michael kachelrieß ntnu, trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order fermi...

75
[ ] Astroparticle Physics Michael Kachelrieß NTNU, Trondheim

Upload: others

Post on 01-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

[]

Astroparticle Physics

Michael Kachelrieß

NTNU, Trondheim

Page 2: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Plan of the lectures:

Today: High energy astrophysics

Cosmic rays

Observations

Acceleration, possible sources

High energy photons and neutrinos

TeV Blazars

Elmag. cascades, EBL and primordial B fields

diffuse neutrino flux limits, point sources

Wednesday: Dark matter

particle candidates

detection: direct and indirect

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 3: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

1910: Father Wulf measures ionizing radiation in Paris

80m: flux/2

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 4: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

1910: Father Wulf measures ionizing radiation in Paris

80m: flux/2

300m: flux/2

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 5: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

1912: Victor Hess discovers cosmic rays

-10

0

20

40

60

80

1 2 3 4 5 6 7 8 9

exce

ss io

niza

tion

altitude/1000m

Hess’ and Kolhoerster’s results:

“The results are most easily ex-plained by the assumption that ra-diation with very high penetratingpower enters the atmosphere fromabove; the Sun can hardly be con-sidered as the source.”

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 6: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

What do we know 98 years later?

sola

rm

odula

tion

LHC ⇑

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 7: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

What do we know 98 years later?

sola

rm

odula

tion

LHC ⇑

only three bits of information?

exponent α of dN/dE ∝ 1/Eα

chemical composition for E <∼ 1017 eV

isotropic flux for E <∼ 1019 eV

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 8: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

What do we know 98 years later?

sola

rm

odula

tion

LHC ⇑

only three bits of information?

exponent α of dN/dE ∝ 1/E α

chemical composition for E <∼ 1017 eV

isotropic flux for E <∼ few × 1019 eV

anything more?

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 9: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Observing gamma-rays or cosmic rays: GeV-TeV

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 10: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Observing gamma-rays or cosmic rays: around TeV

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 11: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Pierre Auger Observatory:

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 12: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Pierre Auger Observatory:

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 13: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Three options for HE astronomy:

High-energy photons:IACT’s (HESS, MAGIC, Veritas) extremely successfulnew sources, extragal. backgrounds, evidence for hadronicaccelerators, M87, . . .synergy with Fermi-LATnext generation experiment CTA on the way

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 14: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

HESS observations of M87:

Dec

linat

ion

(d

eg)

12.2

12.4

12.6

-ray

exc

ess

even

tsγ

TeV

0

100

200

Right Ascension (hours)

m30h12m31h12m32h12

PSF

AM 87 (H.E.S.S.)

Dec

linat

ion

(d

eg)

12.3

12.4

12.5

Right Ascension (hours)

s30m30h12s00m31h12

B

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 15: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

HESS observations of M87:

Date12/1998 12/2000 12/2002 12/2004 12/2006

)-1

s-2

(E>7

30G

eV)

(cm

Φ

0.0

0.5

1.0

1.5

-1210×

)-1

s-2

f(0.

2-6

keV

) (e

rg c

m

0

20

40

-1210×

2003

2004

2005

2006

H.E.S.S.

average

HEGRA

Chandra (HST-1)

Chandra (nucleus)

B

09/Feb 16/Feb

)-1

s-2

(E>7

30G

eV)

(cm

Φ

0

2

4

6

-1210×Feb. 2005

A

09/Mar 16/Mar

March 2005

30/Mar 06/Apr

April 2005

Date04/May 11/May

May 2005

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 16: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

HESS observations of M87:

Date12/1998 12/2000 12/2002 12/2004 12/2006

)-1

s-2

(E>7

30G

eV)

(cm

Φ

0.0

0.5

1.0

1.5

-1210×

)-1

s-2

f(0.

2-6

keV

) (e

rg c

m

0

20

40

-1210×

2003

2004

2005

2006

H.E.S.S.

average

HEGRA

Chandra (HST-1)

Chandra (nucleus)

B

09/Feb 16/Feb

)-1

s-2

(E>7

30G

eV)

(cm

Φ

0

2

4

6

-1210×Feb. 2005

A

09/Mar 16/Mar

March 2005

30/Mar 06/Apr

April 2005

Date04/May 11/May

May 2005

fast variability excludes acceleration along kpc jet

acceleration in hot spots marginally okay

favors acceleration close to SMBH

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 17: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Three options for HE astronomy:

VHE photons: successful, but restricted to few Mpc

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

photon horizon γγ → e+e− CMB

IR

radio

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 18: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Three options for HE astronomy:

