mendenhall chapter 10 esp

Upload: milokura

Post on 03-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Mendenhall Chapter 10 Esp

    1/41

    Probabilidad y estadsticaProbabilidad y estadstica

    Captulo 10

    Inferencia con muestras

    pequeas

    Some graphic screen captures from Seeing Statistics Some images 2001-(current year) www.arttoday.com

  • 7/29/2019 Mendenhall Chapter 10 Esp

    2/41

    IntroduccinIntroduccin Cuando el tamao de la muestra es

    pequeo, la estimacin y los procedimientosde pruena del captulo 8 no son apropiados.

    Existe un test de muestras pequeas equivalen-

    te y procedimientos de estimacin para, la media de la poblacin normal12, la diferencia entre dos mediaspoblacionales

    2, la varianza de una poblacin normalLa proporcin entre dos varianzas

    poblacionales.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    3/41

    La distribucin muestral deLa distribucin muestral de

    la media muestralla media muestral Cuando tomamos una muestra de una pobla-

    cin normal, la media de la muestra tieneuna distribucin normal para cualquier tamao

    n, y

    Tiene distribucin normal estndar. Pero si es desconocida, y debemos estimarla,

    el estadstico no es normalno es normal.

    n

    xz

    /

    = normal!esno

    / ns

    x

    x

  • 7/29/2019 Mendenhall Chapter 10 Esp

    4/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Distribucin de StudentDistribucin de Student Afortunadamente, este estadstico posee una

    distribucin muestral que es bien conocidapara los estadsticos, llamada distribucindistribucin

    de Student,de Student, connn-1 grados de libertad.-1 grados de libertad.

    ns

    xt

    /

    =

    Podemos utilizar esta distribucin para crear

    procedimientos de prueba para la media de la

    poblacin

  • 7/29/2019 Mendenhall Chapter 10 Esp

    5/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Propiedades dePropiedades de ttde Studentde Student

    La forma depende del tamao de la muestra

    n o de los grados de libertad,grados de libertad, nn-1-1 A medida que n se incrementa, las formas

    de las distribuciones tyzse tornan casi

    idnticas.

    Forma de monteForma de monte y

    simtrica alrededor de 0

    Ms variable queMs variable quezz, con

    colas ms pesadas

    APPLET

    APPLETMY

    http://var/www/apps/conversion/tmp/scratch_2/Beaver/studentT.htmlhttp://var/www/apps/conversion/tmp/scratch_2/Beaver/studentT.htmlhttp://var/www/apps/conversion/tmp/scratch_2/Beaver/studentT.html
  • 7/29/2019 Mendenhall Chapter 10 Esp

    6/41

    Usando la tablaUsando la tabla tt La tabla 4 da los valores de tque excluyen ciertos

    valores crticos en la cola de la distribucin t Indexa dfdf y el rea apropiada de la cola aapara

    encontrarttaa,, el valor de tcon rea aa su derecha.

    Para una muestra al azar detamao n = 10, encuentre el

    valor de tque deja 0,025 en la

    cola derecha.

    Fila = df= n 1 = 9

    t0,025 = 2,262Subndice columna = a =0,025

  • 7/29/2019 Mendenhall Chapter 10 Esp

    7/41

    Inferencia de una muestra chicaInferencia de una muestra chica

    para la media poblacionalpara la media poblacional Los procesos bsicos son los mismos a los

    utilizados para muestras grandes. Para untest de hiptesis:

    1conndistribuciuna

    enbasadarechazodereginunao-valoresusando

    /

    oestadstictestelutilizando

    colasdosouna:Hversus:HPruebe

    1

    a11

    =

    =

    =

    ndft

    p

    ns

    x

    t

  • 7/29/2019 Mendenhall Chapter 10 Esp

    8/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Para un intervalo de confianza de 100(1) % para

    la media poblacional :

    1conndistribuciunadecolalaen

    /1reaundejaquedevalorelesdonde1/

    1/

    =

    ndft

    tt

    n

    stx

    Inferencia de una muestra chicaInferencia de una muestra chica

    para la media poblacionalpara la media poblacional

  • 7/29/2019 Mendenhall Chapter 10 Esp

    9/41

    EjemploEjemplo

    Un sistema de aspersin est diseado de tal forma que eltiempo promedio de los picos para activarse luego dehaber sido encendidos es no mayor a 15 seg Una pruebade 5 sistemas di los tiempos siguientes:

    17, 31, 12, 17, 13, 25Est trabajando el sistema como se especific? Pruebe

    usando = 0,05

    )especificsecomootrabajand(no11:H

    )especificsecomoo(trabajand11:H

    a

    1

    >=

  • 7/29/2019 Mendenhall Chapter 10 Esp

    10/41

    EjemploEjemploDatos:Datos: 17, 31, 12, 17, 13, 25

    Primero calcule la media y la desviacinestndar muestral:

    111,11

    1

    1111111

    1

    )(

    111,1 11

    111

    111

    =

    =

    =

    ==

    =

    n

    n

    xx

    s

    n

    xx i

  • 7/29/2019 Mendenhall Chapter 10 Esp

    11/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    EjemploEjemploDatos:Datos: 17, 31, 12, 17, 13, 25

    Calcule el test estadstico y encuentre laregin de rechazo para = 0,05

    111111,11/1 1 1,111111,1 1

    /

    :libertaddeGrados:oestadsticTest

    1 ====== ndfns

    xt

    Regin rechazo: Rechace H0 si t> 2,015 Si el test estadstico cae

    en la regin de rechazo, su valor-

    p debe ser menor a = 0,05

    Regin rechazo: Rechace H0 si t

    > 2,015 Si el test estadstico cae

    en la regin de rechazo, su valor-

    p debe ser menor a = 0,05

  • 7/29/2019 Mendenhall Chapter 10 Esp

    12/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ConclusinConclusinDatos:Datos: 17, 31, 12, 17, 13, 25

    Compare el test estadstico con la regin derechazo, y saque conclusiones.

    111,1siHRechace

    :rechazodeRegin

    11,1:oestadsticTest

    1>

    =

    t

    t

    Conclusin: Para nuestro ejemplo, t= 1,38 no cae en la reginde rechazo y H0 no es rechazada. La evidencia es insuficiente

    para indicar que el tiempo promedio de activacin es mayor a

    15.

    11:H11

    :Ha

    1

    >=

  • 7/29/2019 Mendenhall Chapter 10 Esp

    13/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Aproximando el valor-Aproximando el valor-pp Slo puede aproximar el valor-ppara la

    prueba usando la Tabla 4.

    Since the observed valueoft= 1.38 is smaller

    than t.10 = 1.476,

    p-value > .10.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    14/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    El valor-El valor-pp exactoexacto

    Puede obtener el valor-p usandoalgunas calculadoras o la PC.

    One-Sample T: Times

    Test of mu = 15 vs > 15

    95%

    Lower

    Variable N Mean StDev SE Mean Bound T P

    Times 6 19.1667 7.3869 3.0157 13.0899 1.38 0.113

    One-Sample T: Times

    Test of mu = 15 vs > 15

    95%

    Lower

    Variable N Mean StDev SE Mean Bound T P

    Times 6 19.1667 7.3869 3.0157 13.0899 1.38 0.113

    Valor-p = .113 que es

    mayor que .10 quehabamos aproximado

    usando Tabla 4.

    APPLETAPPLETMY

    http://var/www/apps/conversion/tmp/scratch_2/Beaver/oneSampleTTest.htmlhttp://var/www/apps/conversion/tmp/scratch_2/Beaver/oneSampleTTest.htmlhttp://var/www/apps/conversion/tmp/scratch_2/Beaver/oneSampleTTest.html
  • 7/29/2019 Mendenhall Chapter 10 Esp

    15/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Probando la diferenciaProbando la diferencia

    entre dos mediasentre dos medias

    normales.serdebenspoblacionedoslaspequeos,sonmuestraslasdetamaoslosqueDado

    1

    1y1

    1sy varianza

    1y1

    mediascon1y1spoblacionede

    extraense1

    y1

    tamaodeazaralntesindependiemuestraslas,1captuloelenComo

    nn

    Para probar:

    H0: 12 = D0 versus Ha: una de tresdonde D0 es alguna diferencia que se ha

    tomado como hiptesis, generalmente 0

  • 7/29/2019 Mendenhall Chapter 10 Esp

    16/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Testing the DifferenceTesting the Difference

    between Two Meansbetween Two MeansThe test statistic used in Chapter 9

    does not have either azor a tdistribution, and

    cannot be used for small-sample inference.We need to make one more assumption, thatthe population variances, although unknown,are equal.

