metals’in’redox’biology’genomics.unl.edu/rbc_2017/course_files/s2.pdfclassificaon’of’metal’transporters’...

30
Metals in Redox Biology Ariana Farrand, Linda Pudelko, Songita Choudhury, Amirata Saei Dibavar, Arun Kumar Selvam May 17th, 2017 Course: „Redox regulaGon, oxidaGve stress and selenoproteins“

Upload: others

Post on 13-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Metals  in  Redox  Biology  Ariana  Farrand,  Linda  Pudelko,  Songita  Choudhury,  Amirata  

Saei  Dibavar,  Arun  Kumar  Selvam    

May  17th,  2017    Course:  „Redox  regulaGon,  oxidaGve  stress  and  

selenoproteins“  

Page 2: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

QuesGons  1.   Which  metals  are  the  major  contributors  to  hydroxyl  

radical  formaGon  in  cells?  2.   What  are  the  intracellular  concentraGons  of  these  

metals  in  mammals?    3.   Show  the  reacGon  by  which  metals  catalyze  the  

formaGon  of  hydroxyl  radicals  4.   Examples  of  how  mammalian  cells  import/export  metals  5.   How  are  import/export  systems  used  to  protect  against  

stress?  6.   Examples  of  a  metalloprotein  involved  in  oxygen  and  

redox  sensing  à  descripGon  of  the  mechanism  of  response  

Page 3: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Hydroxyl  radical    

Source:  BRIGHTWATER  Website  

Page 4: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

DNA  

•   OxidaGon  of  DNA  bases  •   MutaGon  &  DNA  damage  

•   Cellular  senescence,  apoptosis  or  carcinogenesis  

Lipids   •   Lipid  peroxidaGon  •   Membrane  damage  

Proteins   •   Amino  acid  oxidaGon  •   (De-­‐)  AcGvaGon  of  enzymes  or  signaling  molecules  

Ø  Dangerous  to  any  biological  system  Ø  Long  list  of  associated  diseases  affecGng  any  part  of  the  body  

Page 5: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

GeneraGon  of  hydroxyl  radical  in  vivo  

Ø   Excessive  exposure  to  ionizing  radiaGon    Ø   Breakdown  of  hydrogen  peroxide  via  Fenton  Reac*on  

•   Iron  (Fe)  and  Copper  (Cu)  catalyze  the  producGon  of  hydroxyl  radical  from  hydrogen  peroxide  

1.   Which  metals  are  the  major  contributors  to  hydroxyl  radical  formaGon  in  cells?  

 Ø  Iron  and  Copper    

 

 

Page 6: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Metal  homeostasis  Ø    Metals  involved  in  various  biological  processes    

•   i.e.:  enzyme  reacGons,  signal  transducGons,  electron  transfer,  oxygen  transport  à  electron  donor  and  acceptor    

Ø   TransiGon  metal  ions:  criGcal  roles  as  electron  transfer  intermediates  in  redox  reacGons  

Ø  Metals  are  taken  up  from  diet    •   Metabolized  //  post-­‐translaGonal  modificaGon  to  form  metalloproteins    

Ø   Excess  metal  accumulaGon  and  release  in  free  reacGve  form            à  toxic!    

Tight  regulaGon  of  metal  uptake,  metabolism,  transport,  assembly  into  metalloproteins  and  detoxicifaGon  of  outmost  importance!    

Page 7: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Ø   Common  oxidaGon  states:  •   Ferrous  (+2)  ion,  ferric  (+3)  ion      

Ø   Due  to  high  toxicity,  most  iron  is  bound  to  proteins  Ø   labile  iron:  free  iron  bound  to  low-­‐affinity  complexes    Ø   Binding  to  proteins:  limiing  iron‘s  ability  to  do  harm,  while  

benefiing  from  its  funcGon  )    

DistribuGon  •   FuncGonal  iron  (Haemoglobin,  Myoglobin,  Haem  enzymes)  •   Transport  iron  (Transferrin)  •   Storage  iron  (FerriGn,  Haemosiderin)    Ø  Oxygen  transport  and  cellular  respiraGon  

Page 8: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Ø   Common  oxidaGon  states:  •   Cuprous  (+1)  ion,  Cupric  ion  (+2)    

Ø   IncorporaGon  into  variety  of  proteins  and  metalloenzymes  for  metabolic  funcGons,  i.e.:  •   Ceruloplasmin  (ferroxidase  I):  iron  transport  •   Cytochrome  c  oxidase:  electron  transport  chain    •   Superoxide  dismutase:  anGoxidant    •   Lysyl  oxidase:  cross-­‐linking  of  collagen  and  elasGn    

