metallurgy of the welded joint

30
1 Welding Technology Module IIS Progress Gruppo Istituto Italiano della Saldatura Basics of welding metallurgy

Upload: prabha221

Post on 14-Sep-2015

88 views

Category:

Documents


29 download

DESCRIPTION

Metallurgy of the Welded Joint

TRANSCRIPT

  • 1Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Basics of welding metallurgy

  • 2Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Basic metallurgy

    Amorphous microstructure Cubic microstructure

  • 3Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Body cubic centered microstructures

  • 4Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Face cubic centered microstructures

  • 5Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Hexagonal close packed crystal structure

  • 6Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    BCC

    CrMoNbWV

    Fe, Fe Ti Zr

    CFC

    AlAgNiPbCu

    Fe Co

    HCP

    MgSnZn

    Ti Co Zr

    Monomorphous metals

    Polimorphous metals

    Pure metals and allotropy

  • 7Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Metallic alloys

    Insertional alloys Substitutional alloys

  • 8Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Delta iron, BCC (1535 -1390C)

    Gamma iron, FCC (1390 -910C)

    Beta iron BCC (910 -770C non-magnetic)

    Alfa iron, BCC (910C -0K, magnetic)

    Liquid

    Fe

    Fe

    Fe

    Fe 770C

    1535C

    910C

    1390C

    TC

    Iron-base alloys (steels)

  • 9Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Iron-base alloys (steels): microstructures

    Cementite (Fe3C)

  • 10

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Iron-base alloys (steels): microstructures

    Ferrite

  • 11

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Iron-base alloys (steels): microstructures

    Austenite

  • 12

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Iron-base alloys (steels): microstructures

    Pearlite

  • 13

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Iron-base alloys (steels): microstructures

    Martensite

  • 14

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Iron-base alloys (steels): basic heat treatmentsAnnealing The steel is fully austenitized,

    then slowly cooled up to room temperature

    This treatment improves the ductility but reduces the tensile properties, the hardness and the fracture toughness (coarse grain)

    Normalizing The steel is again fully

    austenitized, but this time cooled up to room temperature with higher cooling rates

    This treatment improves the tensile properties, the hardness and the fracture toughness, but reduces the ductility (grain refinement)

    Quench The steel is once more fully austenitized,

    then cooled very quickly up to room temperature

    This treatment strongly improves the thetensile properties, the hardness but reduced the fracture toughness and the ductility

    Tempering The steel is treated in the ferritic

    temperature range, then cooled up to room temperature

    This treatment improves the fracture toughness and reduces the peak hardness

    It is typical of hardening steels, after a quench (sometimes after a normalizing)

    During PWHT, promotes the weld stress relieving

  • 15

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Factors influencing thethermal cycle:

    heat input

    thickness preheat temperature

    Consequences of the heat treatment imposed by the welding thermal sources:

    metallurgical structure of welded zone mechanical effects (stresses and

    distortions)

    Welding thermal cycle

    60=vIVHI

    T

    E

    M

    P

    E

    R

    A

    T

    U

    R

    E

    TIME

    Welding cycles (as a function of the distance to the weld axis)

  • 16

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Heat distribution

  • 17

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Metallurgical effects: structure of the welded joint

    FUSED ZONE or WELD METAL (WM)

    BASE MATERIAL

    HEAT AFFECTED ZONE (HAZ)

  • 18

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Weld metal composition

    Dilution ratio (Rd), is used to evaluate chemical composition of the weld metal

    100+= bab

    d VVVR

    Va+Vb

    Vb

    Examples of typical Dilution Ratio for different welding processes:

    SMAW: First pass Rd=30% Fill passes Rd=10%

    TIG: Rd=20-40% MIG/MAG:

    First passes Rd=10-40% Fill passes Rd=5-20%

  • 19

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Metallurgical structure of the weld metal

    WELD DEPOSIT

    HEAT SOURCE

    HEAT FLOW

    Welding direction

    Welding directionThe final microstructure of a welded joint is influenced by several factors:

    Thermal cycle severity (cooling speed)

    t8/5 is assumed as the most significant parameter for low alloyed steels;

    Heat input and number of passes strongly affect the grain growth in the weld metal

    Number of the material allotropic transformations;

    Grain dimension of the base metal.