    1

    1

    1

    1

    1

    1

    11z

    ns

    ns

    xx

    +

  • 7/29/2019 Mendenhall Chapter 10 Esp

    17/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Testing the DifferenceTesting the Difference

    between Two Meansbetween Two MeansInstead of estimating each population varianceseparately, we estimate the common variancewith

    1

    )1()1(

    11

    1

    11

    1

    111

    ++

    =nn

    snsns

    +

    =

    11

    1

    111

    11

    nns

    Dxxt has a tdistribution

    with n1+n2-2 degrees

    of freedom.

    And the resultingtest statistic,

  • 7/29/2019 Mendenhall Chapter 10 Esp

    18/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Estimating the DifferenceEstimating the Difference

    between Two Meansbetween Two MeansYou can also create a 100(1-)% confidenceinterval for1-2.

    1

    )1()1(with

    11

    1

    11

    1

    111

    ++=

    nn

    snsns

    +11

    1

    1/11

    11)(

    nnstxx

    Remember the three

    assumptions:

    1. Original populations

    normal

    2. Samples random andindependent

    3. Equal population

    variances.

    Remember the three

    assumptions:1. Original populations

    normal

    2. Samples random and

    independent

    3. Equal population

    variances.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    19/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExample Two training procedures are compared by

    measuring the time that it takes trainees toassemble a device. A different group of trainees are

    taught using each method. Is there a difference in the

    two methods? Use = .01.

    Time toAssemble

    Method 1 Method 2

    Sample size 10 12

    Sample mean 35 31

    Sample Std Dev 4.9 4.5

    1:H111=

    +

    =

    11

    1

    11

    11

    1

    :statisticTest

    nns

    xxt

    1:H11a

  • 7/29/2019 Mendenhall Chapter 10 Esp

    20/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExample Solve this problem by approximating thep-

    value usingTable 4.

    Time toAssemble

    Method 1 Method 2

    Sample size 10 12

    Sample mean 35 31

    Sample Std Dev 4.9 4.5

    11.1

    1 1

    1

    11

    11 1 1.11

    111 1

    :statisticTest

    =

    +

    =t

    111.1 11 1

    )1.1(11)1.1(11

    )1()1(

    :Calculate

    11

    11

    1

    11

    1

    111

    =+

    =

    +

    +=

    nn

    snsns

    APPLETAPPLETMY

    http://var/www/apps/conversion/tmp/scratch_2/Beaver/twoSampleTTest.htmlhttp://var/www/apps/conversion/tmp/scratch_2/Beaver/twoSampleTTest.htmlhttp://var/www/apps/conversion/tmp/scratch_2/Beaver/twoSampleTTest.html
  • 7/29/2019 Mendenhall Chapter 10 Esp

    21/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExample

    value)-(1

    1)11.1(

    )11.1()11.1(:value-

    ptP

    tPtPp

    =>

    .025 < (p-value) < .05

    .05

  • 7/29/2019 Mendenhall Chapter 10 Esp

    22/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Testing the DifferenceTesting the Difference

    between Two Meansbetween Two MeansHow can you tell if the equal varianceassumption is reasonable?

    statistic.testealternativanuse

    ,1smaller

    largerratio,theIf

    .reasonableisassumptionvarianceequalthe

    ,1smaller

    largerratio,theIf

    :ThumbofRule

    1

    1

    1

    1

    >

    s

    s

    s

    s

  • 7/29/2019 Mendenhall Chapter 10 Esp

    23/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Testing the DifferenceTesting the Difference

    between Two Meansbetween Two MeansIf the population variances cannot be assumedequal, the test statistic

    has an approximate tdistribution with degreesof freedom given above. This is most easilydone by computer.

    1

    1

    1

    1

    1

    1

    11

    n

    s

    n

    sxxt

    +

    1

    )/(

    1

    )/(

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    +

    +

    n

    ns

    n

    ns

    ns

    ns

    df

  • 7/29/2019 Mendenhall Chapter 10 Esp

    24/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    The Paired-DifferenceThe Paired-Difference

    TestTest

    Sometimes the assumption of independentsamples is intentionally violated, resulting in amatched-pairsmatched-pairs orpaired-difference testpaired-difference test.

    By designing the experiment in this way, we caneliminate unwanted variability in the experimentby analyzing only the differences,

    ddii ==xx11ii xx22ii

    to see if there is a difference in the twopopulation means, 12.

