methods of seismic data processing,

Upload: aaron-gamboa

Post on 07-Jul-2018

252 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/18/2019 Methods of Seismic Data Processing,

    1/409

     

     

  • 8/18/2019 Methods of Seismic Data Processing,

    2/409

     

    Methods of Seismic Data ProcessingGeophysics 557/657

    Course Lecture Notes

    420 Pages

    Winter 2005 

    byG.F. Margrave, Associate Professor, P.Geoph.

    The CREWES ProjectDepartment of Geology and Geophysics

    The University of CalgaryCalgary, Alberta, T2N-1N4

    [email protected] 

  • 8/18/2019 Methods of Seismic Data Processing,

    3/409

     

    Table of Contents 

    Section Title  Page NumberChapter 1: Synthetic Seismograms 30 pages The Big Picture 1-2Elastic Waves 1-7

    Well Logs 1-9Gardner's Rule 1-11The Wave Equation 1-14Traveling Waveforms 1-17Normal Incidence Reflection Coefficients 1-19Synthetic Seismogram Algorithms 1-23Synthetic Seismogram Examples 1-28P-S Synthetic Seismogram Construction 1-30

    Chapter 2: Signal Processing Concepts 76 pages Convolution 2-2Convolution by Replacement 2-5Convolution as a Weighted Sum 2-6Matrix Multiplication by Rows 2-7Matrix Multiplication by Columns 2-8Convolution as a Matrix Operation 2-9Fourier Transforms and Convolution 2-13Fourier Analysis and Synthesis 2-19Fourier Analysis Example 2-21Fourier Transform Pairs 2-23The Dirac Delta Function 2-25The Convolution Theorem 2-27Sampling 2-29The Discrete Fourier Transform 2-33The Fast Fourier Transform 2-37

    Filtering 2-38The Z Transform 2-39Crosscorrelation 2-44Autocorrelations 2-46Spectral Estimation 2-48Wavelength Components 2-53Apparent Velocity (or phase velocity) 2-56The 2-D F-K Transform 2-58F-K Transform Pairs 2-62-p Transforms 2-63

    Properties and uses of the -p Transform 2-68Inverse -p Transforms 2-71Least Squares -p and f-k Transforms 2-74

    Chapter 3: Amplitude Effects 32 pages Seismic Wave Attenuation 3-2True Amplitude Processing 3-8Automatic Gain Correction (AGC) 3-9Trace Equalization (TE) or Trace Balancing 3-13Constant Q Effects 3-14Minimum Phase Intuitively 3-18Minimum Phase and the Hilbert Transform 3-21

  • 8/18/2019 Methods of Seismic Data Processing,

    4/409

     

    Minimum Phase and Velocity Dispersion 3-25Array Theory 3-27

    Chapter 4: The Convolutional Model and Deconvolution 61 pages Bandlimited Reflectivity 4-2The Convolutional Model 4-4

    Frequency Domain Spiking Deconvolution 4-12Finding a Wavelet's Inverse 4-20Wiener Spiking Deconvolution 4-23Prediction and Prediction Error Filters 4-28Gapped Predictive Deconvolution 4-32Burg (Maximum Entropy) Deconvolution 4-36The Minimum Phase Equivalent Wavelet 4-39Vibroseis Deconvolution 4-41Deconvolution Pitfalls 4-47Reflectivity Color 4-55Q Example 4-58

    Chapter 5: Surface Consistent Methods 29 pages 

    Seismic Line Coordinates 5-2A Surface Consistent Convolutional Model 5-5Surface Consistent Methods 5-9Statics and Datums 5-12Statics with Uphole Times 5-17Surface Consistent Residual Statics 5-19Refraction Statics 5-25

    Chapter 6: Velocity Definitions and Simple Raytracing 26 pages Velocity in Theory and Practice 6-2Instantaneous Velocity 6-3Vertical Traveltime 6-4Vins as a Function of Vertical Traveltime 6-6Average Velocity 6-8Mean Velocity 6-10RMS Velocity 6-11Interval Velocity 6-13Snell's Law 6-18Raytracing in a v(z) Medium 6-20Measurement of the Ray Parameter 6-24Raypaths when v = vo + cz 6-25

    Chapter 7: Normal Moveout and Stack 38 pages Normal Moveout 7-2Stacking Velocity 7-5

    Normal Moveout and Reflector Dip 7-6NMO for a V(z) Medium 7-10Dix Equation Moveout 7-13Normal Moveout Removal 7-15Extension of NMO and Dip to V(z) 7-17NMO for Multiple Reflections 7-22CMP Stacking 7-27Post Stack Considerations 7-30ZOS: A Model for the CMP Stack 7-34Fresnel Zones 7-36

  • 8/18/2019 Methods of Seismic Data Processing,

    5/409

     

    Chapter 8: Migration Concepts 52 pages Raytrace Migration of Normal Incidence Seismograms 8-2Time and Depth Migrations, A First Look 8-5Elementary Constant Velocity Migration 8-6Huygen's Principle and Point Diffractors 8-9

    The Exploding Reflector Model 8-14F-K Migration, Geometric Approach 8-20F-K Migration, Mathematics 8-25F-K Wavefield Extrapolation 8-27Recursive F-K Wavefield Extrapolation for v = v(z) 8-31The Extrapolation Operator 8-33Vertical Time-Depth Conversions 8-36Time and Depth Migration in Depth 8-37Kirchhoff Migration 8-40Finite Difference Concepts 8-43Finite Difference Migration 8-46

    Chapter 9: The Third Dimension 32 pages 

    Impulse Responses 9-2Wave Propagation 9-6Fresnel Zones 9-7Wavelength Components 9-10Apparent Velocity (or phase velocity) 9-13The F-K Transform 9-15F-K Transform Pairs 9-19F-L transform Computation 9-203-D Migration by Double 2-D 9-24Exploitable Symmetries 9-27Mapping Strategies 9-29Time migration of traveltime maps 9-31

    Chapter 10: Seismic Resolution Limits 35 pages Resolution Concepts 10-2Linear v(z) resolution theoru for zero offset seismic data 10-18

    Chapter 11: Study Guide 9 pages Geophysics 557 Final Exam Study Guide 11-2Exam Sampler 11-7

  • 8/18/2019 Methods of Seismic Data Processing,

    6/409

    Methods of Seismic Data Processing 1-1

    Methods of Seismic Data Processing

    Lecture Notes

    Geophysics 557

    Chapter 1

    Synthetic Seismograms

  • 8/18/2019 Methods of Seismic Data Processing,

    7/409

    1-2 Synthetic Seismograms

    The Big Picture

    Th e s imp les t mode l o f s ei sm ic d at a i s t h at o f a w ave le t

    c onvo lv ed wi t h re f l ect i v it y . The p i c ture i s s imp le a nd

    ap pea li ng . A c ompact p uls e of sound i s sen t d ow n in t o

    t he e ar t h an d s ca l ed c op i es o f i t are re f l ec ted f r om the

    ma jor f ormation b ounda ri es .

    T hese echoes ar e recorde d o ve r t he e xten t o f the

    seismic ex per iment an d a na l yzed . S i nce each echo i s a

    sca led c opy of th e s our ce w aveform , s imp le compar ison

    m akes i t i s easy t o deduc e t he re lat ive streng th o f the

    dif ferent ref lect ing hor izons . T he est imate d set o f

    re fle ct i on coe ff ic ie nts i s c al le d t he r ef le ct i vi ty f unct io n

    o f t he earth b enea th the s ur ve y.

    It s a n i ce concep t bu t is i t v a li d ? How can i t b e

    de fen ded f ro m ba si c phys i c al pr inc ip le s ? What

    as sumpt i on s ( th er e ar e al w ays a s sump t io n s i n ph ys i cs )

    ar e requ i red ? Whe n ar e t hey just i fi ed a nd w hen are t he y

    not?

  • 8/18/2019 Methods of Seismic Data Processing,

    8/409

    Methods of Seismic Data Processing 1-3

    The Big Picture

    Once we s ta rt t o t hi nk about the i dea, we can immediatel y

    come up with a lot o f q ue stions suc h as:

    • How can we procede if we don t know the source waveform?

    • What if several echos are very closely spaced?

    • How can we tell where the echo came from?

    • I sn t ther e at tenua ti on o f sei sm ic ene rgy and doesn t t hi s

    change the source waveform?

    • What is convolution anyway? (And why should I care?)

    • What about multiple bounce echos? Don t they confuse things?

    • How can I decide how much source energy I need?

    • What are the limits of the detail that can be resolved?

    • What are the tradeoffs with Vibroseis and dynamite?

    • What is reflectivity anyway? (And why should I care?)

    • If things are so simple, how come seismic processing is so

    complicated? Maybe those processors are just fooling us ...

    • Why can t I j ust t ru st the seismic p roces so r t o take c are

    of these messy deta ils?

    I m su re tha t you ca n th in k o f more quest ions a s we ll . A l l

    o f t hese q ues ti on s have the ir re levance and I hope to

    addr ess m an y of them in th is course . A t t he end , you

    shou ld h av e a good u nderstandi ng o f the strength s a nd

    weakness es o f th e c onv olu ti on al m ode l a nd t hi s s ho uld

    he lp y ou fo rm a hea lthy , scept ica l v ie w o f f in al se is mi c

    images.

    • What s this band-limited stuff?

  • 8/18/2019 Methods of Seismic Data Processing,

    9/409

    1-4 Synthetic Seismograms

    The Big Picture

    Se ism i c d at a p roc ess i ng i s typ ic a ll y d iv ided in to many

    steps t hou gh t he r ea li ty i s t hat t he s eism i c re f l ec t i on

    p roces s d oe s n ot c le anly separ at e i n to d i s cre te

    p ac ka ge s . W e have a sou rc e wh ich sends out a

    comp li cat ed , l ar ge l y u nk nown wavef orm whi ch e xpand s,

    at ten uat es , r ef lec ts , t ransmit s, c hanges m odes , an d

    general l y s c at t er s a bou t wh i le a s et of re c ei ve rs

    p la c id ly recor d s whatever comes the ir wa y. And

    general l y what h i t s t h e re cor der s is f ar mor e

    compl i cat ed t h an t h e s impl e d i re c t e ch os t h at w e wan t :

    P wave

    reflection

    Surface wave

    S wave

    reflection

    Receivers

      ll kinds o f waves

    sweep across the

    receivers

    Go d wou ld n ot p r oce ss s ei sm ic d at a th e wa y we do . ( I v e

    r ec e iv ed a r eve l at i on o n t h at p oin t . ; - } ) In s tead , H e

    w ou l d b ac k t he waves d ow n in to the e ar t h undo in g al l

    physi c al e f fec t s a t t h e p oi n t where they occu rred . W e

    ar e p r evented f ro m do in g th i s l ar ge l y becau s e of

    i gn orance of t he subsurf ac e st ructure . T hat i s, i n o rder

    t o u nd o the phys i cal e ffects o f wav e p r opaga t io n , we

    r equ i re k now l edge of t h e subsurf a ce p r ope r ti e s that

    c on tr ol t ho se e ff ec ts . U n fo rt u nat el y , thos e are t h e v e ry

    p r oper ti e s wh ic h we hope t o d i scover w i th t h e s ei sm ic

    exper iment in the f i rs t p l ac e . P ro blems of th i s so rt a re

    c ommon in g eoph ys i cs an d ar e c al l ed i nv ers e p r ob l ems .

  • 8/18/2019 Methods of Seismic Data Processing,

    10/409

    Methods of Seismic Data Processing 1-5

    The Big Picture

    So , f ac ed w i th t he need t o f i nd a s olut ion i n sp i te of

    almost total ig nor ance , w e subd iv ide,

    c omp ar tm en ta li ze, assume, an d ap pr ox im at e un ti l w e

    r ea ch a r es t atement of t h e p r ob l em wh i ch i s s o v as t l y

    s imp l if i ed that w e c an actual ly so l ve it . An example of

    such a t remen dou s over simpl i f ica t io n i s the

     convol ut ion al m od el o f the s e ismi c t ra ce w hi ch is of

    cen tral impor t ance t o deconvo lu t i on theor y.

