, its symmetry group isisomorphic toh

    .

    p.54/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    57/94

    V. -dimensional

    fullerenes (with Shtogrin)

    p.55/9

    -fullerenes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    58/94

    (

    d

    )

    2

    -dim. simple (

    -valent) manifold (loc. homeomorphicto

    ) compact connected, any

    -face is&

    - or 3

    -gon.So, any -face,

    #

    , is an polytopal -fullerene .

    So,

    $

    0

    #

    0

    or&

    only since (Kalai, 1990) any&

    -polytopehas a#

    - or -gonal

    -face.

    All nite#

    -fullerenes : plane

    #

    - and space -fullerenes

    Finite -fullerenes; constructions:h

    (tubes of ) 5

    -cells) and (coronas)Ination-decoration method (construction

    ,

    )

    Quotient fullerenes; polyhexes&

    -fullerenes from& # # #

    p.56/9

    All nite -fullerenes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    59/94

    Euler formula$

    d

    f

    6

    $

    7

    "

    5

    .

    But $

    (

    )

    d

    !

    2

    if oriented

    d

    ! if not

    Any

    -manifold is homeomorphic to7

    with ! (genus)handles (cyl.) if oriented or cross-caps (Mbius) if not.

    g 5 )

    (

    2

    (

    2

    )

    (

    2

    surface7 7

    7

    %

    7

    ) 5 5 3

    "

    51

    0

    $

    )

    "

    9

    "

    A

    "

    5

    0

    $

    )

    0

    #

    -fullerene usual sph. polyhex polyhex elliptic

    p.57/9

    Smallest non-spherical nite -fullerenes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    60/94

    Toric fullerene

    Klein bottle

    fullerene projective fullerene p.58/9

    Non-spherical nite -fullerenes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    61/94

    Elliptic fullerenes are antipodal quotients of centrallysymmetric spherical fullerenes, i.e. with symmetry

    ,7

    ,

    7

    ,

    ,

    @ ,

    , ,y

    . So, 5

    (

    2

    .

    Smallest CS fullerenes

    7

    (

    ys

    2

    ,

    @ 7

    (

    @

    2

    ,

    @

    (

    2

    Toroidal fullerenes have $ 5

    . They are described byS.Negami in terms of

    #

    parameters.

    Klein bottle fullerenes have

    $

    5

    . They are obtainedby quotient of toroidal ones by a xed-point freeinvolution reversing the orientation.

    p.59/9

    Plane fullerenes (innite -fullerenes)

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    62/94

    Plane fullerene : a#

    -valent tiling of

    7

    by (combinatorial)&

    - and 3

    -gons.

    If $ 5

    , then it is the graphiteu

    3

    @

    v

    $

    p

    $

    3 #

    .

    Theorem: plane fullerenes have 3

    and $ .

    A.D. Alexandrov (1958): any metric on

    7

    ofnon-negative curvature can be realized as a metric ofconvex surface on

    @

    .Consider plane metric such that all faces becameregular in it. Its curvature is

    5

    on all interior points

    (faces, edges) and"

    5

    on vertices. A convex surface isat most half

    7

    .

    p.60/9

    Space -fullerenes (innite -fullerene)

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    63/94

    Frank-Kasper polyhedra (isolated-hexagonfullerenes):

    7

    (

    y

    2

    ,

    7

    (

    2

    ,

    7

    (

    @

    2

    ,

    7

    ( 2

    Space fullerene : a -valent tiling of

    @

    by them

    Space 4-fullerene : a -valent tiling of

    @

    by anyfullerenes

    They occur in:

    ordered tetrahedrally closed-packed phases ofmetallic alloys with cells being atoms. There are

    5

    t.c.p. alloys (in addition to all quasicrystals)

    soap froths (foams, liquid crystals)hypothetical silicate (or zeolite) if vertices aretetrahedra (or

    h

    ) and cells

    7

    better solution to the Kelvin problem p.61/9

    Main examples of space fullerenes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    64/94

    Also in clathrate ice-like hydrates: vertices are

    7

    ,hydrogen bonds, cells are sites of solutes (

    , , . . . ).

