metathesis catalysis - university of texas at...

26
Kelly Wiggins 21 April 2009 “Like all sciences chemistry, is marked by magic moments. For someone fortunate enough to live such a moment, it is an instant of intense emotion: an immense field of investigation suddenly opens up before you.” –Yves Chauvin, 2005 Nobel Laureate Metathesis Catalysis

Upload: others

Post on 27-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Kelly Wiggins21 April 2009

    “Like all sciences chemistry, is marked by magic moments. For someone fortunate enough to live such a moment, it is an instant of

    intense emotion: an immense field of investigation suddenly opens up before you.” –Yves Chauvin, 2005 Nobel Laureate

    Metathesis Catalysis

  • Outline

    • History

    • Mechanism

    • Development of Catalysts

    • Applications

    • Current and Future Directions

  • Carbene Crash Course

    Carbene - highly active organic compound in which a carbon atom has only 6 valence electrons

    R2

    R1Types of Stable Carbenes

    * Fischer carbenes – carbene coordinated to metal with electron withdrawing ligands

    * Schrock carbenes – carbene coordinated to metal with electron donating ligands

    * Persistent carbenes - N-heterocyclic carbenes (NHCs)

    M

    R'

    R

    M

    R'

    R

    N N MesMes

  • A New Reaction• 50’s and 60’s 1st observed by industrial chemists

    – 1956 Eleuterio - DuPont - “looked like somebody took a pair of scissors, opened up cyclopentene and neatly sewed it up again.”

    – 1960 Peters and Evering – Standard Oil Co.

    – 1964 Banks and Bailey – Phillips Petroleum

    • 1967 Calderon coins term “olefin metathesis”– One carbon of a double bond and all its substituents exchanges places with

    a carbon of another double bond with all of its substituents

    M. A. Rouhi, C&EN. 2002, 80(51), 34.R.H. Grubbs, Nobel Lecture, 2005.

    *

    MoCl6

    Et3N

    n

  • • 1967–1975 What is the mechanism?

    – Caulderon’s Pairwise (Conventional) Mechanism

    – Chauvin’s Metallacyclobutane

    N. Calderon, E. A. Olfsead, J. P. Ward, W. A. Judy, K. W. Scott, J. Am. Chem. Soc., 1968,,90, 4133

    History of Olefin Metathesis

    J. L. Herisson, Y. Chauvin Makromol. Chemie, 1971, 141, 162

    R.H. Grubbs, Nobel Lecture, 2005. Y. Chauvin, Nobel Lecture, 2005

  • • 1975 Grubbs - Deuterium Labeling

    – Examined ring closing metathesis (RCM)

    Mechanistic Studies

    11

    02

    11

    PairwiseChauvin

    Predicted Product Ratios

    R. H. Grubbs, P. L. Burk and D. D. Carr,J. Am. Chem. Soc. 1975,97,3265.T. J. Katz and R. Rothchild, J. Am. Chem. Soc. 1976,98,2519.R.H. Grubbs, Nobel Lecture, 2005

    Supports Chauvin’s Mechanism!

  • Chauvin’s Mechanism

    Yves Chauvin

  • Metallocycles

    σ- bond metathesis

    olefin insertion

    olefin metathesis

    alkyne insertion

    alkyne metathesis

    M CR2 M CR2M

    CH2

    CR2

    CH2

    M R

    H H

    M R

    HH

    M

    H

    R

    H

    M R M R M R M CR2M CR2 M

    HC CH

    CR2

    M CR2M CR

    CHHC

    M

    CH

    CR

    CH

    Y. Chauvin, Nobel Lecture, 2005

  • Span of Olefin Metathesis

    Types of Metathesis

    R1R 2 R1

    R 2+

    **

    n

    **

    n

    R 2

    R1

    +

    R2

    R1

    cross metathesis (CM) ring closing metathesis (RCM)

    ring opening cross metathesis (ROCM)

    acyclic diene metathesis (ADMET)ring opening metathesis polymerization (ROMP)

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.R.H. Grubbs, Nobel Lecture, 2005R.R. Schrock, Nobel Lecture, 2005Y. Chauvin, Nobel Lecture, 2005

  • A Good ROMP Catalyst

    • Well-defined

    • Initiation faster than propagation

    • Limits chain transfer and termination

    • Soluble in organic media

    • Show high stability to moisture, air, temperature, and a variety of organic functional groups

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.

  • ROMP Mechanism

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.

  • Chain Transfer in ROMP

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.

  • Moving toward a Catalyst

    • Katz -1976 “First” well-defined catalyst

    •Little MW control

    •PDI > 1.85R=Ph or OMe

    Katz suggested that the presence of a carbene on the catalyst

    would facilitate reactivity.

    Thomas J. Katz

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.Rouhi, M. A. C&EN. 2002, 80(51), 34.