    C ontinu ing w it h sweep i ng g ener al i ti e s , we c an gr ou p

    most p hy si cal l y ba se d s eismi c p roc es se s i nt o one of t wo

    g roups : imagi ng p r oce sse s and deconvol ut ion p r oce s se s .

    Imagi ng p rocesses a ttempt t o d ete rmin e the co rrec t

    s p at i al p os i t io n o f t h e echos an d ar e t yp i f i ed b y nmo

    r emoval , c mp s tac king , an d m igr at ion . Decon volut ion

    p r oc e ss e s attempt t o r emov e t h e i l luminat in g w av ef o rm

    an d m ax im ize the r e so luti o n of t h e se i smic image .

    E x amples ar e g ai n r ec ov er y, s tat i s t i ca l d ec on vo luti on ,

    i n v er s e Q f i lt er i ng, an d wave l et p r oce ss i ng .

    Deconvolution

    techniques

  • 8/18/2019 Methods of Seismic Data Processing,

    11/409

    1-6 Synthetic Seismograms

    The Big Picture

    In ord er t o u nder stan d t he impl i cat ion s of ou r si m pli f i ed

    theor ie s , it is important t o unders t an d as much a s

    poss i bl e a bou t t h e m or e r ea li s t ic p hys i c s t h at w e ar e

    ap pro x imat i ng. The ref or e , i n add it i on t o studyi n g

    ma themat ic a l s imp li fi c at i ons s uc h as t h e c on v ol ut ion a l

    model , w e wi l l n ot h es i t at e t o examine of t h e most

    import an t p h ys i cal mec han isms i nv ol v ed i n s ei sm ic wav e

    propagat ion.

    physics of continuous media

    anelastic wave theory

    elastic wave theory

    primaries multiples etc

    one way scalar waves

    imaging methods

    the convolutional model

    deconvolution methods

  • 8/18/2019 Methods of Seismic Data Processing,

    12/409

    Methods of Seismic Data Processing 1-7

    Elastic Waves

    The simple s t e la st i c mat er i al r equ ir e s 2 fundamenta l

    c onstants t o descri be th e re la t io n be twe en st ress an d

    s t ra in k n own a s H oo ke s l aw :

    σii   =   λΔ   + 2μεii, i=x,y,z   Δ   =   εxx+εyy+εzz

    σij   =   μεij, i=x,y,z, i≠j  (Sherrif and Geldart,

    Exploration Seismology, 1981)

    Here  

    i j

    denot e s t he c omponents of t h e st res s tenso r

    an d e

    i j

    t h e c ompon en ts of t h e s tr ai n t enso r.   an d μ ar e

    c al l ed t he L ame cons tan ts an d μ is a ls o of t en known a s

    t he shea r modul us. μ i s z er o f or a f lu id . Other con stants

    ar e of ten al s o re ferenced such as Young s modu lus , E ,

    P oi ss on s r at io ,   , an d t he bu l k m odu lus, k . These

    c ons tan t s ar e al l r e la t ed i n v ari ous w ays an d any t wo

    su ff i ce t o d e sc r i be t h e el as t ic mat er ia l .

    E = μ 3λ+2μλ+μ

    σ   =   λ2 λ+μ

      k =   3λ+2μ3

    The description of elastic wave in such a medium, requires the

    application of Newton s second law (f=ma). This leads to the

    incorporation of the density,

    ρ,

    as a necessary constant in the role

    of mass in Newton s second law. Thus, analysis of elastic waves

    in the most simple elastic solid (homogeneous and isotropic),

    requires three parameters: any two of:

     , μ

    , E,

     

    , and k, plus the

    density, ρ.

  • 8/18/2019 Methods of Seismic Data Processing,

    13/409

    1-8 Synthetic Seismograms

    Elastic Waves

    It is well established in theory

    1,2,3

    that a homogeneous, isotropic

    elastic solid supports two distinct types of body waves:

    compressional and shear. Compressional or P waves are

    characterized by particle motion parallel to the direction of wave

    propagation. Shear or S waves have particle motion transverse to

    the direction of wave propagation. P and S waves have velocities

    of propagation given by:

    1: Waters, Reflection Seismology, 1987

    3: Aki and Richards, Quantitave Seismology Theory and Methods,

    1980,

    α   =λ+2μ

    ρ  β   =

      μ

    ρ

    We may choose to regard α and β as fundamental constants

    (together with ρ). Some relationships are:

    λ   =   ρ α2–2β2 μ   =   ρβ2 σ   =

      α2–2β2

    2 α2–β2α

    β  =

    2 1 – σ

    1 – 2σ

    0.2 0.25 0.3 0.35 0.4 0.451.5

    2

    2.5

    3

    3.5

    Poisson's ratio

    2: Sherrif and Geldart, Exploration Seismology, 1982

  • 8/18/2019 Methods of Seismic Data Processing,

    14/409

    Methods of Seismic Data Processing 1-9

    Well Logs

    Well logging is a technology designed to make geophysical

    measurements in a bore hole. Well logs are the most common way

    to get information about the elastic parameters of rocks which are

    needed for making synthetic seismograms. Three very common

    logs, which are of interest to us, are

    SON ... P-wave interval transit time

    SSON ... S-wave interval transit time

    RHOB ... density

    The interval transit time logs are usually provided in units of

    microseconds/lu (lu= meters or feet). Thus, the P and S wave

    velocities are found as:

    α   =  10

    6

    sonβ   =

      106

    sson

    Units for density logs can vary. Be careful to work with consistent

    units.

    Digital well logs are usually packaged in ascii flat files in either GMA

    or LAS format. The LAS format is more modern and flexible and is

    to be preferred.

  • 8/18/2019 Methods of Seismic Data Processing,

    15/409

    1-10 Synthetic Seismograms

    15

    0

    20

    0

    25

    0

    30

    0

    35

    0

    1400

    1450

    1500

    1550

    1600

    1650

    Units of log SON

    100/08-08-023-23 W4

    mannville

    coal_1coal_2

    coal_3

    glauc_ch_top

    glauc_ss_top

    glauc_base

    miss

    base

    glauc_1

    18

    0

    20

    0

    22

    0

    24

    0

    26

    0

    28

    0

    30

    0Units of log RHOB

    100/08-08-023-23 W4

    Well Logs

    Here are some example logs from 8-8, an oil well in the Blackfoot

    field

    1400

    1450

    1500

    1550

    1600

    1650

    mannville

    coal_1coal_2

    coal_3

    glauc_ch_top

    glauc_ss_top

    glauc_base

    miss

    base

    glauc_1

    Faster

    More dense

    Why do these logs appear to have a negative correlation?

  • 8/18/2019 Methods of Seismic Data Processing,

    16/409

    Methods of Seismic Data Processing 1-11

    Gardner s Rule

    We ll l og s a re o f ten i nadequat e, i ncomp let e, o r m i ssi ng .

    One c ommon ex amp le o f th i s c omes f ro m the f ac t tha t

    s on i c lo gs ( SON) a re ru n much m or e f r equ ent l y t h an

    dens it y l og s. Thus we a re of ten f aced w it h t he nee d t o

    c re at e a s e ismogr am w ithout dens i ty i n formation .

    Ga rd ner et a l. (1) , f ol low ed the r ea so nab le approac h o f

    s ee ki n g an em pir i cal r el at ionsh i p b etwee n P -wav e

    ve lo c it y a nd d ensi t y. B e lo w i s a c r os splo t o f a and r fo r

    B l ac kfo ot 8 -8 w hi ch ind icat es a re as on abl e c or rel at ion

    ex ists :

    1

    Ga rdne r , G .H .F ., Ga rd ne r , L . W ., and G regor y, A .R. , 19 74 , Forma ti on

    ve lo cit y and den s it y - t he d iagno sti c ba si s f or s tra tigr ap hic tr a ps ,

    G eophys ic s , 39 , 770-780

    2000 3000 4000 5000 6000 70001800

    2000

    2200

    2400

    2600

    2800

    3000

    P-wave velocity

  • 8/18/2019 Methods of Seismic Data Processing,

    17/409

    1-12 Synthetic Seismograms

    Gardner s Rule

    Gardner et al. sought and found a relationship of the form:

    ρ   =   a αm

    Th e c onstan t s a an d m c an be d et e rmin ed f ro m fi t t ing a

    s t ra ig h t l ine t o an p l ot o f lo g(

    ρ

    ) v e rs u s l og(

    α

    ) . Be low

    ar e t he r es ul t s o f s ev era l s uc h f it s t o B l ac kf oot 8-8 .

    2000 3000 4000 5000 6000 70001800

    2000

    2200

    2400

    2600

    2800

    3000

    3200

    m=.46

    m=.30

    m=.25

    Ga rd ner et al . det ermin ed an d r ecommended m=.25 a s a

    r ea sonab le v alue . H owever , as we c an s ee, t h e d at a

    support qu i te a ra nge of a lt ernat i ves . ( Th e v al ue of α i s

    l ar ge l y dependent o n t he un it s used an d i s n ot quoted

    he re . ) Thus , the c ar ef u l ap pli c at i on o f G ardner s ru l e

    r equ ires a bi t o f an al ys is .

    P-wave velocity

  • 8/18/2019 Methods of Seismic Data Processing,

    18/409

    Methods of Seismic Data Processing 1-13

    2500 30001400

    1450

    1500

    1550

    1600

    1650

    m=.30

    20002000 2500 30001400

    1450

    1500

    1550

    1600

    1650

    m=.46

    2000 2500 30001400

    1450

    1500

    1550

    1600

    1650

    m=.25

    Gardner s Rule

    Here are the three pseudo density logs from the three fits on the

    previous page.

    Actual density log from Blackfoot 8-8

    Result from a Gardner type regression against P-wave

    velocity

    Density Density Density

  • 8/18/2019 Methods of Seismic Data Processing,

    19/409

    1-14 Synthetic Seismograms

    The Wave Equation

    Th e g re at succes s of physi cs in exp l ai n ing o ur w or ld an d

    f ue li n g t h e gr ow t h of t ec hn olo gy i s ba se d f un damen ta ll y

    u pon d if fer en t i al e qu at io n s an d mor e spec i f ic a ll y p ar t ia l

    d i f fer ent i al equat ions . PDE s ar e t he mathemat i ca l

    s t atemen t of t h e app l ic at i on of b as i c physi c al l aws t o

    c om ple x s ystems. F or e x amp le , a c ons idera ti o n of a

    c ons tan t dens i ty f lu id l e ad s t o the s c al ar w av e

    e qu at ion wh ic h i s c entr al t o mos t ge op hys ic a l i mag in g

    al gor it hms. Th e SWE i s a d i r ec t conseq uence o f

    New ton s s econd l aw and H oo ke s l aw a s app l ie d t o t he

    f lu id.

    ∂2Ψ

    ∂x2

      +  ∂2Ψ

    ∂y2

      +  ∂2Ψ

    ∂z2

      –  1

    v2

    x,y,z

    ∂2Ψ

    ∂t2

     = f x,y,z,t

    He re Y i s t h e p ressure , v i s t h e v el o ci t y o f w av e

    p r opaga t io n , a nd f (x ,y ,z , t) r ep re s en t s an y p os s ib l e

    sources.

    Though i t is h ard l y obv iou s , t h e so lut ions t o th i s

    e qu at i on a re t ra v el in g w av es . A gr e at d e al of inte r es ti ng

    p hy si c al ef fe ct s ca n b e s tu di ed w it h t h e SWE i nc lu din g :

    • propagation of primaries and multiples

    • reflection and transmission at interfaces

    • head waves and surface waves

    • ray theory, Snell s law

    • characterization of sources

    • arrays of sources and receivers

  • 8/18/2019 Methods of Seismic Data Processing,

    20/409

    Methods of Seismic Data Processing 1-15

    The Wave Equation

    The re is a p owe rf u l method of s olut ion of PDE s that i s

    of cons id e rab le r el e v an ce exp lo ra t io n se ismo lo gy . Th i s i s

    t he m ethod o f s o lut ion by Gr een s fun ct ions. W e w il l n ot

    devel op i t h ere b ut s imply sta te the imp or t an t r esu l t s .