VHE photons: successful, but restricted to few Mpchadronic photons vs. synchtrotron/Compton photons

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 19: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Three options for HE astronomy:

astronomy with VHE photons restricted to few Mpc

astronomy with HE neutrinos:

smoking gun for hadrons but challenging

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 20: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Three options for HE astronomy:

astronomy with VHE photons restricted to few Mpc

astronomy with HE neutrinos:

smoking gun for hadrons but challenging

large λν , but also large uncertainty 〈δϑ〉 >∼ 1

small event numbers: <∼ few/yr for PAO or ICECUBE

identification of steady sources challenging without additionalinput

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 21: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Three options for HE astronomy:

astronomy with VHE photons restricted to few Mpc

astronomy with HE neutrinos:

smoking gun for hadrons but challenging

large λν , but also large uncertainty 〈δϑ〉 >∼ 1

small event numbers: <∼ few/yr for PAO or ICECUBE

identification of steady sources challenging without additionalinput

Alternative:

is astronomy with charged particles possible?

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 22: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Three options for HE astronomy:

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

proton horizon

photon horizon γγ → e+e− CMB

IR

Virgo ⇓

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 23: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Three options for HE astronomy:

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

proton horizon

photon horizon γγ → e+e− CMB

IR

Virgo ⇓

if UHECRs are protons:

deflections may be small

use larger statistics of UHECRs

well-suited horizon scale

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 24: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Possible sources and the Hillas plot:

pulsars

Galactic halo

AGN cores

GRB

cluster

SNR

radio galaxies

AU Mpckpcpc

−9

−7

−5

−3

−1

1

3

5

7

9

11

13

0 2 4 6 8 10 12 14 16 18 20 22log(R/km)

log(

B/G

)

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 25: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Possible sources and the Hillas plot:

pulsars

Galactic halo

AGN cores

GRB

cluster

SNR

radio galaxies

AU Mpckpcpc

−9

−7

−5

−3

−1

1

3

5

7

9

11

13

0 2 4 6 8 10 12 14 16 18 20 22log(R/km)

log(

B/G

)

contains only size constraint; additionally

age limitation: SNR, galaxy clusters

energy losses: pulsars, AGN

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 26: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

[]

Page 27: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Standard Galactic source: SNRs

energetics:sources are SNRs:kinetic energy output of SNe:10M⊙ ejected with v ∼ 5 × 108 cm/s every 30 yr⇒ LSN,kin ∼ 3 × 1042 erg/s

explains local energy density of CR ǫCR ∼ 1 eV/cm3 for aescape time from disc τesc ∼ 6 × 106 yr and efficieny ∼ 1%

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 28: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Standard Galactic source: SNRs

energetics:sources are SNRs:kinetic energy output of SNe:10M⊙ ejected with v ∼ 5 × 108 cm/s every 30 yr⇒ LSN,kin ∼ 3 × 1042 erg/s

explains local energy density of CR ǫCR ∼ 1 eV/cm3 for aescape time from disc τesc ∼ 6 × 106 yr and efficieny ∼ 1%

1.order Fermi shock acceleration ⇒ dN/dE ∝ E−γ withγ = 2.0 − 2.2

diffusion in GMF with D(E) ∝ τesc(E) ∼ E−δ and δ ∼ 0.5explains observed spectrum E−2.6

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 29: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Standard Galactic source: SNRs

energetics:sources are SNRs:kinetic energy output of SNe:10M⊙ ejected with v ∼ 5 × 108 cm/s every 30 yr⇒ LSN,kin ∼ 3 × 1042 erg/s

explains local energy density of CR ǫCR ∼ 1 eV/cm3 for aescape time from disc τesc ∼ 6 × 106 yr and efficieny ∼ 1%

1.order Fermi shock acceleration ⇒ dN/dE ∝ E−γ withγ = 2.0 − 2.2

diffusion in GMF with D(E) ∝ τesc(E) ∼ E−δ and δ ∼ 0.5explains observed spectrum E−2.6

Problems:

maximal energy Emax too low

anisotropy too large

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 30: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

2.nd order Fermi acceleration

consider CR with initial energy E1 “scattering” at a “cloud”moving with velocity V :

V

E p

E p

θ θ

1 1

2 2

1 2

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 31: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Energy gain ξ ≡ (E2 − E1)/E1?

