medicall genetics lab manual وراثة عملي

59
   Molecular Genetics Laboratory        Dr. Basim Ayesh      Medical Technology Department  Al Aqsa University       20142015   

Upload: -

Post on 05-Aug-2015

66 views

Category:

Government & Nonprofit


8 download

TRANSCRIPT

Page 1: Medicall genetics lab manual وراثة عملي

 

 

 

MolecularGeneticsLaboratory 

 

 

 

 

 

 

Dr. Basim Ayesh 

     

Medical Technology Department  

Al Aqsa University 

 

 

 

 

 

 

2014‐2015 

   

Page 2: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

1.GeneralLaboratoryProcedures,EquipmentUse,andSafetyConsiderations

 

SafetyProceduresChemicalsA  number  of  chemicals  used  in  any  molecular  biology  laboratory  are  hazardous.  All manufacturers of hazardous materials are required by law to supply the user with pertinent information on any hazards associated with their chemicals. This information is supplied in  the  form  of  Material Safety Data Sheets or MSDS. This information contains the chemical name, Chemical Abstracts Service (CAS)#, health hazard data, including first aid treatment, physical data, fire and explosion hazard data,  reactivity data, spill or  leak procedures, and any  special  precautions  needed  when  handling  this  chemical.  A  file  containing  MSDS information on  the hazardous  substances  should be kept  in  the  lab.  In  addition,  MSDS information  can  be  accessed  on  World  Wide  Web.  You  are strongly urged  to make use of this information prior to using a new chemical and certainly in the case of any accidental exposure or spill. The  instructor/lab  manager  must  be  notified  immediately  in  the  case  of  an  accident 

involving any potentially hazardous reagents. 

The following chemicals are particularly noteworthy: 

Phenol ‐ can cause severe burns 

Acrylamide ‐ potential neurotoxin 

Ethidium bromide ‐ carcinogen These chemicals are not harmful if used properly: 

always wear gloves when using potentially hazardous chemicals 

never mouth‐pipet them 

If  you  accidentally  splash  any of  these  chemicals on  your  skin,  immediately  rinse the  area thoroughly with water and inform the instructor. 

Discard  the waste  in  appropriate containers  

UltravioletLightExposure to ultraviolet  light can cause acute eye  irritation. Since the retina cannot detect UV light, you  can  have  serious  eye  damage  and  not  realize  it  until  30  min  to  24  hours 

after  exposure. Therefore, always wear appropriate eye protection when using UV lamps. 

ElectricityThe voltages used for electrophoresis are sufficient to cause electrocution. Cover the buffer reservoirs during electrophoresis. Always  turn off the power supply and unplug  the  leads before removing a gel. 

GeneralHousekeeping All   common   areas   should   be   kept   free    of   clutter   and   all   dirty   dishes,  

electrophoresis equipment, etc. should be dealt with appropriately. 

Since  you  have  only  a  limited  amount  of  space  to  call  your  own,  it  is  to  your advantage to keep your own area clean. 

Since  you  will  use  common  facilities,  all  solutions  and  everything  stored  in  an incubator, refrigerator,  etc.  must  be  labeled.  In  order  to  limit  confusion,  each person  should  use  his initials or other unique designation  for  labeling  tubes, etc. 

Page 3: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

Unlabeled  material  found  in  the  refrigerators,  incubators,  or  freezers  may  be destroyed. Always mark  your materials with your  initials,  the date, and  relevant experimental data. 

PreparationofSolutionsCalculationofMolar,%and"X"Solutions.

1. A molar solution  is one  in which 1  liter of solution contains the number of grams equal to its molecular weight.  Example:  To  make  up  100  ml  of  a  5M  NaCl  solution  =  58.456  (mw  of  NaCl)  g/mol  x  5 moles/liter x 0.1 liter = 29.29 g in 100 ml of solution 

2. Percent solutions.Percentage (w/v) = weight (g) in  100  ml of  solution;  Percentage (v/v) = volume (ml) in 100 ml of solution. Example: To make a 0.7% solution of agarose  in TBE buffer, weight 0.7 of agarose and bring up volume to 100 ml with TBE buffer. 