    Th e e ssence o f t h e t heo ry is t o deve lo p a s olut ion t o

    t he PDE o f in te re s t f or a po in t s ourc e an d then t o

    s how h ow the respon s e t o ar b it r ar y s ou rce

    c onf igura ti on s ca n be c onstructed fr om t he e lemen tar y

    s olut ion . T he SWE , when speci al i ze d f o r t h e Gr een s

    f un ct ion p ro bl em l ooks l i k e:

    ∂2G

    ∂x2

      +  ∂2G

    ∂y2

      +  ∂2G

    ∂z2

      –  1

    v2

    x,y,z

    ∂2G

    ∂t2

      =  δ x–xo,y–y

    o,z–z

    o,t–t

    o

    Th e t e rm on t he righ t of t h e equ al s ig n i s a D i ra c d el t a

    funct ion an d r epre s en t s a m athemati c al impu lse at a

    s i ngl e poi n t i n sp ace , ( x

    o

    ,y

    o

    , z

    o

    ) , a nd at an instant o f

    t ime , t o. T he s o lu t i on to t he Green s funct ion pro bl em,

    G(x, y ,z ,t ) , i s k now n exact l y f or constant ve lo c it y an d

    ap pro x imat el y fo r a number o f m or e compl ica t ed

    s i tuat i on s . G c onta in s al l physi c al e f fec ts due t o t he

    impu ls iv e s ou rce an d i s p rope rl y c al le d a n impu lse

    r espo nse .

    To ob t ai n t h e r es pons e t o g en e ra l s ou r ce c on fi gu ra t io n s,

    w e imag in e the sou rce to b e c omp ose d o f a s et of s cal ed

    impu lses . Then con st ru ct t he G re en s funct ion s f or a ll o f

    these impuls e s an d simp ly superimpose these Gr een s

    funct ion s . Th i s i s an e x amp l e of t h e mathemat i ca l

    p r oc e ss o f convolu t i on . We w il l l ea rn more ab out

    c onvo luti on l at er i n th i s c ou r se. Fo r n ow , it i s e nou gh t o

    v i sual iz e i t a s a ge ne ra l s upe rpos it io n of s c al e d impu lse

    responses .

  • 8/18/2019 Methods of Seismic Data Processing,

    21/409

    1-16 Synthetic Seismograms

    The Wave Equation

    T he resul t w e ha ve j us t obta ine d i s s o i mportant t hat w e

    r es ta te i t i n d if fe re nt terms :

    T he wavef ie ld d ue to a sou rce havi ng e xt ended spat ia l

    a nd tempora l f o rm can b e cons id e re d t o be the

    convo lu t ion o f t he ea rt h s impu ls e response wit h t he

    e xt ended sour ce . T his re su lt ho lds fo r a ny l ine ar wa ve

    e quat ion and ex tends t o el a st i c, a n isot rop i c a nd

    attenuat in g m ed ia .

    Th e t wo c omponents of th i s r esu lt , t he e ar th s impu lse

    r es po nse , I

    r

    , a nd t he s ou rce wavef orm , w

    s

    , are b ot h

    abs t ra ct ent i t ie s that ar e d i f f icu l t t o quant if y . I

    r

    i s

    g ene ral ly ve r y c omp l icat ed an d c on t ai n s al l ph ys i ca l

    e ff ec ts. w

    s

    i s a c omplete chara ct er iz at ion of t he s ou rc e

    w av efi e ld an d c an be cons ider ed as t he spec i f ica tio n o f

    t he wa vef i e ld at a ll poin t s on a s urf ace su r round ing t he

    source.

    Impulse response

    Response to 3 sources

  • 8/18/2019 Methods of Seismic Data Processing,

    22/409

    Methods of Seismic Data Processing 1-17

    Traveling Waveforms

    The s implest mathematical wave equat ion is the sca lar wave

    equation. I n acoustic media or s imple e lastic media ,

    compressional waves are governed by it . In 1-D, the scalar

    wave equation is :

    ∂2 ψ 

    ∂z 2

      =  1

    v2

    ∂2 ψ 

    ∂ t 2

    Where

    ψ

    represents the propagating wave. We now show that

    ψ   = f t±z/v

    is a solution to (1).

    (f is an arbitrary function)

    (1)

    ∂ f

    ∂ z=   ±

    1

    vf

    ,  ∂2 f

    ∂z 2

      =  1

    v2

    f′′

    ∂ f

    ∂t

    = f′

    ,  ∂

    2f

    ∂ t2

      = f′′

    Substitution of the second partials of f into (1) results in an

    immediate identity. Thus f is a solution to (1) with the form of f

    being arbitrary except that it must be twice differentiable.

  • 8/18/2019 Methods of Seismic Data Processing,

    23/409

    1-18 Synthetic Seismograms

    Traveling Waveforms

    w τ   = 1–2 πfdom

    τ2

    exp – πfdom

    τ2

    As an example of a waveform, consider the Ricker wavelet defined

    by:

    -0.05 0 0.05

    Shown for f

    dom

    =30Hz

    τ

    ->

    Note that the Ricker wavelet is centered where its argument equals

    zero. Thus w(t+z/v) represents a wavelet centered at t+z/v = 0 or

    z = -vt. So we conclude:

    w t+z/v = Waveform traveli ng

    i n the - z d ir ec ti on

    w t–z/v = Waveform travel ing

    i n t he +z directi on

    Similarly, cos(ω (t-z/v)), cos(k(z - vt)), and cos(ω t-kz) all

    represent cosine waves traveling in the +z direction.

    400 450 500 550 600-1

    -0.5

    0

    0.5

    1

    z-> (meters)

    cos 2π30 t–z/1000   Plotted versus z for t=1.0 and 1.01 (sec)

    1.01 se

    1.0 sec

    z=-vt

    z=vt

  • 8/18/2019 Methods of Seismic Data Processing,

    24/409

    Methods of Seismic Data Processing 1-19

    Normal Incidence Reflection Coefficients

    (Adapted from E.S. Krebes, Course Notes in Theoretical Seismology)

    f t–z/α1   g t+z/α1

    h t–z/α2

    Z

    α1,ρ

    1

    α2,ρ

    2

    Consider a vertical ly

    trave li ng compr essiona l

    wave incident on a

    hor izonta l inter face. In

    o rde r to descr ibe the

    ref le

    ction and

    transmiss ion that occur,

    i t can b e s hown tha t two

    condi tions must be

    satisfied:

    f + g = hontinuity of displacement:

    continuity of normal pressure:

    ???

    To develop a form for the second equation, we use Hookes

    law which says stress is proportional to strain.

    stress = (applied force)/area

    strain = (change in length)/length

    (1)

    (2)

    Incident

    displacement

    Reflected

    displacement

    Transmitted

    displacement

  • 8/18/2019 Methods of Seismic Data Processing,

    25/409

    1-20 Synthetic Seismograms

    Normal Incidence Reflection Coefficients

    Consider an infinitesimal elastic element

    whose ends undergo displacement u1 and u2:

    dzu1

    u2

    Strain =

    Δl

    l=

      u2–u

    1

    dz≈

      ∂ u

    ∂ z

    Now, invoking Hooke s law:

    stress = pressure =

    Forcearea

    = k   ∂ u∂ z

    Where k is a constant formed from the material constants. To

    determine k, we can use dimensional analysis:

    pressure =

    force units

    (length units)2=

      mass   l sec2l

    sec2

    l2

      =  mass

    l3

    l

    sec

    2

    So k looks like:

    k =   ρα2

    Thus the pressure continuity equation is:

    ρ1α

    1

    2∂ f

    ∂ z+   ρ

    1

    2∂ g

    ∂ z=   ρ

    2

    2 ∂ h

    ∂ z

    Which can be immediately integrated to give:

    ∂ f

    ∂ z=

      –1α1

    f′,  ∂ g

    ∂ z=

      1α1

    g ,  ∂ h

    ∂ z=

      –1α2

    h′But since

    ρ1α

    1f –   ρ

    1g =   ρ

    2h

    ρ1α

    1f –   ρ

    1g =   ρ

    2h   (2)

    (evaluated at the interface)

  • 8/18/2019 Methods of Seismic Data Processing,

    26/409

    Methods of Seismic Data Processing 1-21

    Normal Incidence Reflection Coefficients

    Assume that an interface occurs at z=0, then if the boundary

    conditions are applied there, the two equations determining normal

    incidence reflection and transmission are:

    f + g = h

    I1f – I1g = I2h

    Ik

      =   ρkα

    k  , k= 1,2

    here impedance =

    (1)

    (2)

    Multiplying (1) by

     

    , and subtracting it from (2) leads to:

    g =  I

    1–I

    2

    I1+I2f = –Rf

    h =

      2I1

    I +I f = T f1 2

    R =  I2–I1

    I1+I2

    , T =  2I1

    I1+I2

    Similarly, we can obtain:

    The quantities R and T are known as the normal incidence reflection

    and transmission coefficients:

    R+T =  I

    2–I

    1+2I

    1

    I1+I2= 1ote that:

    and where f,g, and h are understood to be evaluated at z=0.

  • 8/18/2019 Methods of Seismic Data Processing,

    27/409

    1-22 Synthetic Seismograms

    Normal Incidence Reflection Coefficients

    R =  I

    2–I

    1

    I1+I2, T =

      2I1

    I1+I2

    R and T are often written in terms of the contrast and average of

    impedance across the layer:

    I =  1

    2I

    1+I

    2  ,   ΔI = I

    2–I

    1

    I1   = I–.5ΔI , I2   = I+.5ΔI

    Straight forward algebra then gives:

    R =  ΔI

    2I≈

      1

    2

    d ln I

    dzΔz

    T = 1–R =

      I–.5ΔI

    I

    R =Δ ρα

    2ρα=

      ρΔα+αΔρ

    2ρα=

      1

    2

    Δα

    α +

    Δρ

    ρ

    R can be written in terms of ρ and α as:

    Note that the definition of R is such that an impedance increase

    gives a positive RC but that the reflected pulse is flipped in

    polarity.

  • 8/18/2019 Methods of Seismic Data Processing,

    28/409

    Methods of Seismic Data Processing 1-23

    t=2Δt

    t=3Δt

    t=jΔt

    t=nΔt

    t=Δt

    *   R1

    2

    *R2

    *   R12

    R2

    2

    *R

    *   Rk2

    k = 1

    j–1

    *Rj

    *   Rk2

    k = 1

    n–1

    *Rn

    *R1

    1–

    1–1–

    1–

    1–

    Impulse

    Response

    3

    Simple Primaries Only Impulse Response.

    Layered Earth, Normal Incidence, Acoustic

    V1,R

    1

    V2,R

    2

    V3,R3

    Vj,R

    j

    Vn,R

    n

    k=0

    k=1

    k=2

    k=3

    k=j

    k=n

    k=n-1

    Model layers have a

    constant traveltime

    "thickness":

    *   R1 *R

    2

    *   R1 R2 *R3

    Rkk = 1

    n–1

    *

    Δt=2ΔZ

    Vj

    j

    Rk

    k = 1

    j–1

    * *   Rkk = 1

    j–1

    *Rj

    * Rkk = 1

    n–1

    *Rn

    R1 *   R2 *

    R1 *

    *R1

    1–

    1–

    1–

    1–

    1–   1–

    1–1–

    1–   1–

    Model

  • 8/18/2019 Methods of Seismic Data Processing,

    29/409

    1-24 Synthetic Seismograms

    At the designated point, 6D4 and 6U5

    are known and we wish to compute

    6U4 and 6D5:

    6U4 = R4*6D4 + (1+R4)*6U5

    6D5 = (1-R4)*6D4 -R4*6U5

    The complete se ismogram is

    obta ined by recurs ive ca lculation

    beginn ing i n the uppe r le f t. A ll

    nodes on any upward tr ave ling r ay

    are complete ly ca lculated bef ore

    proced ing to the nex t depth .