Lorentz transformation 1: lab (unprimed) → cloud (primed)

E′1 = γE1(1 − β cos ϑ1) where β = V/c and γ = 1/

1 − β2

Lorentz transformation 2: cloud → lab

E2 = γE′2(1 + β cos ϑ′

2)

scattering off magnetic irregularities is collisionless, the cloudis very massive

⇒ E′2 = E′

1

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 32: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Energy gain ξ ≡ (E2 − E1)/E1?

⇒ E′2 = E′

1:

• Lorentz transformation 1: lab → cloud

E′1 = γE1(1 − β cos ϑ1)

︸ ︷︷ ︸where β = V/c and γ = 1/

1 − β2

• Lorentz transformation 2: cloud → lab

E2 = γE′2(1 + β cos ϑ′

2)

⇒ ξ =E2 − E1

E1

=1 − β cos ϑ1 + β cos ϑ′

2 − β2 cos ϑ1 cos ϑ′2

1 − β2− 1.

we need average values of cos ϑ1 and cos ϑ′2:

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 33: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Assume: CR scatters off magnetic irregularities many times in cloud⇒ its direction is randomized,

〈cos ϑ′2〉 = 0.

collision rate CR–cloud: proportional to their relative velocity(v − V cos ϑ1):⇒ for ultrarelativistic particles, v = c,

dn

dΩ1

∝ (1 − β cos ϑ1),

and we obtain

〈cos ϑ1〉 =

cos ϑ1dn

dΩ1

dΩ1/

∫dn

dΩ1

dΩ1= −β

3

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 34: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Energy gain ξ for 2.nd order Fermi:

Plugging 〈cos ϑ′2〉 = 0 and 〈cos ϑ1〉 = −β

3into formula for ξ gives

ξ =1 + β2/3

1 − β2− 1 ≃

4

3β2

since β ≪ 1.

ξ ∝ β2 > 0 ⇒ energy gain

– O(ξ) = β2,because β ≪ 1: average energy gain is very small

– ξ depends on drift velocity of “clouds”

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 35: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

[]

Page 36: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Diffusive shock acceleration

consider CR with initial energy E1 “scattering” at a shock movingwith velocity Vs:

shock

V

EEE

E

E

E E

θV

V

11

1

1

2

22

1

θ2

p

p s

E2

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 37: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

same discussion, but now different angular averages:

projection of istropic flux on planar shock:

dn

d cos ϑ1

=

2 cos ϑ1 cos ϑ1 < 00 cos ϑ1 > 0

thus 〈cos ϑ1〉 = −23

and 〈cos ϑ2〉 = 23

⇒ ξ ≈4

3β =

4

3(u1 − u2)

+ ξ ∝ β: “efficient”+ test particle approximation: universal spectrum

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 38: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Energy spectrum

• energy after n acceleration cycles

En = E0(1 + ξ)n

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 39: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Energy spectrum

• energy after n acceleration cycles

En = E0(1 + ξ)n

• if escape probability per encounter is pesc, then probability tostay in acceleration region after n encounters is (1 − pesc)

n

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 40: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Energy spectrum

• energy after n acceleration cycles

En = E0(1 + ξ)n

• if escape probability per encounter is pesc, then probability tostay in acceleration region after n encounters is (1 − pesc)

n

• number of encounters needed to reach En is

n = ln

(En

E0

)

/ ln (1 + ξ)

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 41: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Energy spectrum

• energy after n acceleration cycles

En = E0(1 + ξ)n

• if escape probability per encounter is pesc, then probability tostay in acceleration region after n encounters is (1 − pesc)

n

• number of encounters needed to reach En is

n = ln

(En

E0

)

/ ln (1 + ξ)

• fraction of particles with energy > En is

f(> En) =∞∑

m=n

(1 − pesc)m =

(1 − pesc)n

pesc

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 42: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Energy spectrum

• number of encounters needed to reach E is

n = ln

(E

E0

)

/ ln (1 + ξ)

︸ ︷︷ ︸

• fraction with energy > E is

f(> E) =(1 − pesc)

n

pesc

∝1

pesc

(E

E0

where

γ = ln

(1

1 − pesc

)

