metal$fatigue$$in$dental$implants: a$ … · the$$ metal$fatigue$$in$dental$implants:! a$...

1
The METAL FATIGUE IN DENTAL IMPLANTS: A MARKOFF CHAIN STOCHASTIC FINITE ELEMENT FORMULATION María PradosPrivado ABSTRACT Random distribuFon of loads and consFtuFve properFes are incorporated here in the CoffinManson damage model. Based on the Markoff chain, BogdanoffKozin probabilisFc models are used. The probabilisFc transiFon matrix (PTM), which is obtained from Stochas(c Finite Elements associated with the expansion of random fields, leads to the cumulaFve damage density funcFon that are used in faFgue life predicFons. An example on dental implants is demonstrated here. ACKNOWLEDGEMENTS The results reported in this work have been parFally financed by Dental Implants & Biomaterials SL Chair on Dental Implants & Oral Surgery Research, at Rey Juan Carlos University, Madrid, Spain CONTACT María PradosPrivado +(34) 91 488 9109 Rey Juan Carlos University +(34) 600 437 964 Madrid (Spain) [email protected] CONSTRUCTION OF THE CUMULATIVE DAMAGE BK MODEL The main goal of this secFon is to show how to construct a model, which takes into account under a simple mathemaFcal structure, when the main sources of uncertainty appear in physical cumulaFve damage problems. Main assump*ons: A BK model [3] is defined by a series of basic iniFal assumpFons. Some other assumpFons may be added in order to complement or define a more specific type of BK models. Among them, the most important are: 1.There exist repeFFve "damage cycles" (DC) of constant severity. 2.The damage levels are discrete 1,2,..,j,..,b. The last level b is considered as a "failure state", that is, the life of the component is considered to be expired when level b is reached. 3.The cumulaFve damage in a DC depends only on that specific DC and the damage level at the beginning of that DC. 4.The damage level in one DC increases from that DC i to the next DC i+1 or remains in the iniFal DC i, being impossible to skip one or more damage states. STOCHASTIC EXPRESSION FOR THE DAMAGE MODEL FOR THE NUCLEATION STAGE DeterminisFc expression for faFgue life (nucleaFon stage, Coffin and BasquinManson) is summarized: : ElasFcplasFc strain amplitude σ f : FaFgue strength coefficient b: FaFgue strength exponent ε f : FaFgue ducFlity coefficient c: FaFgue ducFlity exponent E: Young modulus N f : FaFgue life The objecFve is to obtain the mean value and variance of faFgue life from SFEM, in order to build the BK model. Now all variables are considered to be random. Δε ep 2 = σ f ' E 2N f ( ) b + ε f '2N f ( ) c SFEM: THE PERTURBATION APPROACH The aim is to obtain the response random fields with the First order Taylor expansions: It’s neccessary to obtain the sensiFviFes. StarFng from the equilibrium equaFon: Ku = f By taking the derivaFve of the last expression respect to random variables: must be evaluated at the element level; u obtained from previuos FE analisys (evaluated at mean values); boundary condiFons. K α i u + K u α i = f α i u = u 0 + u i I (α i α i 0 ) + i =1 N ε e = ε e 0 + ε ei I (α i α i 0 ) +i=1 N K α i f α i SOME RESULTS Applied load has been taken from [4]. It includes the regular forces and the overloads from bruxism. The mean values of faFgue life is 2.47 x 10 11 cycles (11.289,5 years), and with overloads the cycles decrease up to 1.2 x 10 8 (2.74 years). The faFgue life (bruxism) is 34,5 million cycles (1.57 years) with a failure probability of 0.00713 CONCLUSIONS Within the context of faFgue lives for dental implants, this research demonstrates a drasFc change that has severe implicaFons for paFents of bruxism and implant manu factures. Here, a finite element analysis in tandem with the BogdanoffKozin probabilisFc model (at the nucleaFon stage) has been carried out. : In general, the mean value driven designanalysis way overesFmates (e.g. to the tune of thousand folds) faFgue lives in comparison with more realisFc stochasFc analysis. In parFcular, the faFgue life for dental implants, for persons who have the habit of bruxism, dras(cally decreases from 11,289.5 years to 2.74 years. INTRODUCTION FaFgue of metal components is currently recognized as one of the main causes of failure of structural elements. Three different stages can be considered during the faFgue process: cracks nucleaFon; cracks propagaFon and final failures of components. Models developed to study the crack nucleaFon process are mainly based on the local strain approach [1]. UncertainFes on material properFes, dimensions of the structural element and load history have a decisive influence on the faFgue process and therefore on the life of the structural component. All of this suggests to include the probabilisFc character of the different variables from the very beginning. In this work one focuses only on the crack nucleaFon stage. StochasFc Finite Element Method (SFEM) [2] has become an excellent tool to esFmate the influence of the stochasFc properFes of loads, material properFes and geometry on responses. In the present work, the crack nucleaFon stage in faFgue is considered as a cumulaFve damage problem, discrete in Fme and space, using the probabilisFc models based on the theory of Markoff chains that was developed in the BogdanoffKozin (BK) models [3]. In this work, the construcFon of these models is established from the results of a series of SFEM analyses. Hence, as opposed to convenFonal formulaFons, it was not necessary to minimize any funcFonal. The proposed procedure consists of the construcFon of a cumulaFve damage BK model from the SFEM results computed for every random variable e.g. : the material parameters, the applied loads. However, other random variables can also be included in the proposed scheme rather easily.