 Ø   EssenGal  funcGons  in  i.e.:  

•   Growth,  developmen  and  maintenance  of  bones,  connecGve  Gssue,  brain  and  heart  

•   FormaGon  of  red  blood  cells  •   AbsorpGon  and  uGlizaGon  of  iron  

Page 9: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

2.   What  are  the  intracellular  concentraGons  of  these  metals  in  mammals?    

Iron   Copper  

Ø   Total  intracellular:  20  µM    Ø   Intracellular  labilie  iron  <  1  µM    Ø   i.e.:  Erythrocytes:    ̴300  µM    Total  body  iron  Male:  3000  –  4000  mg    Female:  2000  –  3000  mg  

Daily    uptake  /loss  (19  –  50  yrs)  Male:  8  mg/1-­‐2  mg  Female:  18  mg/  1-­‐2  mg    Distribu*on  FuncGonal  iron:  80  %    Storage  iron:  20  %  

Ø   Total  intracellular:  0.8  –  10  µM      Total  body  copper  80  –  100  mg  

Daily    uptake    1.3  mg/day  (<  5  mg/day)    Distribu*on  •   Liver  (15  %)  •   Brain  (10  %)  •   Heart  and  kidneys  •   Skeleton  (20  %)  •   Serum  (6  %)    

Page 10: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Show  the  reacGon  by  which  metals  catalyze  the  formaGon  of  hydroxyl  radicals  

Page 11: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Provide  an  example  of  how  mammalian  cells  import/export  metal  ions  

Copper  import  Ø  Reduced  copper  comes  into  cell  via  Ctr1  protein  

Ø  Transported  to  mitochondria  via  Cox17  

Ø  To  Golgi  via  Atox1  Ø  CCS  directly  interacts  with  SOD  to  insert  Cu  

Ø  MT  induced  to  bind  excess  free  Cu  

Page 12: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Provide  an  example  of  how  mammalian  cells  import/export  metal  ions  

Copper  export  Ø   ATP7A  (MNK)  Ø   ATP7B  (WND)  Ø   Sequester  in  vesicles  for  

excreGon  Ø   Cuproprotein  synthesis  

Page 13: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

The  importance  of  metal  transport  

Balance  is  reached  through  uptake,  storage  and  secreGon.  A  delicate  balance  of  transport  acGviGes  is  required  in  difference  cellular  compartments,  because:    §  Transi,on  metals  are  essen,al  for  the  func,on  of  most  proteins  

involved  in  redox  reac,ons    §  Several  life  processes  involves  toxic  reagents  that,  when  present  in  

abnormal  amounts,  damage  proteins  and  nucleic  acids    For  example,  abnormal  iron  uptake  is  implicated  in  the  most  common  hereditary  disease  hemochromatosis,  along  with  neurological  disorders  such  as  Parkinson’s  disease,  Friedreich’s  ataxia,  etc.  

Page 14: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

ClassificaGon  of  metal  transporters  

The  different  transporters  can  be  grouped  into:  §  Those  driven  by  the  chemical  energy  of  ATP    §  Those  driven  by  electrochemical  gradients  of  protons  and  

other  ions  Some  of  the  systems  are  built  up  by  couples  of  transporters,  one  of  high  affinity  and  low  capacity  and  the  other  of  low  affinity  and  high  capacity  

Page 15: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Various  protein-­‐based  components  involved  in  metal  trafficking  

Lalla Aicha Ba et al. Metallomics, 2009, 1, 292–311.  

Page 16: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Promiscuity  of  the  transporters  •   The  divalent  caGon  transporter  DCT1,  for  instance,  may  

transport  iron,  zinc,  manganese  and  copper,  but  also  cobalt,  cadmium,  nickel  and  lead.    

•   Similarly,  the  phosphate  transporter  may  be  used  by  structurally  similar  vanadate  and  arsenate  to  gain  entry  into  the  cell,  whilst  the  sulfate  transporter  is  prone  to  being  ‘abused’  by  chromate,  selenite  and  molybdate.  