/ ln(1 + ξ) ≈ pesc/ξ

shock: pesc ∝ u2 ⇒ γ ≈ pesc/ξ ≈ 3u1/u2−1

strong shock: R ≡ u1/u2 = 4 and dN/dE ∝ E−2

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 43: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Maximal energy of SNR: Lagage-Cesarsky limit

acceleration rate

βacc =dE

dt

∣∣∣∣acc

=3Ev2

sh

ζD(E), ζ ∼ 8 − 20

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 44: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Maximal energy of SNR: Lagage-Cesarsky limit

acceleration rate

βacc =dE

dt

∣∣∣∣acc

=3Ev2

sh

ζD(E), ζ ∼ 8 − 20

assume Bohm diffusion D(E) = cRL/3 ∝ E and B ∼ µG

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 45: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Maximal energy of SNR: Lagage-Cesarsky limit

acceleration rate

βacc =dE

dt

∣∣∣∣acc

=3Ev2

sh

ζD(E), ζ ∼ 8 − 20

assume Bohm diffusion D(E) = cRL/3 ∝ E and B ∼ µG

⇒ Emax ∼ 1013—1014 eV

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 46: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Maximal energy of SNR: [Bell, Luzcek ’02, Bell ’04 ]

(resonant) coupling CR ↔ Alfven waves

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 47: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Maximal energy of SNR: [Bell, Luzcek ’02, Bell ’04 ]

(resonant) coupling CR ↔ Alfven waves

non-linear non-resonant magnetic field amplification

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 48: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Maximal energy of SNR: [Bell, Luzcek ’02, Bell ’04 ]

(resonant) coupling CR ↔ Alfven waves

non-linear non-resonant magnetic field amplification

requires also D(E) ∼ E0.5 → E

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 49: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Maximal energy of SNR: [Bell, Luzcek ’02, Bell ’04 ]

(resonant) coupling CR ↔ Alfven waves

non-linear non-resonant magnetic field amplification

requires also D(E) ∼ E0.5 → E

observational evidence for B ∼ 100µG in young SNR rims

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 50: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Maximal energy of SNR: [Bell, Luzcek ’02, Bell ’04 ]

(resonant) coupling CR ↔ Alfven waves

non-linear non-resonant magnetic field amplification

requires also D(E) ∼ E0.5 → E

observational evidence for B ∼ 100µG in young SNR rims

⇒ Emax ∼ 1015—1016 eV

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 51: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

SNR RX J1713.7-3946

/%#;"

7!;"

changes on δt ∼ 1 yr imply B ∼ 1mG

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 52: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Knee:

106 107 108

102

103Fe

CHe

pp

Fe

CHe

KASCADE

AKENO

E, GeV

J(E

)E2.

5 , m-2s-1

sr-1G

eV1.

5

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 53: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Energy losses, the dip and the GZK cutoff

1e-11

1e-10

1e-09

1e-08

1e-07

18 18.5 19 19.5 20 20.5 21 21.5

(1/E

)*d

E/d

t [1

/yr]

log10(E/eV)

pion production

pair production

redshift

at E ∼ 4 × 1019 eV:N + γ3K → ∆ → N + πstarts and reduces freemean path to∼ 20 Mpc

pair production leedsto a dip at ∼ 1019 eV

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 54: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

The dip model

1017 1018 1019 1020 1021

10-2

10-1

100

ηtotal

2

1 η

ee

2

1

1: γg=2.7

2: γg=2.0

mod

ifica

tion

fact

or

E, eVNordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 55: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

The dip model

1017 1018 1019 1020 1021

10-2

10-1

100

ηtotal

HiRes I - HiRes II

ηee

γg=2.7

mod

ifica

tion

fact

or

E, eVNordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 56: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

The dip model

1017 1018 1019 1020 102110-2

10-1

100

ηtotal

ηee

FeAl

red shift

Hep

γg=2.7

m

odifi

catio

n fa

ctor

E, eVNordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 57: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

The dip model

1017 1018 1019 1020 1021

10-2

10-1

100

ηtotal

HiRes I - HiRes II

ηee

γg=2.7

mod

ifica

tion

fact

or

E, eV

good fit w. 1 parameter: evidence for protons

transition below E ∼ 1018 eV

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 58: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Deflection of protons in Galactic B-field:

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 59: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Unified AGN picture

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 60: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Correlations with AGNs: PAO analysis

27 CRs (⊙) and 472 AGN (∗):

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 61: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Correlations with AGNs: PAO analysis

adding more date:

Total number of events (excluding exploratory scan)10 20 30 40 50

data

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

= 0.21iso

p

Data

68% CL

95% CL

99.7% CL

Total number of events (excluding exploratory scan)10 20 30 40 50

data

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 62: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Chemical composition via Xmax:

/decade] 18 19

]2>

[g/c

mm

ax<X

650

700

750

800

850

proton

iron

QGSJET01QGSJETIISibyll2.1EPOSv1.99

Auger 2009

HiRes ApJ 2005

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 63: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Chemical composition via RMS(Xmax) from Auger:

E [eV]

1810 1910

E [eV]

1810 1910

]2)

[g/c

mm

axR

MS

(X

10

20

30

40

50

60

70 proton

iron

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 64: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Mixed composition:

Mean 744.8RMS 62.02

]2 [g/cmmaxX600 650 700 750 800 850 900 9500

0.02

0.04

0.06

0.08

0.1

0.12

Mean 744.8RMS 62.02

70% proton

30% iron

sum

σ2 =∑

i

fiσ2i +

i<j

fifj(Xmax,i − Xmax,j)2

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 65: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Restricting QCD: Color Glass Condensates, . . .