3. "X" Solutions. Many enzyme buffers are prepared as concentrated solutions, e.g. 5X  or  10X (five or  ten  times  the  concentration of  the working  solution)  and  are then diluted such  that the final concentration of the buffer in the reaction is 1X. Example: To  set up a  restriction digestion  in 25 µl, one would add 2.5 µl of a 10X buffer, the other reaction components, and water to a final volume of 25 µ l.  

PreparationofWorkingSolutionsfromConcentratedStockSolutions.Many  buffers  in  molecular  biology  require  the  same  components  but  often  in  varying concentrations. To avoid having to make every buffer from scratch,  it  is useful to prepare several concentrated stock solutions and dilute as needed. Example: To make 100 ml of TE buffer  (10 mM Tris, 1 mM EDTA),  combine 1 ml of  a 1 M Tris solution and 0.2 ml of 0.5 M EDTA and 98.8 ml sterile water. The following is useful for calculating amounts of stock solution needed: C i x V i = C f x V f , where C  i =  initial concentration, or conc. of  stock  solution; V  i =  initial vol, or amount of stock solution needed C f = final concentration, or conc. of desired solution; V f = final vol, or volume of desired solution 

GlasswareandPlasticWare.Glass  and  plastic  ware  used  for  molecular  biology  must  be  clean.  Dirty  test  tubes  and traces of detergent can inhibit reactions or degrade nucleic acid. 

Glassware  should be  rinsed with distilled water  and  autoclaved or  baked  at  150 

degrees C for 1 hour. 

For  experiments  with  RNA,  glassware  and  solutions  are  treated  with  diethyl‐

pyrocarbonate (DEPC) to inhibit RNases which can be resistant to autoclaving. 

Plastic ware such as pipets and culture tubes are often supplied sterile. Tubes made 

of polypropylene are  turbid and are  resistant  to many chemicals,  like phenol and 

chloroform; polycarbonate or polystyrene tubes are clear and not resistant to many 

chemicals. Make  sure that  the  tubes you are using are  resistant  to the chemicals 

used in your experiment. 

Micro pipet tips and microfuge tubes should be autoclaved before use.  

DisposalofBuffersandChemicals1. Any uncontaminated,  solidified  agarose  should  be  discarded  in  the  trash, not  in 

the sink, and the bottles rinsed well. 

2. Any  media  that  becomes  contaminated  should  be  promptly  autoclaved  before discarding  it. 

Page 4: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

Petri dishes and other biological waste should be discarded in Biohazard containers which will be autoclaved prior to disposal. 

3. Organic reagents, e.g. phenol, should be used in a fume hood and all organic waste should be disposed of in a labeled container, not in the trash or the sink. 

4. Ethidium bromide is a mutagenic substance that should be treated before disposal and should be handled only with gloves. Ethidium bromide should be disposed of in 

a labeled container. 5. Dirty glassware should be rinsed, all traces of agar or other substance that will not 

come clean in a dishwasher  should be  removed, all  labels  should be  removed  (if possible), and the glassware should be placed in the dirty dish bin. Bottle caps, stir bars  and  spatulas  should  be washed with hot  soapy water,  rinsed well with hot water, and rinsed three times with distilled water.  

EquipmentGeneralCommentsIt  is  to  everyone's  advantage to  keep  the  equipment in good  working  condition.  As  a rule  of thumb,  don't  use  anything  unless  you  have  been  instructed  in  the  proper  use. This  is  true not only  for  equipment  in  the  lab  but  also  departmental  equipment. Report any  malfunction immediately. Rinse out all centrifuge  rotors after use and  in particular  if anything  spills.  Please  do not waste  supplies  ‐  use  only what  you  need.  If  the  supply  is running low, please notify either the instructor/lab manager before the supply is completely exhausted. 

MicropipettorsMost of the experiments you will conduct  in this laboratory will depend on your ability to accurately  measure  volumes  of  solutions  using  micropipettors.  The  accuracy  of  your pipetting  can only be  as accurate  as  your pipettor  and  several  steps  should  be  taken  to insure that your pipettes are accurate and are maintained in good working order. Since the pipettors will use different pipet tips, make sure that the pipet tip you are using is designed for your pipettor. DO NOT DROP IT ON THE FLOOR. If you suspect that something is wrong with  your pipettor,  first  check  the  calibration to see  if your suspicions were correct, then notify the instructor. 

StorageofDNA.The  following  properties  of  reagents  and  conditions  are  important  considerations  in processing and storing DNA and RNA. 