Page 17: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Components  of  metal  ion  trafficking  

•   Metal  binding  proteins  e.g.  calmodulin,  ferriGn  •   Pre-­‐formed  metal  binding  sites  in  proteins  and  enzymes  e.g.  DCT1,  SOD2  •   Chaperones  (metallochaperone  and  ion-­‐inserGng  proteins)  e.g.  CCS  •   The  labile  metal  ion  pool  

Page 18: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Some  detailed  examples:  Ca  •   SynergisGc  binding  of  two  to  four  labile,  ‘free’  Ca2+  ions  to  the  

four  EF-­‐hands  of  the  Ca  sensor  calmodulin  triggers  a  change  in  the  structure  from  the  inacGve  to  the  acGve  form.    

•   The   later   then   binds   to   various   proteins   and   enzymes   and  acGvates   Ca2+   -­‐ATPase   pumps,   which   in   turn   lower  intracellular  Ca2+  levels.    

•   Once  these  levels  have  fallen  below  10-­‐7  to  10-­‐8  M,  Ca2+  ions  begin   to   dissociate   from   the   calcium–calmodulin   complex.  This  returns  calmodulin  to   its  metal-­‐free,   inacGve  form,  and  the   proteins   and   enzymes   acGvated   by   calmodulin   switch-­‐off.    

•   The   Ca2+-­‐ATPase   pumps,   in   parGcular,   are   also   turned   off,  which  ensures  that  intracellular  Ca2+  levels  do  not  fall  below  a  criGcal  level  required  by  the  cell  (around  1.0–5.0x10-­‐8  M).    

•   If  Ca2+  levels  rise  again,  binding  to  calmodulin  occurs  and  the  regulatory  feedback  loop  is  triggered  once  more.  

Page 19: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Iron  •   It  is  proposed  that  DCT1  is  the  main  

port  of  iron  entry  in  the  duodenum.  •   In  the  blood  stream  another  copper  

protein,  ceruloplasmin,  oxidizes  Fe2+  to  Fe3+  and  makes  it  amenable  to  bind  apotransferrin.    

•   Iron  enters  the  human  cell  as  part  of  the  iron-­‐transport  protein  transferrin,  which  is  taken  up  by  endocytosis.    

•   Inside  the  cell,  iron  is  either  stored  in  ferriGn  or  escorted  to  appropriate  apoproteins.    

•   The  chaperone  frataxin  is  parGcularly  important.  It  provides  iron  for  the  assembly  of  iron/sulfur  clusters  in  proteins.    

•   Excess  of  iron  is  removed  from  the  cell  by  a  set  of  proteins,  including  IREG-­‐1  and  the  hephaesGn  iron  export  complex.  

Page 20: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Manganese  •   It  appears  that  manganese  enters  the  cell  via  DCT1  and  

relies  on  MCF  to  cross  the  mitochondrial  membrane,  where  it  binds  to  SOD2.  

Page 21: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Molybdenum  •   Unlike  the  other  metal  ions,  molybdenum  is  trafficked  not  as  a  

caGon  but  as  molybdate  (MoO4  anion).    •   It  almost  exclusively  ends  up  in  the  molybdenum  cofactor  

(Moco),  which  exhibits  a  trafficking  system  on  its  own.    

Page 22: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Transport  and  inserGon  of  copper  •   Copper  enters  the  cell  via  the  high-­‐

affinity  CTR  transporters  or  the  low-­‐affinity  DCT1.    

•   Once  inside  the  cell,  copper  is  passed  on  to  one  of  the  chaperones,  which  escort  the  ion  either  to  the  Golgi  (ATOX1),  apo-­‐SOD1  (CCS)  or  to  the  mitochondria  (Cox17,  Cox19).    

•   Upon  reaching  its  desGnaGon,  copper  is  either  imported  into  the  Golgi  and  released  (using  a  P-­‐type  ATPase  denoted  as  cP,  including  the  Wilson  and  Menkes  disease  proteins),  inserted  into  apo-­‐SOD1  or  incorporated  into  cytochrome  c  oxidase  located  in  the  mitochondria  (using  proteins  such  as  Sco1,  Sco2  and  Cox11).    

•   ‘Most  of  the  copper  trafficked  appears  to  be  Cu+,  yet  redox  processes  and  Cu2+  may  also  play  an  important  part  in  copper  trafficking.    

