metabolic control theory and the genetics and evolution of metabolic fluxes umr de génétique...

41
Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette, France [email protected] Christine Dillmann, Julie Fievet, Sébastien Lion, Frédéric Gabriel, Grégoire Talbot, Delphine Sicard, Dominique de Vienne

Upload: caroline-walsh

Post on 10-Dec-2015

225 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Metabolic Control Theory and the genetics and evolution of metabolic

fluxes

UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG

Ferme du Moulon, 91190 Gif-sur-Yvette, France

[email protected]

Christine Dillmann, Julie Fievet, Sébastien Lion, Frédéric Gabriel, Grégoire Talbot, Delphine Sicard, Dominique de Vienne

Page 2: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Metabolic Control Theory and the genetics and evolution of metabolic fluxes

- Metabolic fluxes as model quantitative traits and the relationship between genotype and phenotype

- Experimental validation of the Metabolic Control Theory

- The metabolic bases of dominance and heterosis

- Evolution of enzyme concentrations in natural populations

Page 3: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Quantitative traitsMost phenotypic traits …

Growth rate, flowering date, fruit pH, behaviour traits,

morphological traits, blood pressure, metabolic flux,

enzyme activity, mRNA/protein concentrations, etc.

« Quantitative » genetics

A

0

1

2

3

4

5

6

7

150 160 170 180 190 200Taille (cm)

N

… Display a continuous variation within populations :

Page 4: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Continuous variation can be maintained by independent segregation of multiple factors. George Udny Yule, 1902.

G. J. Mendel, 1865

« Recherche sur les hybrides d’autres plantes »

A

A B

B a

a b

bx

A

a b

B

F2

aabb

Aabb

aaBb

AaBb

aaBB

AAbb

AABb

AaBB

AABB

0123456N

0 1 2 3 4 Number of«Capital letter » alleles

Page 5: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

E1 E2 Ej En

X0 S1 … Sj1 Sj … Xn

Enzymes

The “genotype” : all the genes that determine enzyme activities(concentrations and kinetic parameters, genetically variable)

The metabolic fluxes as model quantitative traits

The “phenotype” : the flux

Kacser H. and Burns J.A., 1981. The molecular basis of dominance. Genetics, 97, 639-666.

Page 6: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

E1 E2 Ej Ej+1 En

Sn-1Sj…S1S0 Sn…En-1

Stationary phase : v1 = v2 = … = vj = … = vn = J

Kacser and Burns, 1973 Heinrich and Rappoport, 1974

Metabolic control theory (1)

Michaelis-Menten enzymes

Enzymes far from saturation

)/()/(//1

)/()/(1max

11

1max

eqiiimiimiimi

eqiiimii KSSKV

KSKS

KSSKVv

Enzyme concentrations are independent

Page 7: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

E1 E2 Ej Ej+1 En

Sn-1Sj…S1S0 Sn…En-1

At stationary phase : v1 = v2 = … = vj = … = vn = J

Kacser and Burns, 1973 Heinrich and Rappoport, 1974

n

jj

n

n

E

KS

S

J

1

,00

1

Metabolic control theory (2)

Page 8: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

AjKinetic parameters :1,0 j

M

catK

K

k

j

j

Enzyme efficiency : Ej

Enzyme cellular concentration Qj

1,0

max

jM

KK

V

j

j= Aj Qj

Metabolic control theory (3) : genetically variable parameters

n

jj

n

n

E

KS

S

J

1

,00

1

Page 9: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Genetic variability of kinetic parameters

- Few in vivo data

- Slightly variable

Wang & Dykhuisen, 2001. Pathway of gluconate metabolism in E. coli. Evolution, 55:897.

Page 10: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

fba1

IPGS

DS

Num

ber

of

mole

cule

s p

er

cell

Genetic variability of enzyme concentrations

- Highly variables

Fiévet et al, 2004

Page 11: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Flu

x J

Qj or Aj or Ej = Qj x Aj

Jmax

n enzymes

1 enzyme

Relationship between enzymes and flux : independent enzymes

• non linear relationship between the flux and the concentration of on enzyme of the pathway• the flux tends asymptotically towards a maximum which depends on the concentrations of all the enzymes of the pathway

n

jj

n

n

E

KS

S

J

1

,00

1

Page 12: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Metabolic Control Theory and the genetics and evolution of metabolic fluxes

- Metabolic fluxes as model quantitative traits and the relationship between genotype and phenotype

- Experimental validation of the Metabolic Control Theory

- The metabolic bases of dominance and heterosis

- Evolution of enzyme concentrations in natural populations

Page 13: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Experimental validation : in vivo

Kacser and Burns, 1981. Genetics 97:639

Page 14: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Relationship RubisCO-photosynthesis

A typical example: dependence of carbon assimilation flux on rubisco levels in transgenic tobacco plants.