    Adapted from: Reflection Seismolgy, K.H. Waters, 1981

    J.H. Wiley

    Computation of a 1-D Synthetic Seismic Impulse Response

    (Including All Multiples)

    E ar th model i s bui lt of

    l ayers of equa l t rave lt ime

      thickness

    Δ

    t

    t

    z

    R0

    R1

    R2

    R3

    R4

    R5

    R6

    R7

    R8

    R9

    t=

    Δ

    t t=2

    Δ

    t t=3

    Δ

    t t=4

    Δ

    t t=5

    Δ

    t t=6

    Δ

    t t=7

    Δ

    t t=8

    Δ

    t

    Note: All Raypaths are

    actually vertical. They are

    shown slanted for illustrative

    purposes.

    Completed node

    Current node

  • 8/18/2019 Methods of Seismic Data Processing,

    30/409

    Methods of Seismic Data Processing 1-25

    t=2Δt

    t=3Δt

    t=jΔt

    t=nΔt

    t=Δt

    * 1–R12

    *R2

    * 1–R12

    1–R22

    *R3

    * 1–Rk2

    k = 1

    j–1

    *Rj

    * 1–Rk2

    k = 1

    n–1

    *Rn

    *R1

    Impulse Response

    t=2Δt

    t=3Δt

    t=jΔt

    t=nΔt

    t=Δt

    * 1–R12

    *R2

    * 1–R12

    1–R22

    *R3

    * 1–Rk2

    k = 1

    j–1

    *Rj

    * 1–Rk2

    k = 1

    n–1

    *Rn

    *R1

    Source Waveform Response

    Th e pr imar ie s on l y

    impu lse respon s e

    c ons i sts o f a t ime

    s er i es o f s c al ed an d

    de la ye d impu lses

    To ob t ai n t h e sou rc e

    wavef o rm respon s e

    f ro m the impu ls e

    response , s im ply

    rep l ac e ea ch sp i ke of

    t he i mpu ls e respon se

    by the p r od uct o f t h e

    sp i ke and sou rc e

    wavef o rm . Th i s i s t h e

    m at hema ti c al p ro ces s

    of convolu t i on

    From Impulse Response to Source Waveform

    Response

  • 8/18/2019 Methods of Seismic Data Processing,

    31/409

    1-26 Synthetic Seismograms

    Impulse Responses and Seismograms

    For a l i near ea rt h , i t c an be s how n t hat i f w e a re g iven

    t he w ave fo rm s i gnat u re of a n on- impu l si v e sou rc e an d

    t he impu lse re sp on se o f an ea rt h model , the n:

    s t = Ir t  •w

    s t

    ws t   is the source waveform

    Ir t   is the earth impulse response

    s t   is the earth response to the source waveform

    where:

    Th e gener al pro of o f th i s r esu l t comes f rom G reen s

    fun ct i on ana ly s is an d is t rue f or any l i near wave

    eq uat i on (e l as t ic , s cal ar , et c ) G ener al ly Ir c onta ins a l l

    p hys i c al ef fec ts t he the or y i s c ap ab le o f p rodu c in g, an d

    u sual ly th at i s m ore than w e w an t.

    T he mos t common us e o f 1- D s eismogram s i s in t h e

    in te rp ret a t io n o f p ro cess ed sei sm ic sec t io ns. I n th is

    ca s e mo st of th e phy si ca l eff ec ts (mu lt ip l es ,

    tra nsmiss io n l o ss es, a tt en u ati o n) h a ve bee n r emoved in

    th e p ro ces si ng. Th eref o re, common p ra c ti ce rep la ces

    I

    r

    ( t ) w it h r( t ) w here :

    r t =  no rmal i nc idence re f lec t i on co ef f i c ien t s

    pos it i oned i n 2 -way ve rt i c al t r ave l time

    s t = r t •ws thus:

    s( t ) g i ven b y th i s resu lt i s the most c omm on 1 -D

    se i smog ra m computed i n exp l ora ti on g eophysi c s .

  • 8/18/2019 Methods of Seismic Data Processing,

    32/409

    Methods of Seismic Data Processing 1-27

    1-D Syntheti c Seismogram Summary

    • A complet e s olut ion , g ener at i ng al l mu l t ip le s an d

    t ransmiss ion ef fects, c an b e c onstructed . Some

    m ethods a ls o i n cl ude a tt enuat i on .

    • A ss umpti on s: ra y theo ry , 1 -D , n o rma l i nc iden c e

    • Geophys i c al w el l l og s , p r ov id in g P -wave ve l oc i t ie s

    an d d en si t i es , a re use d . T he y a re usu a ll y r es amp l ed t o

    a v a ri ab l e d ep th l a ye ri n g w it h e qu al D t s te ps .

    • Met hod i s i n her en t ly a lg or it hm ic . No an al yt i c c l os ed

    fo rm s olu t i on avai l ab l e.

    • In p r ac t ic e , m ult ip les an d t ra nsmis s i on lo s se s a re n o t

    usual ly included . Re f lect ion c oe ffi c i ents i n t ime ar e

    simply c onvol v ed w it h a sou rc e r e spon s e.

  • 8/18/2019 Methods of Seismic Data Processing,

    33/409

    1-28 Synthetic Seismograms

    0 0.2 0.4 0.6 0.8 1 1.2

    Wavelet

    Synthetic Seismogram

    Reflection Coeficients

    Time (secs)

    Example of Synthetic Seismogram Creation by

    Convolution of Reflectivity and Wavelet.

    Time Domain View

  • 8/18/2019 Methods of Seismic Data Processing,

    34/409

    Methods of Seismic Data Processing 1-29

    0 50 100 150 200 250

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    Frequency (Hz)

    Reflectivity

    Wavelet

    Synthetic Seismogram

    Example of Synthetic Seismogram Creation by

    Convolution of Reflectivity and Wavelet.

    Frequency Domain View

  • 8/18/2019 Methods of Seismic Data Processing,

    35/409

    1-30 Synthetic Seismograms

    S

    P

    S

    P SP ORR

    Iterative Snell s law raytracing

    1) Rayt race

    Incidence

    Angles

    Loop over layers: k=1 to nlayers

    Next layer

    2) Zoeppritz

    RCs

    PP

    PS

    AN DND

    Response of

    l aye r k

    Input

    wavelet

    3) Map RCs to t

    o

    ,

    apply wavelet.

    Vp, Vs, and

    density logs

    Define Layered Model

    Resamp led

    lo gs

    +

    =

    ccumulated

    gather after k-1

    layers

    Accumulated

    gather after k

    layers

    The SYNTH Algorithm

    P-S Synthetic Seismogram Construction

    Free

    surface

    Primary reflections

  • 8/18/2019 Methods of Seismic Data Processing,

    36/409

    Methods of Seismic Data Processing 2-1

    Chapter 2

    Signal Processing

    Methods of Seismic Data Processing

    Lecture Notes

    Geophysics 557

  • 8/18/2019 Methods of Seismic Data Processing,

    37/409

    2-2 Signal Processing Concepts

    Convolution

    C onvo luti on i s t h e mathemat i cal p rocess of sh i ft i ng ,

    s ca li ng , a n d summ in g a w av e fo rm t o p r odu c e an ou t pu t

    by superposi t i on . Genera ll y, two input s i gn a ls ar e

    requ i red , sa y r an d w , w it h w b ei ng t he wavef or m an d r

    a s eri es of s cal in g c oef f ic ients. F or example , l e t r= [1 0

    0 - .5 .5 0 -1 ] an d le t w = [ - .5 1 - .5] , t h en t he

    c on volut i on of r an d w i s:

    -.5 1

    -.5 0 0 0 0 0 0

    0

    0 0 0 0 0

    r0w0

    0

    = r1*w

    0

    0 0 0 0 0

    .25

    -.5 0 0 0

    .25

    -.25

    .5

    0 0-.25

    0

    0 0 0 0 0

    0

    0 0

    .5 -1

    .5

    +

    +

    +

    +

    +

    +

    -.5 1

    -.5 .25 -.75 .75

    .25 -1 .5

    s = r•w

    j

    1 2 3 4 5 6 7 8

    k

    1

    2

    3

    4

    5

    6

    0

    r0w1 r0w2

    r1w0 r1w1 r1w2

    r2w0 r2w1 r2w2

    r3w0 r3w1 r3w2

    r4w0 r4w1 r4w2

    r5w0 r5w1 r5w2

    r6w0 r6w1 r6w2

    = r0*w

    = r2*w

    = r3*w

    = r4*w

    = r5*w

    = r6*w

    Outpu t sampl e numbe r

  • 8/18/2019 Methods of Seismic Data Processing,

    38/409

    Methods of Seismic Data Processing 2-3

    Convolution

    In t h e p r ev i ou s s l ide, we descr i be d a t ablu l ar me thod

    f or c omput ing t he c onvo lu t i on of r an d w t o y i el d s.

    Th i s c a n b e w ri tt en ma themat ic a ll y as fo ll ows :

    s = r•ws

    j  = r

    kw

    j–kΣk

    To s ee t ha t t hi s s ummat io n e xp res s i on is equ iv a le n t t o

    t h e t ab u la r met hod , co ns ider t h e e x amp l e of j=4 :

    s4

      = r0w

    4–0+r

    1w

    4–1+r

    2w

    4–2+r

    3w

    4–3+r

    4w

    4–4+r

    5w

    4–5+r

    6w

    4–6

    s4

      = r0w

    4+r

    1w

    3+r

    2w

    2+r

    3w

    1+r

    4w

    0+r

    5w

    –1+r

    6w

    –2

    N ot e t h at t h e length of s i s t h e c omb ined l engths of

    r a nd w le s s 1 :

    length s = length r +length w –1

    Thus , mathemat i ca ll y , e v er yt ime a convolu t i on i s

    per formed t he r es ul t i nc re as e s i n l en gt h. T hi s c re at es a

    b i t of a heade r (bo okk eep ing) p r ob l em in se i smic d at a

    proces s in g and i s n ot usual l y al lo wed . Tha t i s, i f a

    se i smic t r ac e is c onv ol v ed wi t h a f i l ter ope rat or , t h e

    r e sult i s t runcat ed at t h e same l engt h as t he se i smic

    t race.

  • 8/18/2019 Methods of Seismic Data Processing,

    39/409

  • 8/18/2019 Methods of Seismic Data Processing,

    40/409

    Methods of Seismic Data Processing 2-5

    Convolution by Replacement

    Consider the discrete convolution of a three point boxcar, b, with

    an eleven point time series, r.

    0 2 4 6 8 10 12-0.1

    -0.05

    0

    0.05

    0.1

    0 2 40

    0.5

    1

    r

    b

    -0.1

    -0.05

    0

    0.05

    0.1

    0 2 4 6 8 10 12

    0 2 4 6 8 10 12 14

    -0.1

    0

    0.1

    0 2 4 6 8 10 12 14

    -0.1

    0

    0.1

    =

    E ac h input samp le i s c ons idere d sepa ra te l y. Th e

    b ox ca r i s mu lt ip l i ed by t he input samp le res ult i ng i n a

    s c al e d b ox car . The sc al e d b oxca r cont ributes t o

    output samp le lo c at i on s b eginn ing at t h e

    p os i t io n of t h e input sample . Th us t he

    b ox car i s sc a le d b y eac h samp le of r

    an d rep l ica ted at t he lo cat ion o f

    the r s am ple . E ac h output

    samp le r ece iv e s mu lt i p le

    con t ri but i on s wh i ch ar e summed .

    Input s am ple s 1 ,2 and 6 ar e

    shown exp l ic i t l y cont ribut ing.

    ( emphas is on in pu t s ample s )

  • 8/18/2019 Methods of Seismic Data Processing,

    41/409

    2-6 Signal Processing Concepts

    Convolution as a Weighted Sum

    Consider the discrete convolution of a three point boxcar, b, with

    an eleven point time series, r.