Heavy metals promote phosphodiester breakage. EDTA  is an excellent heavy metal chelator. 

Free radicals are formed from chemical breakdown and  radiation  and  they  cause phosphodiester breakage. 

UV  light  at  260  nm  causes  a  variety  of  lesions,  including  thymine  dimers  and  cross‐link. 

Biological   activity   is   rapidly   lost.   320   nm   irradiation   can   also   cause   cross‐link,  but   less efficiently. 

Ethidium bromide  causes photo oxidation of DNA with  visible  light  and molecular oxygen. 

Oxidation products can cause phosphodiester breakage. 

If no heavy metal are present, ethanol does not damage DNA. 

Nucleases  are  found  on  human  skin;  therefore,  avoid  direct  or  indirect    contact  between nucleic  acids  and  fingers.  Most  DNases  are  not  very  stable;  however, many RNases are very stable and can adsorb to glass or plastic and remain active. 

Page 5: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

‐20  deg C:  this  temperature causes  extensive  single and  double strand breaks.  ‐70 E  C  is probable excellent for long‐term storage. 

For  long‐term  storage  of  DNA,  it  is  best  to  store  in  high  salt  (  >1M)  in  the presence of high EDTA ( >10mM) at pH 8.5. 

There is about one phosphodiester break per 200 kb of DNA per year. 

 

InstructionsforNotebookKeeping1. A  notebook  should  be  kept  for  laboratory  experiments  only  using  a  scientific 

notebook  book or other bound book. The notebook should be written  in  ink, and each page signed and dated. Mistakes are not to be erased but should be marked out with a single  line. Try to keep your notebook with  the  idea that someone else must be  able  to  read  and  understand what  you have done. The notebook should always be up‐to‐date and can be collected at any time. 

2. INDEX:  An  index  containing  the  title  of  each  experiment  and  the  page  number should  be included at the beginning of the notebook. 

3. WHAT  SHOULD  BE   INCLUDED   IN  THE  NOTEBOOK?  Essentially  everything  you  do   in  the 

4. laboratory  should  be  in  your  notebook.  The  notebook  should  be  organized  by experiment  only  and  should  not  be  organized  as  a  daily  log.  Start  each  new experiment on a new page. The  top of  the  page  should  contain  the  title  of  the experiment,  the date, and  the page number. The page  number  is  important  for indexing,  referring  to  previous  experiments,  and  for  labeling materials used  in a given experiment.  If an experiment  spans more  than one page, note  the page on which  the  experiment  continues  if  it's  not  on  the  next  page.  Each  experiment should include the following: 

Title/Purpose:  Every  experiment  should  have  a  title  and  it  should  be descriptive.  Many  experiments  should  also  describe  the  purpose  of  the experiment and  include any information that  is pertinent to the execution of the experiment or to the  interpretation of the results. 

Background  information: This  section  should  include any  information  that  is 

pertinent  to the execution of  the experiment or  to  the  interpretation of  the 

results.  Include  anything that will be  helpful  in  carrying  out  the  experiment 

and deciphering  the experiment at a later date. For the most part, notebooks 

are not written for today but for the future. 

Materials:  This  section  should  include  the  key  materials,  i.e.,  solutions  or 

equipment, that will be needed.  It  is not necessary  to  include every piece of 

lab equipment  required,  i.e. vortexer, pipetman, etc, but you  should  include 

any  specialized  equipment  and  the  manufacturer,  i.e,  real‐time  PCR 

instrument.  Composition  of  all  buffers  should  be included  unless  they  are 

standard  or  are  referenced.  Pre‐packaged  kits  should  be identified as to the 

name of the kit, the vendor, and the catalog number.  Biological samples should 

be  identified  by  genus  and  species,  strain  number,  tissue  type,  and/or 

genotype with  the  source  of  the material  identified.  Enzymes  should  be 

identified  by  name,  vendor,  and  concentration.  DNA  samples  should  be 

identified  as  to  1:  type of DNA,  i.e.,  chromosomal,  plasmid,  etc,  2:  purity 

(miniprep,  gel  purified,  PCR  product)  3:  concentration,  if  known,  and  4: 

source, (include prior experiment number if the DNA was isolated in a previous 

experiment).  Include  all  calculations  made  in  preparing  solutions.  The 

Page 6: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

sequence of all oligonucleotides must be included or referenced. Agarose gels 

should be  identified by percentage and buffer used.  If any of these materials 

were used  in previous experiments, include only the reference to that earlier 

experiment, do  not repeat the information again. 