  • Towards an Efficient Catalyst

    Titanium– isolable metallocyclobutane

    – catalyzes ROMP of norobornene with good MW control, PDI ~ 1.2

    – reactive with heteroatoms

    Tantalum • higher activity than Titanium

    • reactive with heteroatoms

    • catalyst tailoring– the bulky, electron rich aryloxides

    decreased side reactions

    – PDI ~ 1.1 with bulky as opposed to PDI ~ 1.6 with less bulky groups for ROMP of norbornene

    Ar = 2,6-diisopropylbenzene

    Ar = 2,4,6-triisopropyl benzene

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.R.H. Grubbs, Nobel Lecture, 2005R.R. Schrock, Nobel Lecture, 2005

  • Tungsten Catalysts

    Basset’s Tungsten Catalyst

    •wider functional group tolerance (acetates, nitriles, anhydrides)

    •bulky alkoxide ligands show stereoselectivity

    •high activity, increased side reactions

    Schrock’s Imido-alkoxy Catalyst

    •alkoxides varied to modulate activity

    •limited functional group tolerance

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.R.R. Schrock, Nobel Lecture, 2005

  • Schrock’s Catalyst

    •Molybdenum alkylidenes, well-defined

    •highly active

    •good functional group tolerance

    •ester, amide, imide, ketal, ether, cyano, trifluoromethyl,

    and primary halogens

    •must be used in inert conditions, no water

    •stereochemical control through chiral alkoxy ligands

    Molybdenum Catalysts

    isotactic polymer

    Richard R. Schrock

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.R.R. Schrock, Nobel Lecture, 2005

  • Ruthenium Catalysts

    Robert H. Grubbs

    First Generation

    Second Generation

    Grubb’s Catalysts

    •highly stable

    •minimal side reactions

    •e- donating lingands

    •readily initiated benzylidine moiety

    •increased functional group tolerance (Schrock tolerance + water, alcohols, acids)

    •Selective to alkyl substituted double bonds

    •ROMP highly strained rings

    • σ donating NHC ligand increases electron density on the metal

    •reacts with e- deficient double bonds

    •more reactive, faster phosphinedissociation

    •more stable, bench top ROMP

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.R.H. Grubbs, Nobel Lecture, 2005

  • Why should we care?

    RCM Applications in Pharmaceuticals

    R.H. Grubbs, Nobel Lecture, 2005

  • But . . .we like polymers

    Crosslink

    R.H. Grubbs, Nobel Lecture, 2005

    Dicyclopentadiene (DCPD)

  • A ROMP in Water!

    Water Soluble Grubb’s Catalysts

    •incorporation of charged ligands allows for water solubility

    •HCl promotes initiation and prevents decomposition

    •PDI < 1.24 for homopolymers

    C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.R.H. Grubbs, Nobel Lecture, 2005

  • Summary

    Mechanism of Olefin Metathesis

    Grubb’s First

    Generation

    Grubb’s Second

    Generation

    Schrock’s

    Catalyst

    Olefin Metathesis Catalysts

    most reactive

    least stable

    least tolerant

    $ 491/ gram

    least reactive

    moderately stable

    very tolerant

    $101/gram

    highly reactive

    very stable

    very tolerant

    $316/gram

    M CR2M CR2

    M

    CH2

    CR2

    CH2

  • The Nobel Laureates

    Yves Chauvin Institut Français du PétroleRueil-Malmaison, France

    Robert H. Grubbs Richard R. Schrock Caltech

    Pasadena, CAMIT

    Cambridge, MA

    2005 Nobel Prize in Chemistry

    “for the development of the metathesis method in organic synthesis”

    Y. Chauvin, Nobel Lecture, 2005 R.H. Grubbs, Nobel Lecture, 2005 R.R. Schrock, Nobel Lecture, 2005

  • New and Future Directions

    • Development of new catalysts– late transition metals with highly donating ligands

    – ideal catalyst reacts with all cyclic olefins regardless of functionality

    – “universal catalyst”

    • Polymerize new monomers– tri- and tetra-substituted olefins evidence of which has been seen in RCM

    • Control – structure relates to function

    N NMesMes

    N

    O NN N PhMesMesN N MesMes

    N NN N

    Development of New Ligands

    N

    N

    Fc

    Fc

    N

    N

    Fc

    Fc

    N

    N

    Ph

    Ph

    FcN

    N

    Fc

    CH3

    N N MesMes

    OO

    Fe

    N

    N

    R

    R

    Development of Redox Active Ligands

    E. Rosen, J. Kamplain, D. Sung, D. Varnado, C.W. Beilawski. Manuscript in preparation.C.W. Bielawski, R.H. Grubbs Prog. Polym. Sci. 32 (2007) 1.

  • Schrock Carbene•triplet carbene•high oxidation states •early transition metals•non pi-acceptor ligands on metal •non pi-donor substituents on carbene

    Fischer Carbene•singlet carbene•low oxidation state metals •middle and late transition metals •pi-electron acceptor ligands on metal•pi-donor substituents on carbene (alkoxy and alkylated amino)

    M

    R'

    R

    M

    R'

    R

    Carbenes

  • Grubb’s Idea

    Ruthenium

    •low oxophilicity – good functional group tolerance

    •readily bonds to carbon

    •RuCl3 showed increased activity in protic media

    •extraordinary tolerance to polar functionality