    0 2 4 6 8 10 12-0.1

    -0.05

    0

    0.1

    0 2 4 6 8 10 12 14

    -0.1

    0

    0.1

    To compute an ou tpu t

    s amp le , po si t i on t he

    b ox car ove r s om e r

    s ampl es , m ul tip ly t h e r

    s amp les b y t he bo xc ar

    w eights, a nd sum. T he

    compu t at i on of ou t pu t

    s amp les 1 an d 7 i s

    i ll ust rat ed. Th i s i s a

    p r oce ss o f smooth ing

    or a v er ag in g t h e i np ut .

    0 2 4 6 8 10 12-0.1

    -0.05

    0

    0.05

    0.1

    0 2 40

    0.5

    1

    r

    b

    ( emphas i s o n out pu t s amp l es )

  • 8/18/2019 Methods of Seismic Data Processing,

    42/409

    Methods of Seismic Data Processing 2-7

    a11 a12 a13 a14

    a21 a22 a23 a24

    a31 a32 a33 a34

    a41

    a42

     a43

    a44

    b 1

    b 2

    b 3

    b4

    =

    c1

    c2

    c3

    c4

    Matrix Multiplication

    by Rows

    Consider the a 4x4 matrix equation such as:

    This is equivalent to the following system of equations:

    c1

      = a11

    b1

      + a12

    b2

      + a13

    b3

      + a14

    b4

    c2

      = a21

    b1

      + a22

    b2

      + a23

    b3

      + a24

    b4

    c3

      = a31

    b1

      + a32

    b2

      + a33

    b3

      + a34

    b4

    c4   = a41b 1   + a42b 2   + a43b 3   + a44b4Th us t he elemen t s o f t h e v ecto r C ar e c omputed b y

    t ak ing e ac h ro w of A, mult ip lyi n g i t by t he ve ct o r B , an d

    summing t he r e su l t s . T h is p ro ces s i s f amil i ar t o most

    students of l i near a lge br a as m at r i x mult ip l ica t io n b y

    r ow s . It c a n be wr i t ten s ymbo li c al l y a s two nested

    c om putat ion loops :

    c=zeros(1,4);

    for irow=1:4

    for jcol=1:4

    c(irow)=c(irow) + a(irow,jcol)*b(jcol);

    end

    end

    eqn 1

    eqns 2a-2d

  • 8/18/2019 Methods of Seismic Data Processing,

    43/409

    2-8 Signal Processing Concepts

    M at r i x mu lt ip li cat ion by c ol umn s i s l ess we l l k now n

    t han the c o rr espond ing pro ces s by r ow s bu t i t

    p r ov ides a u s ef u l intu it i ve ins ight t o convolut i on .

    E x am in at i on of e qu at i on s 2 a- 2d s h ow s t h at t h e c ol umns

    of A have b ee n mu l t ip l i e d by a sing le c or re spon din g

    e lement o f B . Thus w e ca n expres s t he mat ri x

    mult ip l ic a t io n as a su m o f c o lum n v ec tor s , e ac h on e

    b ei ng a s cal ed ve rs ion of a co lum n o f A.

    a11

    a21

    a31

    a41

    b1

      +

    a12

    a22

    a32

    a42

    b2

      +

    a13

    a23

    a33

    a43

    b3

      +

    a14

    a24

    a34

    a44

    b4

      =

    c1

    c2

    c3

    c4

    Wri tt en as c omput at i on l o op s , t hi s amoun ts t o r ev er s in g

    t he o rder o f t he l oo ps i n t he mu l tip l i cat ion s by r ow s

    c=zeros(1,4);

    for jcol=1:4

    for irow=1:4

    c(irow)=c(irow) + a(irow,jcol)*b(jcol);

    end

    end

    Matrix Multiplication

    by Columns

  • 8/18/2019 Methods of Seismic Data Processing,

    44/409

    Methods of Seismic Data Processing 2-9

    Convolution as a Matrix Operation

    C onside r t he c onvo lu t i on o f a re f l ect iv it y sequence , r ,

    w it h a w ave le t , w , to yie l d a se i smic t rac e , s . Th i s i s

    u su al l y wr i tt e n as t he convol u ti on in tegra l:

    s(t) = w(t – τ)r(τ)dτ– ∞

    Wh en we have d i sc re te, fi n i te l engt h app rox imat io ns t o

    t he se quant i ti es , the co nvolut i on i s u su al l y w ri tten as a

    summati on . I f r

    j

    i s t h e re f le ct ivi t y se r ie s wi t h j =0 ,1 ,. . . n,

    an d w

    k

    is t h e poss i b ly non-cau sal wavel e t w it h k =-

    m. . .0 . . .m, then :

    sk

      = Δt wk–j

    rjΣ

    j = k+m

    k–m

    U su al l y, in t he se e xpre s si on s, t h e Δt t e rm i s dropped o r

    s et t o un i ty. It i s u se fu l t o w r it e ou t a fe w t e rms of th i s

    summat ion:

    Th e s am e oper at i on c an b e ach ieved b y m at r ix

    mult ip l ic a ti o n wher e the w ave let , w , is l oa ded i n to a

    s p eci a l mat r i x c al l ed a Toep l i tz or c on vol u tio n mat ri x .

    s0

      = + w0r

    0  + w

    –1r

    1  + w

    –2r

    2  +

    s1   = + w1r0   + w0r1   + w–1r +2

  • 8/18/2019 Methods of Seismic Data Processing,

    45/409

    2-10 Signal Processing Concepts

    It i s a s imple ex erc i se o f m at r ix mu l tip l i cat ion b y r ow s t o

    check that t h e f oll ow i ng m at r i x equat ion c om pu tes t he

    c onv olu t io n o f w w ith r

    w0   w–1 w–2 w–3

    w1   w0  w–1 w–2

    w2   w1   w0   w–1

    w3

      w2

      w1

    w0

    r0

    r1

    r2

    rm

    =

    s0

    s1

    s2

    sn

    N ot e t he s ymmetry o f t h e W mat ri x wh i ch h as t he

    w av e le t s ample s c on st an t al on g t he d iag on al s . Ano th er

    w ay t o v i ew W i s t h at e ac h c o lu mn c onta in s t h e w ave le t

    w ith t he z er o t ime s am ple al igned on t he m ai n d iag on al.

    N ow , imagi n e d oi ng the mat r ix mul ti pl ic at i on by c ol umns

    instea d o f r ow s an d we ge t t he mos t intu i t iv e v i ew of

    c onvolu t io n by r ep lacement .

    w0

    w1w2

    w3

    r0   +

    w–1

    w0w1

    w2

    r1   + =

    s0

    s1s2

    sn

    Convolution as a Matrix Operation

  • 8/18/2019 Methods of Seismic Data Processing,

    46/409

    Methods of Seismic Data Processing 2-11

    Convolution as a Matrix Operation

    =

    As an e xamp le o f convolu t i on by m at r ix mul t ip l ic ati on ,

    h ere i s a n i l lust rat ion of t he c on v olut ion of a r efl ect iv it y

    s er i es a nd a min imum ph as e wav le t t o yi e ld a 1 -D

    seismogram.

    =

    As a s econd ex amp l e, h er e i s the c onvo lu t i on o f a

    r ef l ect iv i ty s er i es a nd a z er o phas e wa vl e t t o y ie l d a

    ze ro phas e s ei smog r am .

  • 8/18/2019 Methods of Seismic Data Processing,

    47/409

    2-12 Signal Processing Concepts

    Convolution as a Matrix Operation

    T hes e e x amp les of co nv ol ut ion b y m ar ti x m ult ip l icat ion

    show exp l ic i t l y what i s mean t when we s ay t h at

    c onv olu t io n i s a s t at i onary p roce ss . Intu i t ivel y , th is

    ph ras e means th at t h e ope ra t io n does n ot change wi t h

    t ime i n s ome sense . P rec i se l y, i t mean s t h at t h e

    w ave for ms i n t he co lumns of t he convol ut io n m at r i x a re

    a ll ident ical . Th at is , the wavel e t wh i ch i s s c al e d and

    us ed t o re pl ac e e ac h r ef l e ct iv i ty sp i ke doe s n ot change

    w i th t ime. As w e shal l s e e, man y physi c al pro cesses

    v i ol at e th is as sumpt ion an d i t i s qu i te possi b l e t o

    g ener al i ze t h e convolu t i on oper at i on t o m odel

    nonstat ion ar y pr oc ess es.

    Wh en t he a ssumpt ion of s t at i on a ri t y i s made i n t h e

    c onte x t of s t at is t i cal d econvolut i on theor y, it mean s

    p re ci se ly t he s am e th ing. W e as sume t ha t t he t im e s eri es

    w e m ea sure d ( the s ei sm ic t rac e) i s re lat ed t o that wh ich

    w e w an t (the r ef l e ct iv i ty) b y a s ta t io nar y convolut ion

    oper at i on . Gi v en t h at , we expect t h at a st a ti onar y

    i n ve rs e oper at o r wi l l s u f fi c e t o r ecove r t h e r e fl e ct iv i ty.

  • 8/18/2019 Methods of Seismic Data Processing,

    48/409

    Methods of Seismic Data Processing 2-13

    Fou rie r T ransforms and Convolut ion

    C onside r t h e convolut i on in teg r al f o r c ont inuous

    funct ions:

    Now, let g be a complex sinusoidal function: g u = eiωu

    h t = f τ eiω t–τ

    dτ–∞

    = eiωt

    F ω

    F ω   = f τ e–iωτ

    dτ–∞

    Then:

    where

    (1)

    (2)

    Th i s r ema rk ab l e r esu l t s how s th at i f we c onvo lv e AN Y

    funct ion , f , wi t h a comp lex s inuso id, t h e r esu l t i s t h e

    s am e c omp lex sinuso id mu lt ip l i ed b y a complex

    c oe f fic ie nt . T h is c ompl ex c o ef f ici en t, F(w) , i s c ompu t ed

    f rom f( t) an d i s k now n as t he Fo uri e r Tr ans for m o f f ( t ) .

    Those who h av e st udie d mat hemat i c al p hys i cs wi l l

    r ec ogn i ze t h at th i s mean s t h at t h e c om ple x s inu so id s

    ar e e igenfunct io ns of t he c on vo luti on o per at or an d t he

    Fou ri e r T r ans for m p rov ides t he ei genva lues .

  • 8/18/2019 Methods of Seismic Data Processing,

    49/409

    2-14 Signal Processing Concepts

    30Hz Ricker

    -1

    0

    1

    0.3 0.4 0.5 0.6 0.7 0.8-1

    0

    1

    -1

    0

    1

    -1

    0

    1

    -1

    0

    1

    -1

    0

    1

    IN

    OUT

    Maximum amplitude =.064

    Maximum amplitude = .27

    Maximum amplitude = 1.0

    Convolve

    10 Hz.

    30 Hz.

    70 Hz

    Fourier Transforms and Convolution

    He re we s ee t he r e su l t of convolv i ng 10 , 30 , a nd 7 0 H z

    c om ple x s in uso ids w it h a 30Hz Ri c ke r w av ele t . I n ea ch

    c ase , on l y t h e r ea l p ar t s of t h e c om ple x s inusoi d s ar e

    p lot ted . We se e thatt he 1 0 H z s inusoi d i s d imin i shed b y

    73 , t h e 7 0 H z by 93 , a nd t he 30 Hz is un attenuated .

    (The d i st o rt i on s i n t h e s inusoi d s a re a rt i f ac t s o f t h e

    d is pl ay not t h e c onvolu t i o n al g or i thm . )

    0.3 0.4 0.5 0.6 0.7 0.8

    0.3 0.4 0.5 0.6 0.7 0.8   0.3 0.4 0.5 0.6 0.7 0.8

    0.3 0.4 0.5 0.6 0.7 0.8   0.3 0.4 0.5 0.6 0.7 0.8

  • 8/18/2019 Methods of Seismic Data Processing,

    50/409

  • 8/18/2019 Methods of Seismic Data Processing,

    51/409

    2-16 Signal Processing Concepts

    Fourier Transforms and Convolution

    A convolut i on ca n af fect not only t h e ampl i tude of a

    s inuso i d bu t i t s phas e as we l l . T he R i ck e r w av e le t i s

    known as a zer o phase funct ion w hic h m ean s that i t d oes

    n ot h av e a ph as e ef f ec t . L e t u s r epeat t h e anal ys i s but

    th i s t ime w i th a funct ion wh ich h as a known ph as e

    e ffect . F or th i s purpose , w e cons id e r a Ri c ke r w av le t

    w it h a 9 0

    o

    phas e sh i ft .

