metallic interconnect systems · 2014. 7. 29. · slide # silicon in stainless steels • silicon...

31
1 Rakowski – Allegheny Ludlum Project DEFC2605NT42513 slide # Solid Oxide Fuel Cell Solid Oxide Fuel Cell Metallic Interconnect Systems Metallic Interconnect Systems 9 9 th th Annual SECA Workshop Annual SECA Workshop 5 5 7 August 2008, Pittsburgh PA 7 August 2008, Pittsburgh PA Project Project DE DE FC26 FC26 05NT42513 05NT42513 J. M. Rakowski, ATI Allegheny Ludlum J. M. Rakowski, ATI Allegheny Ludlum © 2008 ATI Allegheny Ludlum

Upload: others

Post on 04-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Solid Oxide Fuel CellSolid Oxide Fuel CellMetallic Interconnect Systems Metallic Interconnect Systems 

    99thth Annual SECA WorkshopAnnual SECA Workshop55‐‐7 August 2008, Pittsburgh PA7 August 2008, Pittsburgh PAProject Project DEDE‐‐FC26FC26‐‐05NT4251305NT42513J. M. Rakowski, ATI Allegheny LudlumJ. M. Rakowski, ATI Allegheny Ludlum

    © 2008 ATI Allegheny Ludlum

  • Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    2slide #

    This  presentation  is  intended  for  general informative  use  only.  The  information  and data  presented  are  not  specific  to  any  given production  lot  of  material  and  are  not applicable for design and specification.

  • Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    3slide #

    Overview

  • 4

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Project DescriptionProject Description• Evaluate materials for use as a basis for interconnect structures– Low‐cost substrates– Functional modifications

    • Low cost substrates– Commercially available ferritic stainless steels– Minor alloy modifications within specifications

    • Functional modifications include– Coatings– Integral surface treatments

  • 5

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Project DescriptionProject Description•A large portion of the mass of a SOFC stack is metallic alloys (interconnects)

    • The focus of this project is integration of commercially available ferritic stainless alloys (e.g. Type 441) into an interconnect system

    •Current community focus on functional coatings (e.g. manganese cobaltite spinel) indicates use of less expensive substrates

    •Modified processing designed to have minimal impact on cost

  • 6

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Technical ApproachTechnical Approach• The goal is to identify materials to serve as the basis for a high‐performance interconnect system

    • The deliverable is the selection of an alloy or alloys suitable for such

    • The work to‐date has focused on commercially available stainless steels and relies on well‐established technologies such as surface coatings and minor element alloying additions

    • Techniques used to identify good candidates include– High temperature oxidation testing – measurement of rate of oxide scale thickening

    – In‐situ area specific resistance (ASR) testing

  • Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    7slide #

    Materials

  • 8

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Melting and ProcessingMelting and Processing• Alloy development is done by melting experimental compositions in the laboratory

    • Melting is via a 22 kg VIM process

    • Processing is done by hot and cold rolling on a variety of small‐scalerolling mills

    • Material is comparableto that produced on amill scale

  • 9

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Melting and ProcessingMelting and Processing• Melted and processed a set of lab heats to thin strip

    • Complementary to studies on production alloys(Type 441, E‐BRITE® alloy)

    ‐‐‐‐1.01.0‐‐‐‐‐‐‐‐Mo

    0.30

    0.30

    0.20

    0.05

    ‐‐

    0.3

    26.0

    580‐5

    0.30

    0.30

    0.20

    0.05

    ‐‐

    0.15

    23.0

    580‐8

    0.30

    0.30

    0.20

    0.05

    ‐‐

    0.05

    24.0

    580‐9

    0.30

    0.30

    0.20

    0.05

    ‐‐

    0.15

    17.0

    580‐6

    0.30

    0.30

    0.20

    0.05

    ‐‐

    0.05

    17.0

    580‐7

    0.30

    0.30

    0.20

    0.05

    0.10

    0.05

    17.0

    580‐2

    0.04

    0.20

    ‐‐

    0.05

    ‐‐

    0.3

    26.0

    E‐BRITE® alloy

    0.33

    0.46

    0.18

    0.05

    ‐‐

    0.47

    17.6

    T441

    Si

    Ce+La

    Mn

    Nb

    Ti

    Al

    Cr

    Element

    ® Registered Trademark of ATI Properties, Inc.