Procedure: Write down exactly what you are going to do before you do it and make sure you understand each step before you do  it.  In general, You should include  everything  you  do  including  all  volumes  and  amounts.  Writing  a procedure out helps you  to remember and  to understand what  it  is about.  It will  also  help  you  to  identify  steps  that  may  be unclear or that need special attention. Flow charts are sometimes helpful for experiments that have many parts. Tables are also useful  if an experiment  includes a set of reactions with multiple variables. 

Results:  This  section  should  include  all  raw  data,  including  gel  photographs, printouts, etc. All lanes on gel photographs must be labeled and always identify the source and the amount of any standards. This section should also  include your analyzed data,  for example, calculations. 

Conclusions/Summary: This is one of the most important sections. You should 

summarize all of  your  results, even  if  they were  stated  elsewhere  and  state 

any  conclusions  you  can make.   If  the  experiment  didn't  work,  what  went 

wrong  and what will  you  do  the next time to try to trouble shoot?  

 

 

These guidelines were briefed from: MOLECULAR BIOLOGY LAB MANUAL The Beginning. 

Compiled by: Hikmet Geckil, Department of Molecular Biology and Genetics, Inonu 

University, Malatya, Turkey 

 

Page 7: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

2.MetaphaseChromosomePreparationfromCulturedPeripheralBloodCellsThe protocols in this section were adopted from (Current Protocols in Human Genetics)

CULTUREANDMETAPHASEHARVESTOFPERIPHERALBLOODWhen  T  lymphocytes  in  whole  blood  are  stimulated  with  the  mitogenic  plant  lectin 

phytohemagglutinin (PHA), they “activate” to blast‐like cells within 12 to 24 hr and con nue 

to proliferate for 2 to 4 days. Metaphase cells are obtained by trea ng cultures with Colcemid, 

a  colchicine  analog  that  disrupts  the  centriole/spindle‐fiber  complex  by  interfering  with 

microtubule  formation. This  treatment  results  in mitotic arrest, which  in  turn  leads  to  an 

accumulation of cells in metaphase. Mitotic arrest is followed by treatment with a hypotonic 

KCl solution  (hypotonic “shock”)  to  increase cellular volume. The cells are  then  fixed with 

methanol/acetic acid to remove water and disrupt cell membranes before being spread onto 

slides. 

Most clinical cytogene c laboratories culture peripheral blood lymphocytes for a period of 48‐

72 hours in a complete culture medium which consists of a basal medium supplemented with 

approximately  10‐40%  fetal  bovine  serum,  PHA  in  the  range  of  approximately  1‐2%  v/v 

depending on source, L‐glutamine and antibiotics. The optimum concentration usually needs 

to be determined prior to use or one can follow vendor dilution recommendations for the lot 

in use. 

Materials Heparinized whole blood obtained via Vacutainer or syringe with preservative‐free 

sodium heparin (25 U/ml blood)  

CAUTION: Human blood is hazardous. 

PB‐MAX™ culture medium (GIBCO): an op mized RPMI 1640 medium, supplemented 

with  Fetal  Bovine  Serum  (FBS),  L‐glutamine,  and  phytohemagglutinin  (PHA). 

optimized  for  the  karyotype  analysis  of  peripheral  blood  lymphocytes.  Thawed 

medium can be stored at 2–8°C for up to 14 days. 

o Thaw PB‐MAX Karyotyping medium at 4 to 8°C. Warm the medium to room 

temperature and gently swirl to mix prior to use.  

o PB‐MAX Karyotyping medium can be thawed and aseptically transferred into 

smaller aliquots for convenience. These aliquots can be frozen and thawed at 

time of use, however multiple freeze‐thaw cycles should be avoided. 

o Avoid prolonged exposure to light when using this culture medium product. 

10 μg/ml Colcemid (GIBCO) 

75 mM KCl (0.56 g in 100 ml H2O; store ≤2 weeks at room temperature) 

Fixa ve: 3:1 (v/v) absolute methanol/glacial ace c acid, (prepare fresh and keep on 

ice) 

15‐ml sterile disposable conical polypropylene centrifuge tubes 

Page 8: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

Collectsampleandinitiatecultures1. Collect  peripheral  blood  by  venipuncture  into  a  sodium  heparin  Vacutainer  or  a 

syringe with 25 U preserva ve‐free sodium heparin per milliliter of blood. 