    -0.1 -0.05 0 0.05 0.1-0.1

    -0.05

    0

    0.05

    0.1

    0.15

    -0.1 -0.05 0 0.05 0.1-0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    30 Hz. Ricker zero phase

    30 Hz Ricker 90

    o

    phase

    No te t hat ze ro phase wa ve for ms a re a lway s s ymm et r i c

    wh il e 9 0

    o

    ph as e r esu lt s i n an ant i symmetri c w av ef orm.

    W e m i gh t expec t t h e 9 0

    o

    R ick er t o h av e t he s am e ef fect

    on the amp l it u de o f s inusoi d s bu t some andd i t ion a l

    e ff ec t as we l l. To s ee , w e repeat the an al ysi s o f p ass ing

    c om ple x si n usoi d s th rough i t .

  • 8/18/2019 Methods of Seismic Data Processing,

    52/409

    Methods of Seismic Data Processing 2-17

    3  H z Ricker

    IN O UT

    Max imum ampli tude = 64

    M a xi m um a m p li tu d e = 2 7

    M a x im um a m p lit u de = 1

    Convolve

    1 Hz

    3 Hz

    7 Hz

    0.45 0.5 0.55 0.6 0.65-1

    0

    1

    0.45 0.5 0.55 0.6 0.65

    -1

    0

    1

    0.45 0.5 0.55 0.6 0.65

    -1

    0

    1

    0.45 0.5 0.55 0.6 0.65-1

    0

    1

    0.45 0.5 0.55 0.6 0.65   0.45 0.5 0.55 0.6 0.65

    -1

    0

    1

    9 o

    Fourier Transforms and Convolution

    Here we repeat t h e r e su lt of convolv i ng 10 , 30 , an d 7 0

    H z complex s in uso ids wi th a 30Hz R ic ke r wa vel e t b ut t hi s

    t ime t he Ri c ke r h a s 9 0

    o

    phas e . The amp li tude

    a ttenuati o n of t h e s inusoi d s i s t h e s am e as be f or e bu t

    now the re i s a n add i t ion al 9 0

    o

    phas e l ag . (When

    c omp ar i ng th i s f i gu r e w i th -2- o f th i s s e ri es , n o te t h at

    the re h as b een an x -ax i s s cal e c han ge o n al l p lo ts. )

    Result with 90o Ricker

    Result with 0

    o

    Ricker

  • 8/18/2019 Methods of Seismic Data Processing,

    53/409

    2-18 Signal Processing Concepts

    -0.15 -0.1 -0.05 0 0.05 0.1 0.15-0.1

    -0.05

    0

    0.05

    0.1

    Time

    0 20 40 60 80 100

    -60

    -40

    -20

    0

    Frequency

    0 20 40 60 80 100

    -100

    0

    100

    Frequency

    Fourier Transforms and Convolution

    Here i s a c omp le te descri pt i on of t h e 9 0

    o

    , 30 Hz . Ri c ke r

    i n t he t ime domai n an d amp l it u de an d p has e s pect rum i n

    t he Fou ri e r d oma in. We h av e s ee n t h at the F ou r ie r

    dom ai n p rov ides a c onven ien t de scr ipt ion of t he e ffec t

    o f c on volv i ng t h e wav e let wi t h c ompl ex s in us oi ds .

    Time Domain

    Fourier Domain

    Amplitude

    Spectrum

    Fourier Domain

    Phase Spectrum

  • 8/18/2019 Methods of Seismic Data Processing,

    54/409

     

       

           

     

       

       

     

     

     

     

     

     

     

  • 8/18/2019 Methods of Seismic Data Processing,

    55/409

    2-20 Signal Processing Concepts

    Fourier Analysis and Synthesis

    As an e x amp l e c on si der t h e Gau ss ian fu nct i on :

    h t = e–α2t

    2

    Us ing s t anda rd techniques o f integr al c al cu lu s , t h e

    Fo uri er t rans fo rm of t he Ga uss ian c an be shown t o be :

    H ω   =  π

    α   e–ω

    2/4α

    h t

    H

    half w idth = 1/ 

    half width = 2

     

    No te th at t h e ha l f widths , as rep resented by the i r 1 /e

    po in t s are in ve rse l y p ropor t ion a l. In f ac t :

    ΔtΔω   =   α–1

    2α   = 2

    Th is i s a n e xamp le of a g eneral p rop ert y wh ich s ays that

    t h e width o f a time d omai n fun c ti o n is i nver s el y

    p r opo rt i on a l t o it s wid th i n f requency. It ca n be s how n,

    g iv e n a s ui tab l e me as u re of w id th , t h at :

    ( w idth i n t ime)(width i n f r equ en cy ) > = a co ns tan t

    B r acewe l l (1978, Th e Fou ri e r T ra n sf o rm and i t s

    App l ic ati o ns) s how s t he consta nt t o b e 1 /2 an d t hat t he

    eq ual i ty h ol d s f or the Gau ss ian .

  • 8/18/2019 Methods of Seismic Data Processing,

    56/409

    Methods of Seismic Data Processing 2-21

    Fourier Analysis Example

    0 0.05 0.1 0.15 0.2-0.08

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    time (sec)

    0 100 200 300 400 5000

    0.2

    0.4

    0.6

    0.81

    frequency (Hz)

    0 100 200 300 400 500-80

    -60

    -40

    -20

    0

    frequency (Hz)

    0 100 200 300 400 500-3

    -2

    -10

    1

    23

    frequency (Hz)

    Her e i s a min imum p has e

    w ave l et c ons t ruct ed w i t h

    a .001 s ec s am ple r at e

    and a 3 0 H z d ominant

    frequency.

    Th e i s t h e amp l it u de

    spect rum of t he w ave let

    d i sp laye d wi t h a l i nea r

    v e rt i cal s c al e . No te th at

    t h e f requen cy ax i s s t ops

    at 500 Hz wh ich i s

    1/(2*.001sec).

    He re t he ampl i tude

    spec tr um i s d isp laye d w it h

    a d ec i bel v er tic al sc a le :

    d b =

    20*log10(A(f)/Amax)

    T hi s i s the ph as e spectrum .

    Not e t ha t t he vert ical s ca le

    i s i n r ad ian s.

    A t th is po int, F our ie r ana lys is m ay l oo k l ik e an e xerc ise i n

    g ra ph maki ng ; howeve r , i ts ut il it y w il l become cl ear o n t he

    next page .

  • 8/18/2019 Methods of Seismic Data Processing,

    57/409

    2-22 Signal Processing Concepts

    Fourier Analysis Example

    0 0.05 0.1 0.15 0.

    2

    0

    20

    40

    60

    80

    time (sec)

    0 0.05 0.1 0.15 0.20

    20

    40

    60

    80

    time (sec)

    Sum of components

    Sum of components

    A

    B

    Individual Fourier components

    Cumulat ive sum of Fourier

    components

    He re we s ee t wo equ ival en t way s o f v i ewi ng t he Fou r ie r

    t rans fo rm info rmat i on on t he prev io u s p ag e. In A, t h e

    ind iv idu al F ou r ie r c om ponents ar e s how n f rom 1 0 t o 7 0

    Hz , proper l y s c al e d f or t h ei r ampl i tude an d phase . The

    s um o f al l 1 3 c omp onents yi e lds the w ave let at t h e t op

    wh ic h i s qu i te sim i l ar t o t he t rue w ave let shown o n t he

    p r ev ious pag e. Add i ng i n t h e r ema in in g f r equency

    c omponen ts ( 0- >10 Hz a nd 70 ->500 Hz) wi l l re c on str uc t

    t he wa ve le t e x ac tl y. The f igu re on t he ri gh t c on tai ns t he

    s am e info rmat i on except t h at ea ch tr ac e is t h e s um o f

    t h e f re qu en cy c omponen ts be tween i t s f re qu en cy and 10

    Hz . Th i s g i ves a g oo d i ll ust ra t io n of how the wavel e t

    t ak es fo rm as it s spect rum i s s ummed .

  • 8/18/2019 Methods of Seismic Data Processing,

    58/409

    Methods of Seismic Data Processing 2-23

    Fourier Transform PairsThe table below is reproduced from:

    Brigham, E.O., 1974, The Fast Fourier Transform, Prentice Hall

    Not e : I t i s a r ema rk ab le f ac t t h at n o s i gn a l c a n hav e

    fi n i te l ength ( i . e . c ompact suppor t ) i n bo t h t he t ime

    an d fr equency doma in s .

  • 8/18/2019 Methods of Seismic Data Processing,

    59/409

    2-24 Signal Processing Concepts

    Fourier Transform Pairs

    The table below is reproduced from:

    Brigham, E.O., 1974, The Fast Fourier Transform, Prentice Hall

  • 8/18/2019 Methods of Seismic Data Processing,

    60/409

    Methods of Seismic Data Processing 2-25

    The Dirac Delta Function

    T he D ir ac del ta fu nct ion wa s i nven te d b y P .A. M. D i ra c t o

    hand le p ro blems i n t h e devel opm ent of quantum

    mechan ics . Si nce then , i ts un ique ab il i t y t o rep re sen t a

      un it s p ik e i n t he c ont inuou s f uncti o n d omai n . It ca n b e

    def ined a s t he l imit i ng fo rm o f a s h ar p ly p eake d funct ion

    w hos max imum p ro cee ds t o inf in it y a s it s wi d th shr i nks

    t o ze ro i n such a w ay t hat it s a re a rema in s un i ty.

    b1

    b2

    b3

    b4

    -0.5 -0.25 0 0.25 0.50

    1

    2

    3

    4

    5

    6

    7

    8

    b∞

      =   δ t

    A se ri es o f b oxc ar s w i th

    u nit ar ea c onve rge s i n

    t h e l im it t o t he de lt a

    funct ion :

    It can be thought of as:

    δ t =   0, t≠0∞, t=0

    Th e m os t important p rop ert y of t he de l ta funct ion i s i ts

    be h av i or u nd er i nt egr at i on . If f ( t) is an y f un ct ion , t he n:

    f t δ t–t0 dta

    b

    =

    f t0 , if a

  • 8/18/2019 Methods of Seismic Data Processing,

    61/409

    2-26 Signal Processing Concepts

      T

      T

    f τ

    e–iωto

    f   τ–to

    F ω   Mult

    The Dirac Delta Function

    Consider the Fourier transform of the delta function:

    Th us i t h a s a c onstan t , un i t ampl i tude s pect rum (a ls o

    known as a wh it e s pe ct rum) a n d l in ear p ha se .

    Consider the action of the delta function under convolution:

    δ t–t0 f τ–t dt

    –∞

    = f τ–t0

    Thu s t he d elt a funct ion sh i f t s f ( t ) to p l ace i ts o ri g in at

    t he l oca t io n where t he a rgument o f t he d el ta funct ion

    v an ishes. Th is i s c a ll ed a st ati c sh if t i n s eism i c dat a

    p r oce ss ing . S ince c onv olu t io n c an b e don e in the

    Fo u ri e r dom ai n b y mult ip l ic at io n of t ra nsf o rm s , we c an

    c onc lude that a s tat ic s hi ft c an be don e b y:

    Th at i s , a s t at i c sh i f t i s equ ival ent t o a l i near ph as e

    sh i f t . Fi na ll y, if we invers e Fou ri e r t ra n sf o rm the

    equat io n a t t h e to p o f t h e p ag e, w e end u p w i th a

    d ef in i t io n o f t h e de lt a funct io n i n t e rms of i t s Fou ri e r

    components:

    δ t–t0 e–iωt

    dt–∞

    = e–iωt0

    Th us t he d el ta funct ion h as u ni t amp li tude spect rum

    an d a phas e spectru m that is l i near i n f r equ enc y and

    w it h s lo p e p r op o rt i on a l t o t h e t im e s hi ft .