    t.c.p. alloys exp. clathrate #

    m

    #

    m

    #

    m

    #

    m

    k

    -

    I:

    l

    1 3 0 0k

    II:

    l

    2 0 0 1

    III:}

    3 2 2 0

    5 8 2 0

    7 2 2 2

    -

    6 5 2 1

    n

    -

    15 2 2 6

    n

    {

    (Bergman) 49 6 6 20

    (Sadoc-Mossieri) 49 9 0 26 p.62/9

    Frank-Kasper polyhedra and

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    65/94

    Mean face-size of all known space fullerenes is in` & 6

    (

    2

    0

    &

    6

    (

    h

    2 a

    . Closer to impossible&

    ( ) 5

    -cell on#

    -sphere) means energetically competitive with diamond.

    p.63/9

    New space -fullerene (with Shtogrin)Th l k hi h i b

    d

    ( 2

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    66/94

    The only known which is not by 7 , 7 , 7 and 7 .By

    7 ,

    7 and its elongation

    @

    (

    2

    in ratio 9

    b

    b

    )

    ;so, smallest known mean face-size

    & 5A )

    & )

    (

    2

    .

    All space -fullerenes with at most 9

    kinds of vertices:h

    ,

    ,

    ,

    and this one (Delgado, OKeeffe; 3,3,5,7,7). p.64/9

    Kelvin problem

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    67/94

    Partition

    @

    into cells of equal volume and minimal surface.

    Kelvins partition Weaire, Phelans partitionWeaire-Phelan partition (A15) is 0.3% better thanKelvins, best is unknown

    In dimension

    , best is honeycomb (Ferguson, Hales) p.65/9

    Projection of 120-cell in 3-space (G.Hart)

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    68/94

    (

    & # #

    2

    :

    3 5 5

    vertices,

    ) 5

    dodecahedral facets,

    h

    $

    ) 5 5

    p.66/9

    Regular (convex) polytopesA regular polytope is a polytope whose symmetry group

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    69/94

    A regular polytope is a polytope, whose symmetry groupacts transitively on its set of ags.The list consists of:

    regular polytope groupregular polygon

    %

    i

    y

    7

    (

    2

    Icosahedron and Dodecahedron

    @

    ) 5

    -cell and 3 5 5

    -cell

    -cell

    i (hypercube) and

    i (cross-polytope) i

    i (simplex)h

    i =

    (

    6

    )

    2

    There are#

    regular tilings of Euclidean plane: $

    7 ,# 3

    and 3 #

    , and an innity of regular tilings 8 of hyperbolic plane.

    Here 8

    is shortened notation for(

    2

    . p.67/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    70/94

    -dim. regular tilings and honeycombs

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    71/94

    Do Ico

    63 36

    600- 336

    24- 344

    435* 436*

    Ico 353

    Do 120- 534 535 536

    443* 444*

    36 363

    63 633* 634* 635* 636*

    p.69/9

    -dim. regular tilings and honeycombs

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    72/94

    24- 120- 600-

    24-

    600-

    120- 5333 5334 5335

    p.70/9

    Finite -fullerenes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    73/94

    $

    d

    6

    7

    d

    @

    $

    5

    for any nite closed#

    -manifold,no useful equivalent of Euler formula.

    Prominent -fullerene: ) 5

    -cell.

    Conjecture : it is unique equifacetted -fullerene(

    $

    7 )

    A. Pasini: there is no -fullerene facetted with (

    y

    2

    ( -football)Few types of putative facets:

    7 ,

    7 (hexagonalbarrel),

    7 ,

    7

    ( 2

    ,

    @

    (

    2

    (elongated

    Dodecahedron),

    @ 7

    (

    @

    2

    ,

    @

    (

    2

    (elongated

    7

    )

    p.71/9

    constructions of nite 4-fullerenes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    74/94

    3-faces are

    to ) 5

    -cell

    3 5 5

    7

    $

    "

    )

    h

    & 3 5

    6

    5

    7 ,

    @

    (

    2

    #

    d

    (

    2

    # 5

    (

    2

    7 ,

    7 ,

    (two)decoration C(

    ) 5

    -cell) 5 3 5 5

    7 ,

    7 ,

    7

    ( 2

    decoration D( ) 5

    -cell) 3 ) 3 5 5

    7 ,

    7 ,

    @ 7

    (

    @

    2

    indicates that the construction creates a polytope;otherwise, the obtained fullerene is a