Page 23: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Zinc  Zn2+  enters  the  cell  via  the  ZIP  transporters  and  in  part  also  by  diffusion  (there  is  a  500-­‐fold  excess  of  Zn2+  outside  the  cell)  and  possibly  by  the  (apparently  bi-­‐direcGonally  acGve)  Na+/Zn2+  exchangers.      Once  inside  the  cell,  Zn2+  is  taken  up  by  apoproteins  or  is  sequestered  by  the  thioneins,  the  apo-­‐form  of  the  metallothionein  (MT)  proteins.  Either  directly  or  via  the  MT  proteins,  Zn2+  is  passed  on  to  the  zinc  transport  (ZnT)  proteins  which  traffic  zinc  within  the  cell  and  also  expel  it  from  the  cell.    Zinc  may  also  leave  the  cell  via  the  Na+/Zn2+  exchangers.    Intracellular  concentraGons  of  labile  Zn2+  are  extraordinarily  low.  They  are  regulated  by  a  complex  feedback  loop  which  involves  the  Zn2+  sensing  transcripGon  factor  MTF-­‐1,  the  MRE  of  DNA  and  de  novo  synthesis  of  thionein  and  ZnT.    

Page 24: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Import/export  systems  

5.   How  are  import/export  systems  used  to  protect  against  stress?  

6.   Examples  of  a  metalloprotein  involved  in  oxygen  and  redox  sensing  à  descripGon  of  the  mechanism  of  response  

Page 25: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Import/Export  Systems  Ø   Iron  mediated  oxidaGve  stress  is  prevented  by  chelaGng  free  

iron,  prevenGng  the  Fenton  reacGon.  Ø   Desferrioxamine  mesylate  (DFO)  is  a  “hexidentate“.  It  will  bind  all  six  

sites  of  iron  once  inside  the  cell  to  reduce  redox  acGvity.  Ø   Siderophores  

Ø   Copper  homeostasis  is  maintained  via  metallochaperones.  They  must  also  be  chelated  to  prevent  the  Fenton  reacGon  Ø  Within  hepatocytes,  copper  remains  bound  to  metallothionenin  

Valko  et  al.,  Curr  Med  Chem,  2005  

Page 26: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Heme  Oxygenase-­‐1  

•   HMOX-­‐1  as  a  protecGve  mechanism  against  oxidaGve  cellular  stress.  

•   Free  radicle  generaGon  by  chemical  or  physical  mean  can  increase  the  expression  of  HMOX1.  

•   GSH  depleGon  act  as  a  signal  for  HMOX-­‐1  transcripGonal  acGvaGon.  

 

 

Page 27: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

HMOX1  AcGvaGon  

HMOX1  acGvaGon  by  stress  

•   HMOX  regulaGng  by  MAPK,  transcriGon  factor  such  as  NRF2,  AP-­‐1  &  HIF1.  

•   General  marker  of  oxidaGve  stress  in  cell  culture  models.  

•   Heme:  a  substrate  for  HMOX    

Page 28: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

Mechanism  of  acGon  

•   Free  heme  a  potent  catalyst  of  lipid  peroxidaGon,  and  to  promote  oxidaGve  damage  to  vascular  endothelial  cells  

Page 29: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

References  •   Chapter  1  :  Overview  of  ReacGve  Oxygen  Species,  in  Singlet  Oxygen:  Applica,ons  in  Biosciences  and  Nanosciences,  Volume  1,  

2016,  1,  pp.  1-­‐21  •   Pham-­‐Huy  LA,  He  H,  Pham-­‐Huy  C.  Free  Radicals,  AnGoxidants  in  Disease  and  Health.  Interna,onal  Journal  of  Biomedical  

Science :  IJBS.  2008;4(2):89-­‐96.  •   James  P.  Kehrer  &  Lars-­‐Oliver  Klotz,  Free  radicals  and  related  reacGve  species  as  mediators  of  Gssue  injury  and  disease:  

implicaGons  for  Health.  Toxicology.  2015;  45:9,765-­‐798  •   Waldvogel-­‐Abramowski  S,  Waeber  G,  Gassner  C,  et  al.  Physiology  of  Iron  Metabolism.  Transfusion  Medicine  and  

Hemotherapy.  2014;41(3):213-­‐221.  doi:10.1159/000362888  .  •   Sarika  Arora  and  Raj  Kumar  Kapoor  (2012).  Iron  Metabolism  in  Humans:  An  Overview,  Iron  Metabolism,  Dr.  Sarika  Arora  

(Ed.),  ISBN:  978-­‐953-­‐51-­‐0605-­‐0,  InTech,  Available  from:  htp://www.intechopen.com/books/iron-­‐metabolism/iron-­‐metabolism-­‐in-­‐humans-­‐an-­‐overview  

•   WHO/FAO/IAEA,  (1996),  Trace  Elements  in  Human  NutriGon  and  Health.  World  Health  OrganizaGon,  Geneva)  •   Tolerable  Upper  Intake  Levels  For  Vitamins  And  Minerals  (PDF),  European  Food  Safety  Authority,  2006  •   InsGtute  of  Medicine.  Food  and  NutriGon  Board.  