  • 10

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    CoatingsCoatings•Manganese cobaltite spinel (nominal Mn1.5Co1.5O4) identified as effective interconnect coating– Electrically conductive–Oxidation barrier

    •RE additions to heat‐resistant alloys known to reduce oxide growth and increase oxide adherence

    •Spinel was modified by addition of Ce as a surface treatment (based on NETL‐Albany R&D) and then applied as a single‐step coating

    •Coated substrates provided by PNNL for testing

  • 11

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Silicon in Stainless SteelsSilicon in Stainless Steels• Silicon is typically present in most commercially‐produced stainless steels

    • By‐product of the EAF/AOD steelmaking process

    • Ferritic stainlesssteels generallycontain about0.3‐0.6 % silicon byweight

  • 12

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Silicon Removal TrialsSilicon Removal Trials• High‐temperature pre‐treatment with optional chemical component

    • Tested using a variety of Fe‐Cr stainless steels

    0.1

    1.0

    10.0

    100.0

    0.00 0.10 0.20 0.30 0.40

    Depth (microns)

    Enrichmen

    t

    Si

    Fe

    Cr

    AES analysis with sputter depth‐profiling

    Estimated removal of 40% of siliconfrom 0.5 mm thick T430SS

    • Formation/removal of an Si‐rich surface oxide layer

    • Short‐term results show a 25‐75% reduction in ASR

  • Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    13slide #

    Oxidation Testing

  • 14

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Effect of Water VaporEffect of Water Vapor• Humidified air used to simulate the cathode environment in SOFC

    • Dual atmosphere effect commonly noted for high temperature exposures where the plate separates a hydrogen‐bearing atmosphere from an oxidizing atmosphere

    • Hydrogen effect– Anomalously rapid oxidation at a given test temperature– Manifested by the formation of mixed iron and chromium oxides

    • Two different environments – similar results

  • 15

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Effect of Water Vapor / HEffect of Water Vapor / H22

    Fe‐Cr or Fe‐Cr‐Ni alloy

    Cr2O3

    air + water vaporor dual atmosphere

    Cr is irretrievably lost and 

    substrate is Cr‐depleted

    2Cr2O3(s) + 3O2(g) + 4H2O(g) 4CrO2(OH)2(g)

    Cr Cr

    mixedFe and Croxides

    rapid degradation via the formation 

    of mixed oxides is possible at high 

    levels of Cr‐depletion

  • 16

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Results of Oxidation TestingResults of Oxidation Testing• Strong dependence of oxidation resistance on chromium content

    • Effect of silicon– Very low silicon‐content alloys show an added tendency towards rapid oxidation

    – Alloys processed to remove silicon do not show an added tendency towards rapid oxidation

    • Manganese critical to reduce oxide scale evaporation in air containing water vapor

    • Testing informs alloy selection and development

  • 17

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Results of Oxidation TestingResults of Oxidation Testing

    0.0

    0.5

    1.0

    0 1000 2000 3000 4000 5000

    Time (h)

    WC (m

    g/cm

    2 )

    T441 at 850°C 

    T441 at 750°C 

    air + 10% water vapor

  • 18

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Results of Oxidation TestingResults of Oxidation Testing

    0

    10

    20

    30

    0 200 400 600 800 1000

    Time (h)

    WC (m

    g/cm

    2 )

    alloy 580‐7

    T441

    air + 10% water vapor750°C

    alloy 580‐6

    alloy 580‐2

  • 19

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    air + 10% water vapor750°C

    Results of Oxidation TestingResults of Oxidation Testing

    0.0

    0.5

    1.0

    1.5

    0 1000 2000 3000 4000 5000

    Time (h)

    WC (m

    g/cm

    2 )

    T441alloy 580‐6

    alloy 580‐2

  • 20

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Results of Oxidation TestingResults of Oxidation Testing