    #

    -sphere.h

    : tube of ) 5

    -cells

    : coronas of any simple tiling of7

    or

    7

    ,

    : any -fullerene decorations

    p.72/9

    Construction of polytopal -fullerene

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    75/94

    Similarly, tubes of ) 5

    -cells are obtained in

    p.73/9

    Ination method

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    76/94

    Roughly: nd out in simplicial

    -polytope (a dual -fullerene

    ) a suitable large(

    d

    )

    2

    -simplex,containing an integer number

    of small (fundamental)simplices.

    Constructions ,

    :

    = 3 5 5

    -cell;

    $

    5

    , 3 5

    , respectively.

    The decoration of

    comes by barycentric homothety

    (suitable projection of the large simplex on the newsmall one) as the orbit of new points under thesymmetry group

    p.74/9

    All known -fullerenesExp

    )

    :& # # #

    (regular tiling of

    by ) 5

    -cell)

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    77/94

    Exp : (regular tiling of by cell)

    Exp

    : (with 3

    -gons also): glue two& # # #

    s on some ) 5

    -cells and delete their interiors. If it is done on onlyone

    ) 5

    -cell, it is g@

    (so, simply-connected)

    Exp#

    : (nite&

    -fullerene): quotient of& # # #

    by itssymmetry group; it is a compact -manifold partitionedinto a nite number of

    ) 5

    -cells

    Exp#

    : glue above

    Pasini: no polytopal&

    -fullerene exist.

    All known

    -fullerenes come from usual spheric fullerenes orfrom the regular

    -fullerenes :&

    ,& #

    =Dodecahedron,& # #

    = ) 5

    -

    cell,& # # #

    , or 3

    , 3 #

    =graphite lattice, 3 # #

    p.75/9

    Quotient -fullerenes

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    78/94

    A. Selberg (1960), A. Borel (1963): if a discrete group ofmotions of a symmetric space has a compact fund. domain,then it has a torsion-free normal subgroup of nite index.So, quotient of a

    -fullerene by such symmetry group is anite

    -fullerene.Exp 1: Poincar dodecahedral space

    quotient of ) 5

    -cell (on@

    ) by the binary icosahedralgroup

    y

    of order ) 5

    ; so,

    -vector(

    &

    0

    ) 51

    0

    3

    0

    )

    2

    $

    7

    (

    ) 5

    d

    2

    It comes also from

    7

    $

    by gluing of its oppositefaces with

    right-handed rotation

    Quot. of

    @

    tiling: by

    7 :(

    )

    0

    3

    0

    3

    0

    0

    )

    2

    Seifert-Weber space

    and by

    7

    :

    (

    0

    9

    0

    4

    6

    4

    $

    6

    0

    4

    2

    Lbell space p.76/9

    Polyhexes7

    7

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    79/94

    Polyhexes on , cylinder, its twist (Mbius surface) andare quotients of graphite

    3 #

    by discontinuous andxed-point free group of isometries, generated by resp.:

    translations,a translation, a glide reection

    a translation and a glide reection.

    The smallest polyhex has $ )

    : on7

    .The greatest polyhex is

    3 # #

    (the convex hull of vertices of 3 #

    , realized on a horosphere); it is not compact (i.e. with notcompact fundamental domain), but conite (i.e., of nitevolume) innite -fullerene.

    p.77/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    80/94

    VI. Some special

    fullerenes (with Grishukhin)

    p.78/9

    All fullerenes with hexagons in ring

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    81/94

    ; 30

    V

    ; 32

    Y

    ; 32

    V

    ; 36

    ; 40 p.79/9

    All fullerenes with pentagons in ring

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    82/94

    7 ; 36 Y ; 44

    Q

    ; 48

    V ; 44

    p.80/9

    All fullerenes with hexagons in ring

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    83/94

    @

    ; 32 @ ; 38

    ; 40

    p.81/9

    All fullerenes with pentagons in ring

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    84/94

    @

    ; 38

    innite family:triples in

    ,

    "

    ) 5

    , from

    collapsed#

    innite family:

    V

    V

    B

    Q

    F

    ,

    I

    ,

    Q

    if

    odd

    elongations ofhexagonal barrel

    p.82/9

    Face-regular fullerenes&

    & &

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    85/94

    A fullerene called if every -gon has exactly -gonalneighbors; it is called 3

    if every 3

    -gon has exactly 3

    -gonal neigbors.

    i 0 1 2 3 4 5# of

    &

    2 1 1# of

    3

    4 2 8 5 7 1

    28,

    7 32,

    @

    All fullerenes, which are 3

    p.83/9

    All fullerenes, which are

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    86/94

    36,

    7

    44,

    (also

    ) 48,

    52,

    (also

    ) 60,

    (also

    ) p.84/9

    All fullerenes, which are

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    87/94

    40,

    Bonjour56,

    (also

    )68,

    Bonjour68,

    (also

    )

    72,

    80,

    (also

    ) 80, (also

    )

    p.85/9

    ullerenes as isom. subgraphs of half-cub

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    88/94

    All isometric embeddings (of skeletons), for - or-fullerenes or their duals, are:

    !

    "

    #

    $

    #

    %

    !

    "

    #

    $

    &

    '

    %

    &

    !

    "

    #

    $

    #

    ')

    (

    !

    "

    #

    $

    Conjecture (checked for 0 1

    2 3

    ): all such embeddings,for fullerenes with other symmetry, are:

    &

    4

    5

    !

    "

    #

    $

    #

    %

    (

    68

    7

    !

    "

    #

    $ @

    9

    %

    5 &

    4

    &

    !

    "

    #

    $

    (

    @

    A

    6@

    7

    !

    "

    #

    $

    # B

    @

    A A

    6

    !

    "

    #

    $

    # &

    Also, for graphite lattice (innite fullerene):2

    5

    !

    =

    D

    C

    "

    E

    5

    and

    F

    &

    !

    =

    %

    C

    "

    #

    E

    5

    . p.86/9

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    89/94

    VII. Knots and zigzags

    in fullerenes(with Dutour and Fowler)

    p.87/9

    Triply intersecting railroad in G H I PR Q

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    90/94

    p.88/9

    Tight S with only simple zigzags

    T U

    t bit l th i t t

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    91/94

    group -vector orbit lengths int. vectorV W

    X

    Y

    aW

    b

    6V

    c

    V d

    eg

    f

    a V

    h

    3,4V

    b

    i

    d

    p r

    q

    a s

    t

    3,3,3V

    u

    s W

    Xv

    Y

    ad

    w x

    10V

    t

    s W

    p y

    q

    ad

    w x

    1,3,6V

    t

    s

    p

    f

    V V

    VW

    h

    1,2,4,4i

    V

    t

    andV

    w x

    d d

    e

    V V

    w

    12V

    w w

    V

    e

    Y

    V V

    b

    V

    i

    b

    6,6V

    w w

    andV

    wx

    i

    a

    i

    W

    X

    V d

    w c

    15V

    w

    Conjecture: this list is complete (checked for 0 1

    3 3

    ).

    It gives Grnbaum arrangements of plane curves. p.89/9

    First IPR fullerene with self-int. railroad

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    92/94

    &

    4

    &

    7

    !

    ; realizes projection of Conway knot

    2

    !

    %

    p.90/9

    Parametrizing fullerenes S

    Id th h g f t it f t gi

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    93/94

    Idea: the hexagons are of zero curvature, it sufces to giverelative positions of faces of non-zero curvature.

    Goldberg (1937) All D

    of symmetry ( , ) are given by

    Goldberg-Coxeter construction

    '

    .Fowler and al. (1988) All

    D

    of symmetry 4

    B , 4

    & or 6

    are described in terms of

    parameters.

    Graver (1999) All

    can be encoded by3

    integerparameters.

    Thurston (1998) All D

    are parametrized by3

    complex

    parameters.Sah (1994) Thurstons result implies that the number offullerenes

    is 0

    .

    p.91/9

    Intersection of zigzags

  • 8/3/2019 Michel Deza and Mathieu Dutour Sikiric- Fullerenes: applications and generalizations

    94/94

    For any 0 , there is a fullerene with two zigzags havingintersection 0

    p.92/9