Laurer et al, Planta 190 332-345 (1993).

Page 15: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Experimental validation : in vitro

glucose fructose 1,6 bisP

GAP

DHAP

glycérol 3 P

NADH

NAD+

GPI FBA

TPI

Créatine-P + ADP Créatine + ATPCréatine kinase

ATP

ADP

PFK1

ATP

ADP

HKglucose 6 P fructose 6 P

First part of glycolysis

Julie Fievet et Gilles Curien

Temps

Concentration

du NADH

Etat stationnaire

Page 16: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Mixing enzymes, substrates, cofactors

EnzymesHXK+PGI+PF

K+FBA+TPI+G3

DH+CK

SubstratesGlucose+Creatine P+NADH+buffer

ATP

One tube one «genotype»

Page 17: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Experimental validation

HXK concentration (µM)

Each enzyme vary at a turn, the other being kept constant

= Titration curves

• non linear relationship between the flux and the concentration of on enzyme of the pathway• the flux tends asymptotically towards a maximum which depends ont the concentrations of all the enzymes of the pathway

Page 18: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Complex equationsComplex equations

Many parametersMany parameters

Estimation of kinetic parameters : explicit modelling

Page 19: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Estimation of kinetic parameters : MCT-based modelling

i iiii iii SpQSApQA

SJ

11

1 Ai composite activity parameterpi dispensability

ppii=0=0ppii≠0≠0

J0

Jmax

0max

max0

ˆii

iii JJ

JJpS

i

j ij

refi

i pS

Jn

J

n

QAS ˆ

1111ˆ

maxmax

The maximum value for the flux is estimated from titration curves :

Page 20: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

  Qref Jmax J0 Spi SAi

hxk 0,1 18,24 0  0  379,93

pgi 0,15 13,27 0  0  520,5

pfk 0,29 17,87 0  0  107,02

fba 1,54 18,54 0  0  18,54

tpi 0,84 12,61 10,46 61,35 59,79

Activity parameters are estimated “in systemo”. They are different Activity parameters are estimated “in systemo”. They are different from what can be estimated on isolated enzymesfrom what can be estimated on isolated enzymes

The global equation can be used to predict the flux for other enzyme The global equation can be used to predict the flux for other enzyme concentrations :concentrations :

i iii

prédit

pSQAS

J

ˆˆ1

1

Predicting the flux

Fievet et al, submitted

Page 21: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Predicted flux (µM/s)

Flux m

easu

red in v

itro

(µM

/s)

r = 0,94

Testing the predictor for the flux on 122 genotubesTesting the predictor for the flux on 122 genotubes

Fievet et al, submitted

Page 22: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Metabolic Control Theory and the genetics and evolution of metabolic fluxes

(1) Based on MCT, we validated a simple model which describes the relationship between flux and enzyme concentrations

i iii pSQAS

J

ˆˆ1

1

(2) Composite kinetic parameters can be estimated « in vivo » from titration curves

(3) It should also work for more complex networks like …

S1 S2

S3

S4 S5

S6

S7 S8

E1

E2

E3

E5

E4

E6

E7

E8

E9

E10

… with one stable stationary state

Page 23: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Metabolic Control Theory and the genetics and evolution of metabolic fluxes

- Metabolic fluxes as model quantitative traits and the relationship between genotype and phenotype

- Experimental validation of the Metabolic Control Theory

- The metabolic bases of dominance and heterosis

- Evolution of enzyme concentrations in natural populations

Page 24: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Genetical consequences of ~hyperbolic relationships : dominance

- Most deleterious mutations are recessive

- There is ~ additivity between highly deleterious mutations

Three observations

- There is ~ additivity between slightly deleterious mutations

Page 25: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

- R. A. Fisher (1928, 1931, 1958) : «modifiers» of dominance relationship between alleles arise due to natural selection

- S. Wright (1934) : dominance can be explained by the non linear genotype-phenotype relationship.