Dietary  Reference  Intakes  for  Vitamin  A,  Vitamin  K,  Arsenic,  Boron,  Chromium,  Copper,  Iodine,  Iron,  Manganese,  Molybdenum,  Nickel,  Silicon,  Vanadium,  and  Zinc  :  a  Report  of  the  Panel  on  Micronutrients.  Washington,  DC:  NaGonal  Academy  Press;  2001.  

•   Biesalski  HK,  Grimm  P:  Taschenatlas  der  Ernährung.  142-­‐145.  Georg  Thieme  Verlag,  Stutgart/New  York,  1999  •   Kakhlon  O,  Cabantchik  ZI  (2002).  "The  labile  iron  pool:  characteriza,on,  measurement,  and  par,cipa,on  in  cellular  

processes".  Free  Radical  Biology  and  Medicine.  33  (8):  1037–1046  •   Yehuda  S,  Mostofsky  DI,  eds.  (2010).  Iron  Deficiency  and  Overload  From  Basic  Biology  to  Clinical  Medicine  •   Crichton,  R.  D.,  Bo.G;  Geisser,  P.  Iron  Therapy  With  Speacial  Emphasis  on  Intravenous  AdministraGon.  Fourth  EdiGon  edn,  

(Bremen:  UNI-­‐MED,  2008)  •   Stern,  Bonnie  Ransom;  Solioz,  Marc;  Krewski,  Daniel;  Agget,  Peter;  Aw,  Tar-­‐Ching;  Baker,  Scot;  Crump,  Kenny;  Dourson,  

Michael;  Haber,  Lynne;  Hertzberg,  Rick;  Keen,  Carl;  Meek,  Bete;  Rudenko,  Larisa;  Schoeny,  Rita;  Slob,  Wout;  Starr,  Tom  (2007).  "Copper  and  Human  Health:  Biochemistry,  GeneGcs,  and  Strategies  for  Modeling  Dose-­‐response  RelaGonships".  Journal  of  Toxicology  and  Environmental  Health,  Part  B.  10  (3):  157–222.  

•   Lalla  Aicha  Ba,  Mandy  Doering,  Torsten  Burkholz  and  Claus  Jacob  (2009)  Metal  trafficking:  from  maintaining  the  metal  homeostasis  to  future  drug  design.  Metallomics,,  1,  292–311.  

Page 30: Metals’in’Redox’Biology’genomics.unl.edu/RBC_2017/COURSE_FILES/s2.pdfClassificaon’of’metal’transporters’ The’differenttransporters’can’be’grouped’into:’

References  •   Chapter  4:  Redox  regulaGon  of  physiological  processes,  in  Redox  textbook  

for  this  course,  p.  211-­‐216  •   Suzuki  KT,  Someya  A,  Komada  Y,  Ogra  Y  (2002)  Roles  of  metallothionein  in  

copper  homeostasis:  responses  to  Cu-­‐deficient  diets  in  mice,  J  Inorganic  Biochem  88(2):173-­‐182  

•   Davies  KM,  Mercer,  JFB,  Chen  N,  Double  KL  (2016)  Copper  dyshomeostasis  in  Parkinson’s  disease:  implica,ons  for  pathogenesis  and  indica,ons  for  novel  therapeu,cs,  Clinical  Sci  130(8):565-­‐573  

•   Petris  MJ,  Voskoboinik  I,  Cater  M,  Smith  K,  Kim  BE,  Llanos  RM,  Strausak  D,  Camakaris  J,  Mercer  JFB  (2002)  Copper-­‐regulated  Trafficking  of  the  Menkes  Disease  Copper  ATPase  Is  Associated  with  FormaGon  of  a  Phosphorylated  CatalyGc  Intermediate,  J  Biol  Chem  277(48):46736-­‐46742  

•   Kaplan  JH,  Lutsenko  S  (2009)  Copper  Transport  in  Mammalian  Cells:  Special  Care  for  a  Metal  with  Special  Needs,  J  Biol  Chem  284:25461-­‐25465  

•   Winterbourn  CC  (1995)  Toxicity  of  iron  and  hydrogen  peroxide:  the  Fenton  reacGon,  Toxicol  Let  82/83:969-­‐974