  • 20

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Metallurgical structure of the weld metal

    Weld metal dendritic microstructure

  • 21

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Heat Affected Zone (HAZ)The heat-affected zone includes those regions that are measurably influenced by the heat of the welding process:

    For a plain carbon steel, the heat-affected zone may not include regions of the base metal heated to less than approximately 700C since the welding heat has little influence on those regions

    In a hardened steel that has been quenched to martensite and tempered at 315C, any area heated above 315C during welding would be considered part of the heat affected zone

    Heat-affected zones can be defined by a changes in microstructure close to the welded joint. The various effects of welding heat on the heat-affected zone, can be therefore considered in terms of four different types of alloys that may be welded:

    1. Alloys strengthened by solid solution2. Alloys strengthened by cold work3. Alloys strengthened by precipitation hardening4. Alloys strengthened by transformation (martensite)

  • 22

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    C(%)T

    (

    C

    )

    Liquid

    + Fe3C

    +

    M

    a

    x

    i

    m

    u

    m

    t

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    r

    e

    a

    c

    h

    e

    d

    d

    u

    r

    i

    n

    g

    w

    e

    l

    d

    i

    n

    g

    WM

    HAZ

    Grain coarsened zone

    Tempered zone

    Partly austenitized zone

    Plain carbon steels

  • 23

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Stainless steelsWelding influences the metallurgical behavior of stainless Cr-Ni steels:

    - a grain coarsened region can be individuated

    - Intergranular corrosion resistance of the HAZ can significantly be reduced (sensitizing)

    More complex phenomena are involved in the HAZ of stainless chromium steels.

    Sensitizedzone

    18%

    13%

    Grain boundary

    1 m

    Chromium %

    Tmax1300 850 400400 850 1300

  • 24

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Aluminum alloys HAZ Softening

    WELD METAL

    HARDNESS

    DISTACE FROM THE JOINT CENTERLINE

    HEAT AFFECTED ZONE

  • 25

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Origin of residual stresses and distortion During thermal welding, the

    weld region is heated up strongly incomparison with the surroundingregion and is fused locally. Thematerial expands as a result of being heated.

    The thermal expansion is restrainedby the colder surrounding region,thus leading to thermal stresses.

    The thermal stresses partly exceed the yield limit which is lowered at elevated temperatures.

    Consequently, the weld region is upset plastically and, after cooling-down, is too short, too narrow or too small in relation to the surrounding region. It thus displays tensile residual stresses while the surrounding region exhibits compressive residual stresses.

  • 26

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Transversal shrinkage Depending on the position of

    restraints, welding speed and heat input, the rotational distortion can result in opening or closing the of the finishing end of the joint

    In the case of multipass welding, shrinkage is accumulated

    Tack welding can reduce the distortion, but residual stresses are increased

    600C

  • 27

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Angular shrinkage Due to transversal shrinkage, also angular distortion is

    provoked Joint welded from one side

    T joints

  • 28

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Longitudinal shrinkage The longitudinal shrinkage of

    the weld during cooling, following longitudinal upsetting during heating, results in a longitudinal shortening of the component, notably in the weld zone. Where the weld is arranged eccentrically, this produces the unwanted bending deformation of girders and plates (bending distortion).

  • 29

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Welding residual stresses

    Welding transversal residual stresses Welding longitudinal residual stresses

  • 30

    Welding Technology Module

    IIS ProgressGruppo Istituto Italiano della Saldatura

    Multipass welding

    Weld metalHAZ of each pass

    During multipass welding: The total heat input is lower Every pass produces a heat

    treatment effect on the previous passes

    As a consequence, two important parameters need to be defined:

    Preheat temperature Interpass temperature