Two hypothesis to explain dominance

Page 26: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Dominance : Fisher’s model does not work

Population genetics models : mutations are eliminated before they become recessive.

Mutations in Chlamydomonas reinhardtii (Orr, 1991).

Page 27: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Recessive mutations occur in Chlamydomonas as frequently as in drosophila

Dominance : Fisher’s model does not work

Page 28: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Dominance

Ei

Flux

A1A1 A1A2 A2A2

Kacser H. and Burns J.A., 1981. The molecular basis of dominance. Genetics, 97, 639-666.

Ei

Flux

Weak dominance

Dominance : S. Wright was right

Page 29: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Généralisation : several variables enzymes

E. Coli - Dykhuisen et al., 1987, Genetics, 115, 25

Flu

x

Page 30: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Generalization : metabolic model for heterosis

i ii iii

hybrid

Levure

Huître

P1 Homozygous line

Maïs

F1 hybrid

Increased vigorF1 > (P1 ,P2 )

P2 Homozygous line

Page 31: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

J

Ej

Ei

Ej

Ei

Line 1 x Line 2 Hybrid F1

Metabolic heterosis due to dominance at different loci

Page 32: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

JP1

JP2

Heterosis in vitro

0%

20%

40%

60%

80%

100%

dis01 01*12 dis12

TPI

FBA

PFK

PGI

HXK

Tube1

Tube 2

Tube (1+2)/2

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

dis01 01*12 dis12

Flux

Simulations

Fievet et al, in prep

Page 33: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Metabolic Control Theory and the genetics and evolution of metabolic fluxes

(4) Dominance and heterosis arise as emergent properties of metabolic systems

(5) Heterosis can be explained by antagonistic epistatic relationships between enzymes

Page 34: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Metabolic Control Theory and the genetics and evolution of metabolic fluxes

- Metabolic fluxes as model quantitative traits and the relationship between genotype and phenotype

- Experimental validation of the Metabolic Control Theory

- The metabolic bases of dominance and heterosis

- Evolution of enzyme concentrations in natural populations

Page 35: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Evolution of enzyme concentration under selection for increasing the flux

W=

Monte-Carlo simulations

Analytical predictions

Natural selection shapes the sharing out of the control of the flux

Talbot et al, in prep

Page 36: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Dominique de VienneDominique de Vienne

Bruno BostBruno Bost

Julie FiévetJulie Fiévet

Frédéric GabrielFrédéric Gabriel

Sébastien LionSébastien Lion

Delphine SicardDelphine Sicard

Grégoire TalbotGrégoire Talbot

Gilles CurienGilles Curien

Olivier MartinOlivier Martin

Page 37: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Heterosis and epistasis-A substitution at one locus changes the effects of a substitution at another locus

-The effect of a substituion depends on the genetic background

EA1 EB1EB2

EA2

Enzyme A Enzyme B

sJ

A1B2

A2B1

A1B1

A2B2

Flux

Page 38: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Heterosis and epistasis

Tryptophane

flux

Synergistic epistasis in tryptophane metabolic pathway

Niederberger et al., 1992, Biochem. J. 287, 473.

Page 39: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

-2-1.5

-1-0.5

00.5

11.5

22.5

33.5

4

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Epistasis index

Antagonistic SynergisticAdditivity

I = 1

Jhyb J

JH =

Enzyme A Enzyme B

sJ

A1B2

A2B1

A1B1

A2B2

Heterosis and epistasisH

ete

rosi

s in

de

x

Fievet et al, in prep

Page 40: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Autres axes de recherche

La concentration d’enzymes allouée à une chaîne est nécessairement finie ( « compétition » corrélations négatives)

Corrélations physiologiques, positives ou négatives

Matrice n x n des Ej/Ei Etotal fixé, ou fonction de coût

1- Les concentrations des enzymes ne sont pas nécessairement indépendantes

Page 41: Metabolic Control Theory and the genetics and evolution of metabolic fluxes UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, 91190 Gif-sur-Yvette,

Autres axes de recherche

2- Comment agit la sélection pour maximiser/optimiser un flux ?

- Approche expérimentale : variabilité des paramètres enzymatiques et évolution expérimentale chez la levure (modèle : glycolyse)

- Evolution des flux avec ou sans contraintes sur les concentrations d’enzymes.

J

Ej

Red curve: No co-regulation

Blue curves:Co-regulations