    δ τ 

     − t 0( ) =

      1

    2π  e

    iω τ − t 0

    ( )

    −∞

    ∫    =   e2π  i f   τ −t 

    0( )

    −∞

    ∫ 

  • 8/18/2019 Methods of Seismic Data Processing,

    62/409

    Methods of Seismic Data Processing 2-27

    H ω   = F ω G ω

    h t =  1

    2πF ω G ω e

    iωt

    dω–∞

    The Convolution Theorem

    Con sider t h e c on tinu ou s c on vol ut ion of f an d g:

    h t = f τ g t–τ dτ–∞

    We c an rep re s ent f a nd g i n t erms o f the i r spect r a

    a s:

    f τ   =  1

    2πF ω e

    iωτ

    dω–∞

    Subs ti tu tin g t hes e i n to (1 ):

    g t–τ   =  1

    2πG ϖ e

    iϖ t–τ

    dϖ–∞

    h t =  1

    2π  F ω e

    iωτ

    dω–∞

    ∞ 1

    2π  G ϖ e

    iϖ t–τ

    dϖ–∞

    –∞

    Interchanging

    the order of

    integration

    The term in [ ] is the

    Dirac delta function.

    The delta function

    col lapses one of the

    frequency integrals

    Her e w e have h( t ) rep resented a s the inverse Fou r i er

    t r an s form of s ometh in g . By i n fe r en c e, t ha t somethin g

    mu st be t he Fouri er t ransf or m of h. Thus :

    h t =  1

    2π  F ω G ϖ

      1

    2π  e

    i ω–ϖ τ

    dτ–∞

    eiωt

    dωdϖ

    –∞

    h t =

      1

    2π F ω G ϖ δ ω–ϖ eiωt

    dωdϖ–∞

    (1)

    an d

  • 8/18/2019 Methods of Seismic Data Processing,

    63/409

    2-28 Signal Processing Concepts

    Multiply

    f(t)

    g(t)

    FFT FFT

    IFFT

    F(

    ω

    ) G(

    ω

    )

    H(ω)

    h(t)

    The Convolution Theorem

    Th e r esu l t we h av e j us t de ri v ed is one o f t h e most

    fu ndamen ta l an d imp or tan t in al l of si gn al pro ce ss in g . It

    t e ll s u s tha t we c an c on vol ve tw o s ign a ls b y mult ip ly i ng

    the ir s p ect r a an d invers e Fou r i er t ra n sf o rm ing t he

    r esu l t . Th e re as on th at t h is is impor tan t is t h at there i s

    an ext reme ly f as t al gor it h m fo r per form ing t he d ig it a l

    Fo u ri e r t r ans for m c al l ed t he f a st F ou r ie r t ransf o rm

    ( FF T) . Us i ng t he F FT a c on volut i on c an be don e b y:

    H ω   = F ω G ω   = A F ω eiφ

    F  ω

    A G ω eiφ

    G ω

    = A F ω A G ω   ei φ F ω +φG ω

    Not e t h at mul t ip l y in g comp le x spec tr a i s:

    Th a t i s w e c an v i ew i t a s mult ip lyi n g t he amp l it u de

    s p ect r a an d addin g t h e p h as e s pe ctr a.

  • 8/18/2019 Methods of Seismic Data Processing,

    64/409

    Methods of Seismic Data Processing 2-29

    Sampling

    T h e an a ly t ic an al y si s o f c on ti nu ous s ig n al s i s mos t u s ef u l

    f or g ai n ing a conceptua l u nd er s tand ing of signal

    p r ocessi ng . In ac tual p ra ct ice ; h owever , t h e v as t

    ma jor i t y of w or k is done wi t h d i sc re t ly s amp led

    f un ct ion s . Th e p r oc e ss o f s ampl in g a cont in uou s f un ct ion

    i n t ime ca n be v i ewed as a m ult ip l i cat io n b y a s amp l in g

    comb.

    Continuous

    Gaussian

    Sampling

    Comb

    Sampled

    Gaussian

    Times

    Equals

    Comb spacing = Δt

    Timme Doomainn Frrequenccy Domaa inn

    Convolved with

    Continuous

    Gaussian

    spectrum

    1/Δt

    Fo ur i er

    t ransform

    of

    s am pl i ng

    comb

    Gaussian

    Spectrum

    and aliases

    1/Δt

    Equals

  • 8/18/2019 Methods of Seismic Data Processing,

    65/409

    2-30 Signal Processing Concepts

    F

    -2Fn

    -Fn

    2Fnn

    F

    -2Fn

    -Fn

    2Fnn

    Primary

    frequency band

    Sampling

    S o w e h av e s een that s amp l ing i n t h e t ime d oma in

    cause s the rep l i ca t io n of the c ont inuou s spect rum i n

    t he f r eq uency d omai n . Th e spaci n g b etween thes e

    spect ra l al i as es i s 1/

    Δ

    t and i t i s customa ry t o res t ri c t

    o u r a t tent i on t o the primar y frequency band l i ei n g

    b etwe en - 1 /(2

    Δ

    t) an d 1 /(2

    Δ

    t) . Th e f r eq uency Fn =

    1/(2Δt ) i s c al l ed t he N yqu i st frequency an d i s t h e

    l im it in g f re qu en cy o f t h e s amp l ed d at a .

    Fnyquist = 1/(2Δt)

    Spectrum of

    sampled

    data

    showing

    aliasing.

    Spect r um of

    sampled

    dat a wi t h

    min ima l

    a l ias ing .

  • 8/18/2019 Methods of Seismic Data Processing,

    66/409

    Methods of Seismic Data Processing 2-31

    Sampling

    The u na li a se d s ampl in g o f a n y c on ti nu ou s s i gn a l r eq uir e s

    tha t t he s ign a l h av e i ts powe r r es tr ic ted t o a f requency

    b an d: - fmax < f < fmax . Such s ignal s ar e s ai d t o b e

    b an d lim ited . A band l imit e d s i gn a l c a n be d i gi t al l y

    s amp l ed , wi thou t al i as in g , w i th a s amp l e s i ze of

    Δ

    t=1/(2fmax ) . It i s a fundamenta l theo re m (The

    S amp l ing Theo rem , P apou l i s, Si gn a l Ana ly s is , p 141,

    1984) t hat such a b an dlim ited, c ont inuous, s ign a l c an

    b e ex ac t l y re cove red f ro m i ts d i gi t al s amp les b y a

    p roce s s know n as s in c f un ct io n i n te rpol at i on .

    Spectrum

    of sampled,

    unaliased,

    continuous

    function

    Multiplied

    by a

    boxcar

    Recovers the

    spectrum of

    the continuous

    function

    Sampled band limited

    function

    Convolved

    w i th a si n c

    function

    Recovers the original

    continuous function

    Interpolation

    site

    Tiimee Domaa inn Frequeencyy Doomainn

  • 8/18/2019 Methods of Seismic Data Processing,

    67/409

    2-32 Signal Processing Concepts

    Sampling

    In or der t o min imize al ias i ng, r aw ana l og s ei sm ic d at a i s

    p assed th rough a n anal og an t i al i as f i l ter p r i or t o

    d i g it iza t io n . A typ ic a l an t i al ias fi l t er h as a n ampl i tude

    spect rum wh ich beg ins t o r ol l of f at 50 t o 60 o f

    f nyq uis t and re ac he s v er y la rg e at tenu at ion (>60db) a t

    fnyquist .

    0 20

    40

    60

    80

    100

    120 140-120

    -100

    -80

    -60

    -40

    -20

    0

    Frequency (Hz)

    Here is t he

    spectrum of an

    antial ias filter

    for use pr io r to

    sampling at

    .004 sec .

    R u l ee o f t h u m b : Samp le your d at a such th at t he

    e xp ected s ig na l f reque nc ie s a re l e ss t h an h al f f

    n yqu ist.

    Al i as i ng i s al s o a pos s ib i li t y when re s amp l ing se ismic

    d at a . If t h e new samp le i n ter v al i s mo re c oa rs e th an t he

    ol d , then an an t i al i as f i lt e r s h ou l d be ap pl ied .

    . 008 s 62 .5 H z

    .004 s

    .002 s

    .001 s

    125 H z

    250 H z

    500 H z

    sample

    ra te

    Nyquist

    C ommon sampl in g

    ra t es and the i r

    Nyqu ist f requenc ie s

  • 8/18/2019 Methods of Seismic Data Processing,

    68/409

    Methods of Seismic Data Processing 2-33

    The Discrete Fourier Transform

    T he gr ea t u t il it y o f th e cont inu ous F ouri er tr an sf orm t o

    decompose f unct ions in to fundamenta l comp lex s inuso id s

    ca n be app li ed d ir ec tl y to d i sc re t ely sampled time

    domain fu nc ti on s. Con si d er a fu nc ti o n h( t ) w h ic h i s z e ro

    ev eryw her e ex cep t a t N t im es d ef in ed b y t=kΔt , k=0,1 ,2

    .. . N -1 , where i t takes t he valu es h

    k

    . T h is functi o n ca n

    be w ri tt e n w i th t he d irac d e lt a f un ct io n a s :

    If we now take the Fourier transform of h(t) we have:

    H ω   =

    H ω   =  hke

    –iωkΔt

    Σk = 0

    N–1

    Her e w e have a n a na lytic expre ssi on fo r t he Four ie r

    transfo rm o f th e h

    k

    samp le s wh ic h is def ined fo r a l l

    ω

    .

    We have a lready see n th at t he phenomeno n o f a li a sin g

    lim it s th e usab le fre quency band t o -

    π

    /

    Δ

    t - > +

    π

    /

    Δ

    t .

    Fu rt he rmo r e, l in ea r al ge br a te l ls u s th a t N f re quenc ie s in

    th is band sh oul d s uf fic e to determin e th e N h

    k

    . S o w e a re

    le ad t o c ons id er sampl in g th e frequenc y domain a t

    ω

    ν

    =

    2

    πν

    /(N

    Δ

    t) ,

    ν

    = 0 ,1, 2 .. . N -1.

    h t = hkδ t–kΔtΣ

    k = 0

    N–1

    hkδ t–kΔtΣ

    k = 0

    N–1

    e–iωt

    dt

    –∞

    =   hk

      δ t–kΔt e–iωt

    dt–∞

    Σk = 0

    N–1

      = hke

    –i2πυk/NΣk = 0

    N–1

  • 8/18/2019 Methods of Seismic Data Processing,

    69/409

    2-34 Signal Processing Concepts

    The Discrete Fourier Transform

    D isc re te e xp onent ial s h av e a w e ll k now n orthog on a li ty

    p r ope r ty su ch t h at :

    U s ing th i s , i t i s n o t d if f icu l t t o sho w that t h e h

    k

    samples

    c an be re cov ere d fr om t he H

    ν

    by :

    h k   =  1

    NHυe

    i2πυk/NΣυ   = 1

    N–1

    Hυ   = h ke–i2πυk/NΣ

    k = 0

    N–1

    Th i s r e su lt t og et he r w it h :

    Inverse DFT

    Forward DFT

    f or m th e d i sc r et e Fou ri e r t r ans for m pa ir . They a re t he

    d i rec t a n al og t o the cont inu ou s Fou r ie r t ra n sf o rm

    r el at ion s. L ike t h e F T, t he DF T i s c omp lete i n t hat t he h

    k

    ar e e x ac t l y r e cov e rab l e f rom t he ir s p ec tr um , t h e H

    ν

    .

  • 8/18/2019 Methods of Seismic Data Processing,

    70/409

    Methods of Seismic Data Processing 2-35

    Principleband

    Spectrum

    of sampled,

    unaliased,

    continuous

    function.