Upload: others

Post on 19-Aug-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: METAL$FATIGUE$$IN$DENTAL$IMPLANTS: A$ … · The$$ METAL$FATIGUE$$IN$DENTAL$IMPLANTS:! A$ MARKOFF$CHAIN7$STOCHASTIC$FINITE$ELEMENT$FORMULATION! $María$Prados7Privado$ ABSTRACT$ Random$

The    

METAL  FATIGUE    IN  DENTAL  IMPLANTS:                  A  MARKOFF  CHAIN-­‐  STOCHASTIC  FINITE  ELEMENT  FORMULATION  

 María  Prados-­‐Privado  

ABSTRACT  

Random   distribuFon   of   loads   and   consFtuFve    properFes  are  incorporated  here  in  the  Coffin-­‐Manson  damage   model.   Based   on   the   Markoff   chain,  Bogdanoff-­‐Kozin  probabilisFc  models  are  used.    

  The   probabilisFc   transiFon   matrix   (PTM),   which   is  obtained   from   Stochas(c   Finite   Elements     associated  with   the   expansion   of   random   fields,   leads   to     the  cumulaFve   damage   density   funcFon   that   are   used   in  faFgue  life  predicFons.  An  example    on    dental  implants  is  demonstrated  here.  

ACKNOWLEDGEMENTS  The  results  reported  in  this  work  have  been   parFally   financed   by   Dental  Implants   &   Biomaterials   SL   Chair   on  Dental   Implants   &   Oral   Surgery  Research,   at   Rey   Juan   Carlos  University,  Madrid,  Spain  

CONTACT  María  Prados-­‐Privado  +(34)  91  488  9109  Rey  Juan  Carlos  University  +(34)  600  437  964  Madrid  (Spain)  [email protected]

CONSTRUCTION  OF  THE  CUMULATIVE  DAMAGE  B-­‐K  MODEL  

The   main   goal   of   this   secFon   is   to   show   how   to  construct   a   model,   which   takes   into   account   under   a  simple  mathemaFcal  structure,  when  the  main  sources  of  uncertainty  appear   in     physical   cumulaFve  damage  problems.  

Main  assump*ons:  

A   B-­‐K  model   [3]   is   defined   by   a   series   of   basic   iniFal  assumpFons.    Some  other  assumpFons  may  be  added  in  order  to  complement  or  define  a  more  specific  type  of  B-­‐K  models.  Among  them,  the  most  important  are:  

1.There   exist   repeFFve   "damage   cycles"   (DC)   of  constant  severity.    2.The   damage   levels   are   discrete     1,2,..,j,..,b.   The   last  level  b  is  considered  as  a  "failure  state",  that  is,  the  life  of   the   component   is   considered   to   be   expired   when  level  b  is  reached.  3.The  cumulaFve  damage  in  a  DC  depends  only  on  that  specific   DC   and   the   damage   level   at   the   beginning   of  that  DC.  4.The  damage  level  in  one  DC  increases  from  that  DC  i  to  the  next  DC   i+1  or  remains   in  the   iniFal  DC   i,  being  impossible  to  skip  one  or  more  damage  states.  

STOCHASTIC  EXPRESSION  FOR  THE  DAMAGE  MODEL  FOR  THE  NUCLEATION  STAGE  

DeterminisFc   expression   for   faFgue   life   (nucleaFon  stage,  Coffin  and  Basquin-­‐Manson)  is  summarized:  

         :  ElasFc-­‐plasFc  strain  amplitude  σf’:  FaFgue  strength  coefficient  b:  FaFgue  strength  exponent  εf’:  FaFgue  ducFlity  coefficient  c:  FaFgue  ducFlity  exponent  E:  Young  modulus  Nf:  FaFgue  life  

The  objecFve  is  to  obtain  the  mean  value  and  variance  of   faFgue   life   from   SFEM,   in   order   to   build   the   B-­‐K  model.  Now  all  variables  are  considered  to  be  random.  