    E l

  • 7/29/2019 Mendenhall Chapter 10 Esp

    25/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExample

    One Type A and one Type B tire are randomly assigned

    to each of the rear wheels of five cars. Compare the

    average tire wear for types A and B using a test of

    hypothesis.

    Car 1 2 3 4 5

    Type A 10.6 9.8 12.3 9.7 8.8

    Type B 10.2 9.4 11.8 9.1 8.3

    1:H

    1:H

    11a

    111

    =

    But the samples are not

    independent. The pairs of

    responses are linked becausemeasurements are taken on the

    same car.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    26/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    The Paired-DifferenceThe Paired-Difference

    TestTest

    .1on withdistributi-ta

    onbasedregionrejectionaorvalue-theUse.s,differencetheofdeviationstandardandmean

    theareandpairs,ofnumberwhere

    /

    1

    statistictesttheusing

    1:Htestwe1:HtestTo d1111

    =

    =

    =

    ==

    ndf

    pd

    sdn

    nsdt

    i

    d

    d

    E l

  • 7/29/2019 Mendenhall Chapter 10 Esp

    27/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExampleCar 1 2 3 4 5

    Type A 10.6 9.8 12.3 9.7 8.8

    Type B 10.2 9.4 11.8 9.1 8.3

    Difference .4 .4 .5 .6 .5

    1:H

    1:H

    11a

    111

    =

    ( )

    .1111

    .11Calculate

    =

    =

    ==

    1

    1

    1

    n

    n

    dd

    s

    n

    dd

    ii

    d

    i1.11

    1/1111.

    111.

    /

    1

    :statisticTest

    =

    =

    =ns

    dt

    d

    E lE l

  • 7/29/2019 Mendenhall Chapter 10 Esp

    28/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExampleCarCar 1 2 3 4 5

    Type A 10.6 9.8 12.3 9.7 8.8

    Type B 10.2 9.4 11.8 9.1 8.3

    Difference .4 .4 .5 .6 .5

    Rejection region: Reject H0

    ift

    > 2.776 ort< -2.776.

    Conclusion: Since t= 12.8, H0

    is rejected. There is a

    difference in the average tirewear for the two types of tires.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    29/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Some NotesSome Notes

    You can construct a 100(1-)% confidenceinterval for a paired experiment using

    Once you have designed the experiment bypairing, you MUST analyze it as a pairedexperiment. If the experiment is not designed as apaired experiment in advance, do not use thisprocedure.

    n

    std d1/

  • 7/29/2019 Mendenhall Chapter 10 Esp

    30/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Inference ConcerningInference Concerning

    a Population Variancea Population VarianceSometimes the primary parameter of interestis not the population mean but rather thepopulation variance 2. We choose a randomsample of size n from a normal distribution.

    The sample variances2 can be used in itsstandardized form:

    1

    1

    1 )1(

    sn =

    which has a Chi-Squaredistribution with n - 1degrees of freedom.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    31/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Inference ConcerningInference Concerning

    a Population Variancea Population VarianceTable 5 gives both upper and lower criticalvalues of the chi-square statistic for a given df.

    For example, the value ofchi-square that cuts off .

    05 in the upper tail of the

    distribution with df= 5 is

    2 =11.07.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    32/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Inference ConcerningInference Concerning

    a Population Variancea Population Variance

    .1on withdistributisquare-chia

    onbasedregionrejectionawith)1(

    statistictesttheusewe

    tailedor twoone:Hversus:HtestTo

    1

    1

    1

    1

    a

    1

    1

    1

    1

    =

    =

    =

    ndf

    sn

    1

    )1

    /1

    (

    1

    1

    1

    1/

    1 )1()1(

    :intervalConfidence

  • 7/29/2019 Mendenhall Chapter 10 Esp

    33/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExample

    A cement manufacturer claims that his cementhas a compressive strength with a standarddeviation of 10 kg/cm2 or less. A sample ofn =

    10 measurements produced a mean and standarddeviation of 312 and 13.96, respectively.

    A test of hypothesis:

    H0: 2 = 10 (claim is

    correct)

    Ha: 2 > 10 (claim is

    wrong)

    A test of hypothesis:

    H0: 2 = 10 (claim iscorrect)

    Ha: 2 > 10 (claim is

    wrong)

    uses the test statistic:uses the test statistic:

    1.111 1 1

    )11.1 1(111

    )1(1

    1

    1

    1 === sn

  • 7/29/2019 Mendenhall Chapter 10 Esp

    34/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExample

    Do these data produce sufficient evidence toreject the manufacturers claim? Use = .05.