    Sampled band limited

    function N samples long

    Times a

    sampling

    comb

    Convo lved wi th the

    tr ansform o f t he

    sampli ng comb

    The sampled time series

    becomes periodic

    with period T=NΔt

    The

    sampled

    spectrum

    Principle

    band

    DFT

    II DFT

    Spectrum is

    periodic

    with

    period

    2πN/Δt

    Δ

    t

    1/Δf

    T

    Δf

    f

    nyq

    f

    nyq

    f

    nyq

    f

    nyq

    1/Δ

    t

    f

    nyq

    =

    1/(2Δ

    t) T =

    1/Δ

    f

    Δ

    f

    Δ

    t = 1/N

    Timme Doomaiin Frequeencyy Doomaiin

    The Discrete Fourier Transform

    Here i s a p ict ori al r e pre sentat io n of t he dev elopment of

    t he D FT fr om t he c ontinuous c as e :

  • 8/18/2019 Methods of Seismic Data Processing,

    71/409

    2-36 Signal Processing Concepts

    The Discrete Fourier Transform

    Th e s ampl ing o f t h e spect rum of a d i scre te t ime se ri e s

    c auses t h at s e ri e s to b ecome pe ri od i c w i th pe ri od T =

    N

    Δ

    t. Th is h as s ign a l p rocessi ng c onsequence s t hat ar e

    ap par en t when w e c ons ider app ly in g a f il t e r wi t h t h e

    D FT and t he co rr espond ing c onvolu ti o n.

    Filter operator:

    Time series

    showing time

    domain aliases

    Principle Period

    Th e c onvo lu tio n ope rat i on t h at d up li c at e s mul t ip li c at i on

    w it h t he D FT i s c al l ed c i rc ul ar c onvolu ti on . N ot e t hat t he

    f i lt er oper at or p la ced on t he l as t s amp l e o f t he p r incip l e

    pe ri o d appear s t o wr ap ar ou nd an d af fect t h e fi r s t

    s amp le . To av o id th i s p ro blem, i t i s c ommon t o p ad t he

    t ime s er ies wi th a l e ngt h of ze ro s c hos en w it h t he le ngt h

    of t he f il te r op er at or i n mi nd .

    Principle Period

    Zero

    Pad

  • 8/18/2019 Methods of Seismic Data Processing,

    72/409

    Methods of Seismic Data Processing 2-37

    The Fast Fourier Transform

    T he f as t Fo uri er t rans form ( FFT ) is n oth ing m or e than a

    c lev er w ay of c al cu l at i ng t he D FT wh ich ge ts impres s iv e

    pe r fo rmanc e r esu l ts . Th e c on volut i on of an N l ength

    oper at o r i n t h e t ime domai n requ i re s on the or der o f N

    2

    f loa ti ng p oi nt op erat ion s. T he s am e c om pu tat ion i n t he

    f r eq uen c y domai n wi t h t h e FFT r eq ui re s r ou gh ly N* lo g(N)

    oper at i on s . How eve r, we m ust be c arefu l wi t h th is

    s t atement b ec ause , gene ra ll y , t h e tw o N' s ar e n ot t h e

    s ame. Th i s i s bec au s e t he FFT a l go ri t hm requ i res t h at

    t h e time s er i es length b e a mag i c numbe r wh ich is

    usual l y a p owe r of 2. ( Al s o the two time se r ie s be in g

    c onv ol ved mus t be t he s am e le ngth . ) Th i s is ac hieve d b y

    a ttach in g a ze r o p ad t o t he t im e s er i es . Thu s if N i s t h e

    lengt h o f t h e t im e domai n ope ra tor an d i f N 2 i s t h e f i rs t

    powe r o f 2 g re at e r than N , then we must compare N2 t o

    N2 lo g(N2) . (Often e ven th i s i s no t en ough bec au s e t he

    z er o p ad must b e long enough t o avo id ope ra t or w r ap

    a round. ) The b ot t om l in e is t h at short ope ra t or s ( l ess

    tha t ~64 p oints) a re of ten app l ie d f a st e r wi t h

    c onv olu t io n wh i le lo ng oper at o rs a re MUCH f aste r wi t h

    F FT' s. Th e dia gr am b el ow i s adapted f r om H atton e t a l.

    a n d s hows t h e bas i c t r ad e of f .

    Convolution

    compute time

    Operator Length

    FFT

    Time domain

  • 8/18/2019 Methods of Seismic Data Processing,

    73/409

    2-38 Signal Processing Concepts

    -120

    -100

    -80

    -60

    -40

    -20

    0

    0 50 100 150 200Frequency (Hz)

    Wavelet 5avelet 4avelet3avelet 2

    Wavelet 1

    -0.15 -0.1 -0.05 0 0.05 0.1 0.15

    Wavelet 1

    Wavelet 2

    Wavelet3

    Wavelet 4

    Wavelet 5

    Five

    Generic

    Wavelets

    Their

    Fourier

    Amplitude

    Spectra

    Filtering

    We h av e se en t h at c onvo lu t i on w it h a wavefor m

    surp res se s an d pos s ib ly p has e sh i ft s s om e f requenc ies

    re l at iv e t o ot he rs . T h is f i l ter in g a ct io n i s of t en ex pl oit e d

    t o enhan ce s i gn a l an d surpres s n o is e . He re w e se e a

    compari s on of f i ve d i ff ere n t zer o phas e f i l te r s i n b ot h

    t h e t ime and f re qu en cy domai ns. Th e i nv ers e r el at io nsh i p

    be tween tempor al w idth and f requency bandwid th is

    r ead i l y appa rent .

  • 8/18/2019 Methods of Seismic Data Processing,

    74/409

    Methods of Seismic Data Processing 2-39

    The Z Transform

    The per i od i c i ty or c i rcu l ar i ty i nhe ren t i n bo t h t ime and

    f req uen c y is n ic el y c ap tu red b y a p owe rf u l me thod ol og y

    know n as t he Z tr ans form . C onsi de r the t ime s er i es , [ 1 -

    . 5 - .3 0 . 1 0 ] , wher e i t is as sum ed t o s t ar t a t t =0 and

    inc rement by t . We rep resent th is s er ie s in t h e Z

    domai n by a p o ly nom ia l i n z:

    = 1–.5z1

    –.3z2

    +.1z4

    H z = 1z0–.5z

    1–.3z

    2+0z

    3+.1z

    4

    • Negative times correspond to negative exponents of z

    • Mu l t i pl i cat ion b y z

    n

    de l ay s the t ime ser ies by n

    s amp l es i f n i s p os i t i ve a nd a dvances i t b y n s am pl e s

    f o r n eg at iv e n.

    The g re at u t il i t y of t h e Z t r ans for m li e s i n it s ab il i t y t o

    r ep re s en t d i sc r et e convol ut ion an d t h e DFT as op e rat i on s

    w i th p olynom i al s . It i s n o t d i f fi cu l t t o show that t h e

    c onv olu t io n of t wo t ime s e ri e s , f an d g, c an b e re al i ze d

    b y s imp ly mult ip lyi ng the i r Z t rans f or ms an d r ea d ing of f

    t he r esu l t. ( See W at ers ( p 133) f or a p roo f. )

    h = f•g

    =H z = F z G zf0g0+ f0g1+g0f1 z

    1

    + f0g2+f1g1+g0f2 z2

    + ...

    F z = f0+f

    1z

    1+f

    2z

    2+ ... G z = g0+g1z

    1

    +g2z2

    + ...

    S o w e see t hat the exponent o f z gives the s ample n umber

    and hence determines the sampl e t ime ( n

    Δ

    t ). Note also

    the fol lowing:

  • 8/18/2019 Methods of Seismic Data Processing,

    75/409

    2-40 Signal Processing Concepts

    The Z Transform

    T he fa ct t ha t co nv o lut io n is d one b y m u lt ip lic at io n of Z

    tr ans fo rms is r em in is c ent o f t he Fou r ie r tr ans fo rm . In

    fa ct , i f w e l e t z = e

    - i

    ωΔ

    t

    th e n t he Z t ra ns f orm b ec omes :

    As wi t h t he D FT , i f w e now c ons ider on l y d i sc re t e

    frequencies ω

    ν

    = 2πν/(NΔ t ) , ν = 0 ,1, 2 . .. N-1 , t h en w e

    s ee n th at t h e Z t r ans form , w i th z = e

    - iω Δt

    , is p r ec i sel y

    t he D FT .

    G z = gkzkΣ

    k = 0

    N–1

    G ω   = gke

    –iωkΔtΣk = 0

    N–1

    G ν   = gke–i2πυk/NΣ

    k = 0

    N–1

    The Z transform is more general t ha n the DFT s in ce z c an be

    any comp lex number. I n fact the DFT amounts to eva luating

    the Z tranfo rm at N d iscrete loca tions around the un it cir cle

    in the complex z p lane.

    ω

    o

    ω

    1

    ω

    ν

    ω

    2

    ω

    N-1

    ω

    ν+1

    Complex z plane

    real(z)

    imag(z)

  • 8/18/2019 Methods of Seismic Data Processing,

    76/409

    Methods of Seismic Data Processing 2-41

    The Z Transform

    Consider th e elemental c ou pl et F(z) = 1 -a z. N ow i f w e

    convol ve F(z ) wi t h anothe r ar bi tra ry t ime se ri e s g (z ),

    t he n we r eprese nt t his as : H (z) = F(z)G(z) . Su ppos e t hat

    on ly F(z) an d H(z) ar e known t o u s an d w e w ish t o

    r ec ov er G (z) . In t he z transfo rm domai n we c an s imp ly:

    H z = F z G z   ∴   G z =H z

    F z

    F–1

    z =   1F z

    So we define the inverse of any time series as:

    For F(z) = 1 -az, this gives:

    F–1

    z =  1

    1–az= 1+az+ az

      2

    + az  3

    +

    Th is s er ies , ca l le d t he geometr ic s er ies , i s known t o

    converge absolute ly provided t hat | az | < 1 . S ince w e ar e

    especial ly interested in th is resu l t eva luate d on th e un it

    c irc le ( | z| = 1 ) then w e need | a| < 1 . It i s c ustomary t o

    ta lk abou t t he locat ion of t he ze ro of th is couplet

    def ined by:

    1–az0

      = 0   ⇒   z0

      =  1

    aI f |a| < 1 , then w e se e t h at z

    o

    mu st l i e outs ide t he un i t

    c i r c le in orde r f or the inver s e t o c onverge . S u ch a n

    inverse is sa id t o b e s tab le (phy ic a ll y r ea li za bl e ) . N ot e

    a l so t ha t F( z ) i ts el f i s t ri via l ly s t ab l e.

  • 8/18/2019 Methods of Seismic Data Processing,

    77/409

    2-42 Signal Processing Concepts

    The Z Transform

    Any causal, st ab le t ime se ri es wi th a cau sa l , s ta bl e in ve rs e

    i s sa id t o b e min imum phase . Thus our e lementa l couplet ,

    1- az , is m in imum phase whenever |a |

  • 8/18/2019 Methods of Seismic Data Processing,

    78/409

    Methods of Seismic Data Processing 2-43

    The resul tant o f the sequent ial convolut i on of any

    numbe r o f minimum phase time series i s al so

    minimum phase.

    The Z Transform

    The zero s o f F(z) corre sp on d t o poles f or F

    -1

    ( z) . Th us, fo r

    the case of a t ime se ri es whose Z transform h as a

    denominator, we s ee th at t he st abi li ty condit i on req uir es

    that a l l po les a lso l i e ou ts ide the un it ci rc l e. The most

    g enera l t im e s er ie s can b e w ri t te n a s a Z transform w it h

    both numera to r and denominator such as:

    H z =A z

    B z=

    z–α0   z–α1

    z–β 0   z–β 1

    We say the cor respond in g t ime s er ie s is min im um p h ase

    if a ll α

    i

    a n d a ll β

    i

    l i e o uts id e th e un it ci r c le . T h e

    f ol low ing t heo r em fo ll ow s immed ia te l y:

    Conversely:

    I f a ny time series i n a se qu ence of co nvoluti