Δεep2

=σ f 'E

2N f( )b

+ε f ' 2N f( )c

SFEM:  THE  PERTURBATION  APPROACH    

The  aim  is  to  obtain  the  response  random  fields  with  the  First  order  Taylor  expansions:    

It’s   neccessary   to   obtain   the   sensiFviFes.   StarFng   from  the  equilibrium  equaFon:                                  K  u  =  f  By  taking  the  derivaFve  of  the  last  expression  respect  to  random  variables:    

           must  be  evaluated  at  the  element  level;  u  obtained  from  previuos  FE  analisys  (evaluated  at  mean  values);                boundary  condiFons.            €

∂K∂α i

u+K ∂u∂α i

=∂f∂α i

u = u0 + u iI(αi −αi

0 ) +…i=1

N

ε e = ε e0 + ε ei

I (α i −α i0) +…

i=1

N

∂K∂α i

∂f∂α i

SOME  RESULTS  Applied   load   has   been   taken   from   [4].   It   includes   the   regular   forces   and   the  overloads   from   bruxism.   The  mean   values   of   faFgue   life   is   2.47   x   1011   cycles  (11.289,5  years),  and  with  overloads  the  cycles  decrease  up  to  1.2  x  108   (2.74  years).  The   faFgue   life   (bruxism)   is   34,5   million   cycles   (1.57   years)   with   a   failure  probability  of  0.00713  

CONCLUSIONS  -­‐ Within  the  context  of  faFgue  lives  for   dental   implants,   this   research  demonstrates  a  drasFc  change  that  has  severe  implicaFons  for  paFents  of   bruxism   and   implant   manu-­‐factures.   Here,   a   finite   element  analysis   in   tandem   with   the  Bogdanoff-­‐Kozin   probabilisFc  model  (at  the  nucleaFon  stage)  has  been  carried  out.  :  •  In   general,   the   mean   value  

driven   design-­‐analysis   way  overesFmates   (e.g.   to   the  tune  of   thousand   folds)   faFgue   lives  in   comparison   with   more  realisFc  stochasFc  analysis.  

•  In  parFcular,  the  faFgue  life  for  dental   implants,   for     persons  who  have  the  habit  of  bruxism,  dras(cally   decreases   from  11,289.5  years  to  2.74  years.  

INTRODUCTION  

FaFgue  of  metal  components  is  currently  recognized  as  one   of   the   main   causes   of   failure   of   structural  elements.   Three   different   stages   can   be   considered  during   the   faFgue   process:   cracks   nucleaFon;   cracks  propagaFon  and  final  failures    of  components.  

Models   developed   to   study   the   crack   nucleaFon  process  are  mainly  based  on   the   local   strain  approach  [1].   UncertainFes   on   material   properFes,   dimensions  of   the   structural   element   and   load   history   have   a  decisive  influence  on  the  faFgue  process  and  therefore  on   the   life   of   the   structural   component.   All   of   this  suggests   to   include   the   probabilisFc   character   of   the  different  variables  from  the  very  beginning.  In  this  work  one  focuses  only  on  the  crack  nucleaFon  stage.    

StochasFc   Finite   Element   Method   (SFEM)   [2]   has  become  an  excellent   tool   to  esFmate   the   influence  of  the   stochasFc   properFes   of   loads,  material   properFes  and   geometry   on   responses.   In   the   present  work,   the  crack   nucleaFon   stage   in   faFgue   is   considered   as   a  cumulaFve   damage   problem,   discrete   in   Fme   and  space,   using   the   probabilisFc   models   based   on   the  theory   of   Markoff   chains   that   was   developed   in   the  Bogdanoff-­‐Kozin   (B-­‐K)     models   [3].   In   this   work,   the  construcFon   of   these   models   is   established   from   the  results  of  a  series  of  SFEM  analyses.  Hence,  as  opposed  to   convenFonal   formulaFons,   it   was   not   necessary   to  minimize  any  funcFonal.  

The  proposed  procedure  consists  of  the  construcFon  of  a  cumulaFve  damage  B-­‐K  model  from  the  SFEM  results  computed  for  every  random  variable  e.g.  :  the  material  parameters,  the  applied  loads.  However,  other  random  variables  can  also  be  included  in  the  proposed  scheme  rather  easily.