    Rejection region: Reject H0if2 > 16.919 ( = .05).

    Conclusion: Since 2= 17.5,

    H0 is rejected. The standard

    deviation of the cement

    strengths is more than 10.

    A i i hA i ti th

  • 7/29/2019 Mendenhall Chapter 10 Esp

    35/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Approximating theApproximating the

    p-p-valuevalue

    11with)1.1 1(:value- 1 ==> ndfPp

    .025

  • 7/29/2019 Mendenhall Chapter 10 Esp

    36/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Inference ConcerningInference Concerning

    Two Population VariancesTwo Population VariancesWe can make inferences about the ratio oftwo population variances in the form a ratio.We choose two independent random samplesof size n1and n2 from normal distributions.

    If the two population variances are equal, thestatistic

    1

    1

    1

    1

    s

    s

    F=

    has anFdistribution with df1 = n1 - 1 and df2 =

    n2 - 1 degrees of freedom.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    37/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Inference ConcerningInference Concerning

    Two Population VariancesTwo Population VariancesTable 6 gives only upper critical values of theF statistic for a given pair ofdf1and df2.

    For example, the value of

    F that cuts off .05 in the

    upper tail of the

    distribution with df1 = 5and df2 = 8 is F =3.69.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    38/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    Inference ConcerningInference Concerning

    Two Population VariancesTwo Population Variances

    .1and1

    on withdistributianonbasedregionrejectionawith

    .variancessampletwotheoflargertheiswhere

    statistictesttheusewe

    tailedor twoone:Hversus:HtestTo

    1111

    1

    11

    1

    1

    1

    a

    1

    1

    1

    11

    ==

    =

    =

    ndfndf

    F

    ss

    s

    F

    11

    11

    ,1

    1

    11

    1

    1

    11

    ,

    1

    1

    11 1

    :intervalConfidence

    dfdf

    dfdf

    Fs

    s

    Fs

    s

  • 7/29/2019 Mendenhall Chapter 10 Esp

    39/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExample

    An experimenter has performed a labexperiment using two groups of rats. He wantsto test H0: 1 = 2, but first he wants to make

    sure that the population variances are equal.Standard (2) Experimental (1)

    Sample size 10 11

    Sample mean 13.64 12.42

    Sample Std Dev 2.3 5.8

    1

    1

    1

    1a

    1

    1

    1

    11:Hversus:H

    :y testPreliminar

    =

  • 7/29/2019 Mendenhall Chapter 10 Esp

    40/41

    Copyright 2006 Brooks/ColeA division of Thomson Learning, Inc.

    ExampleExampleStandard (2) Experimental (1)

    Sample size 10 11

    Sample Std Dev 2.3 5.8

    1

    1

    1

    1a

    1

    1

    1

    11

    :H

    :H

    =

    11.11.1

    1.1

    :statisticTest

    1

    1

    1

    1

    11 ===

    s

    sF

    We designate the sample with the larger standarddeviation as sample 1, to force the test statistic

    into the upper tail of theFdistribution.

    We designate the sample with the larger standarddeviation as sample 1, to force the test statistic

    into the upper tail of theFdistribution.

  • 7/29/2019 Mendenhall Chapter 10 Esp

    41/41

    C i h 2006 B k /C l

    ExampleExample

    1

    1

    1

    1a

    1

    1

    1

    11

    :H:H

    = 11.11.1

    1.1

    :statisticTest

    1

    1

    1

    1

    1

    1 ===s

    sF

    The rejection region is two-tailed, with = .05, but we onlyneed to find the upper critical value, which has /2 = .025 to

    its right.

    From Table 6, with df1=10 and df2 = 9, we reject H0 ifF>

    3.96.

    CONCLUSION: Reject H0. There is sufficient evidence to

    indicate that the variances are unequal. Do not rely on the

    i f l i f !

    The rejection region is two-tailed, with = .05, but we onlyneed to find the upper critical value, which has /2 = .025 to

    its right.

    From Table 6, with df1=10 and df2 = 9, we reject H0 ifF>

    3.96.

    CONCLUSION: Reject H0. There is sufficient evidence to

    indicate that the variances are unequal. Do not rely on the

    assumption of equal variances for yourt test!