    ‐0.4

    ‐0.2

    0.0

    0.2

    0.4

    0 1000 2000 3000 4000 5000

    Time (h)

    WC (m

    g/cm

    2 )

    air + 10% water vapor750°C

    E‐BRITE® alloy

    alloy 580‐9

    alloy 580‐8

  • 21

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Results of Oxidation TestingResults of Oxidation Testing

    ‐0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    0 1000 2000 3000 4000 5000

    Time (h)

    WC (m

    g/cm

    2 )

    E‐BRITE® alloy

    air + 10% water vapor850°C

    alloy 580‐9

    alloy 580‐8

  • Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    22slide #

    ASR Testing

  • 23

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Test Stack DetailsTest Stack Details

    • LSM separator (Praxair)

    • LSM contact ink

    • Current density 0.5 A/cm2

    • Compaction force 0.2 psi

    • Three stacks per fixture

    • 800°C test temperature

    • Exposed in air

  • 24

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0 200 400 600 800 1000 1200

    Time (h)

    ASR

     (mΩ∙cm

    2 )Bare Alloy SubstratesBare Alloy Substrates

    alloy 580‐6alloy 580‐9

    alloy 580‐8

    E‐BRITE® alloy 

    alloy 580‐5 T441

  • 25

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    0

    20

    40

    60

    80

    100

    0 200 400 600 800 1000 1200

    Time (h)

    ASR

     (mΩ∙cm

    2 )Bare Alloy SubstratesBare Alloy Substrates

    alloy 580‐6

    alloy 580‐9

    alloy 580‐8

    T441 

    alloy 580‐5

  • 26

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    0

    5

    10

    15

    20

    25

    30

    35

    0 200 400 600

    Time (h)

    ASR

     (mΩ∙cm

    2 )Coated SubstratesCoated Substrates

    alloy 580‐6

    alloy 580‐9

    alloy 580‐8

    E‐BRITE® alloy 

    alloy 580‐5

  • Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    27slide #

    Summary

  • 28

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Technical ConclusionsTechnical Conclusions• Commercially available ferritic stainless steels may be viable candidates for PSOFC interconnect applications

    • Electrical performance is enhanced by the use of a surface coating (e.g. manganese cobaltite spinel with various modifications as developed at PNNL)

    • Minor modifications to alloy chemistry can have value– Bulk (notably Nb, Mn, Si, and Cr)– Ultra‐low Si may not be entirely beneficial– Surface (modified by Si removal)

  • 29

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Balance of ProjectBalance of Project• Continue oxidation testing to +5,000 hours time at temperature

    • Currently working through a matrix of commercial and experimental alloys for ASR testing– Uncoated– Coated (with PNNL)– Desiliconized and other potential surface modifications

    • It is expected that the majority of the work will be completed by 31 December 2008

    • It is expected that the end result will primarily be guidance on materials selection for SOFC interconnects – potentially Type 441 stainless steel

  • 30

    Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    slide #

    Project Team AcknowledgementProject Team Acknowledgement• Allegheny Technologies (ATI)• ATI Allegheny Ludlum

    – High Temperature Oxidation Test Laboratory at the Technical and Commercial Center (Natrona Heights, PA)

    – J. M. Rakowski, principal technical investigator• ATI Wah Chang

    – Responsible for project administration (Albany, OR)– C. Jackson, R. Fletcher, J. Schra

    • Significant collaboration with the Pacific Northwest National Laboratory (PNNL), NETL‐Morgantown, and NETL‐Albany

    • Ayyakkannu Manivannan, Program Manager

  • Rakowski – Allegheny Ludlum ‐ Project DE‐FC26‐05NT42513

    31slide #

    for additional informationfor additional information……

    www.alleghenytechnologies.comwww.alleghenytechnologies.comwww.alleghenyludlum.comwww.alleghenyludlum.com

    James M. RakowskiJames M. RakowskiManager, Product TechnologyManager, Product TechnologyMarket & Product DevelopmentMarket & Product Development

    [email protected]@alleghenyludlum.com