550

600

650

700

750

800

850

108 109 1010 1011

Xm

ax [g

/cm

2 ]

energy [GeV]

Seneca 1.2

Sibyll (p,Fe)BBL r.c. (p)BBL f.c. (p)

Hires Stereo

[Drescher, Dumitru, Strikman ’04 ]

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 66: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Violation of Lorentz invariance (LI)

quantum gravity (“space-time foam”) or dim. reductiond = n > 4 → 4 could induce tiny departures from LI

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 67: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Violation of Lorentz invariance (LI)

quantum gravity (“space-time foam”) or dim. reductiond = n > 4 → 4 could induce tiny departures from LI

⇒ non-universal maximal velocities

⇒ changed dispersion relations may allow p → p + γ orγ → e+e−

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 68: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Violation of Lorentz invariance (LI)

quantum gravity (“space-time foam”) or dim. reductiond = n > 4 → 4 could induce tiny departures from LI

⇒ non-universal maximal velocities

⇒ changed dispersion relations may allow p → p + γ orγ → e+e−

example: modify

LQED = −1

4ηνρηµσF νµF ρσ

byηνρηµσ → ηνρηµσ + κνρµσ

observation of TeV photons and UHECRs gives|κνρµσ| < 10−18

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 69: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Violation of Lorentz invariance (LI)

quantum gravity (“space-time foam”) or dim. reductiond = n > 4 → 4 could induce tiny departures from LI

⇒ non-universal maximal velocities

⇒ changed dispersion relations may allow p → p + γ orγ → e+e−

generically: linear terms excluded, but allowed

0 = ω2 − k2 +

(ω2

k2

M2P

)

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 70: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

suppose,cγ − cπ0 = cγ − ce = 10−22

then π0 is stable above E ∼ 1019 eV and photon unstable!

similar in the GZK cutoff reaction p + γ3K → ∆(1232) thresholdcondition for head-on collision changed to

2ω +m2

p

2E≥ (c∆ − cp)E +

M2∆

2E

if c∆ − cp ≥ 2 × 10−25, reaction forbidden

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 71: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Summary

qualitative agreement of standard DSA in SNRs picture with data

⇒ requires non-linear field amplification

⇒ quantitative description from first principles in reach?

main experimental question: fixing discrepancies in exp. results forchemical composition

progress in multi-messenger astronomy requires:

go beyond IceCube

better astrophysical understanding of sources

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 72: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Summary

qualitative agreement of standard DSA in SNRs picture with data

⇒ requires non-linear field amplification

⇒ quantitative description from first principles in reach?

main experimental question: fixing discrepancies in exp. results forchemical composition

progress in multi-messenger astronomy requires:

go beyond IceCube

better astrophysical understanding of sources

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 73: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Summary

qualitative agreement of standard DSA in SNRs picture with data

⇒ requires non-linear field amplification

⇒ quantitative description from first principles in reach?

main experimental question: fixing discrepancies in exp. results forchemical composition

progress in multi-messenger astronomy requires:

go beyond IceCube

better astrophysical understanding of sources

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 74: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Summary

qualitative agreement of standard DSA in SNRs picture with data

⇒ requires non-linear field amplification

⇒ quantitative description from first principles in reach?

main experimental question: fixing discrepancies in exp. results forchemical composition

progress in multi-messenger astronomy requires:

go beyond IceCube

better astrophysical understanding of sources

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics

Page 75: Michael Kachelrieß NTNU, Trondheimweb.phys.ntnu.no/~mika/gausdal1.pdf · 2.nd order Fermi acceleration consider CR with initial energy E1 “scattering” at a “cloud” moving

Summary

qualitative agreement of standard DSA in SNRs picture with data

⇒ requires non-linear field amplification

⇒ quantitative description from first principles in reach?

main experimental question: fixing discrepancies in exp. results forchemical composition

progress in multi-messenger astronomy requires:

go beyond IceCube

better astrophysical understanding of sources

Nordic Winterschool, Gausdal 2011 Michael Kachelrieß High Energy Astrophysics