Other anticoagulants, such as lithium heparin or EDTA are toxic to cells and 

should never be used.  

Samples should be shipped at room temperature. Blood in sodium heparin can 

be held  for  ≤4 days and  s ll be  cultured  successfully, but  cultures are best 

initiated as soon as possible. If necessary, the specimen can be stored at 4◦C. 

2. Inoculate 0.25 ml of the whole blood obtained in step 1 (0.2 ml for newborns ≤3 weeks 

old) into a sterile 15‐ml centrifuge tube containing 5 ml PB‐MAX™ culture media.  

A single culture typically yields three to five full‐slide preparations, or more if 

only part of the slide is used. Multiple cultures may be set up to meet clinical 

or research needs. 

3. Incubate 2 to 4 days with tubes  lted at 45◦ in order to promote air exchange.  

Three‐day  incuba ons are op mal, but 2‐ or 4‐day cultures can be used  to 

accommodate laboratory scheduling concerns. 

Cultures  from  newborns will  usually work well  at  2  days  but may  also  be 

harvested  either  directly  or  following  a  1‐day  culture.  Older  patients’ 

leukocytes require 3‐ or 4‐day cultures because they do not seem to respond 

as quickly to PHA stimulation. 

Harvestculture4. Initiate harvest by adding 50 μl of 10 μg/ml Colcemid (0.1 μg/ml final). Incubate 30 

min in a humidified 37◦C, 5% CO2 incubator. 

The harvest  can be  initiated at any  me 3  to 4 days  following  the  culture 

described in step 3. 

5. Centrifuge 7 min at 500×g, room temperature. Discard supernatant. 

6. Add 5 ml of 75 mM KCl pre‐wormed at 37◦C and gently resuspend cells. Let stand 15 

min at 37◦C.  

The  amount  of  hypotonic  solution  to  be  added  should  be  adjusted  to  the 

volume  of  the  pellet.  Some  laboratories  vary  the  length  of  hypotonic 

treatment. Increasing the time will increase chromosome spreading, but this 

treatment is a hypotonic “shock,” so that increasing the amount of hypotonic 

solution will have more impact than increasing the time of treatment. 

7. Add 1ml of ice‐cold fixative drop by drop with a Pasteur pipet while mixing by vortex. 

Centrifuge as in step 5. 

This treatment serves to reduce the pH of the cells gradually to precondition 

them for the  following fixation steps.  It also  lyses remaining red blood cells 

and begins the process of clearing resulting cellular debris. 

8. Remove  all  but  0.5  ml  of  the  supernatant  and  resuspend  pellet  in  remaining 

supernatant by drawing it gently up and down with a Pasteur pipet. Add 5 ml ice‐cold 

fixative drop by drop while mixing by vortex. Leave on ice for 20 min. Centrifuge as in 

step 5.  

Page 9: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

The pellet after step 7 will be brown and clumpy because of erythrocyte debris. 

Resuspend gently but thoroughly to avoid clumped  lymphocytes which may 

complicate slide‐making. 

Do not draw too much volume into the pipet while resuspending because the 

cells will stick permanently to glass. 

Do not press the pipet tip against the bottom of the tube when drawing and 

delivering the suspension, as this will lyse cells. The pellet after step 8 will be 

more homogeneous, and will usually have a light‐brown to white color. It may 

be ≤0.1 ml in volume. 

9. Aspirate supernatant, resuspend pellet and repeat step 8 (without incuba on) un l 

the pellet is clear. 

10. Remove supernatant and resuspend pellet in a volume of fixative sufficient to produce 

a light milky suspension (about 0.5ml). Allow to stand 30 min at room temperature or 

store overnight at 4◦C. 

Longer fixation will often improve chromosome spreading in difficult harvests. 

Keeping  the  suspension  overnight  at  4◦C  can  improve  the  quality  of  the 

preparation or can be done for scheduling reasons. Suspensions should be kept 

in polypropylene tubes containing plenty of fixa ve (e.g., 5 ml). Polystyrene 

tubes will react with fixative and should not be used. 

CHROMOSOMESLIDEPREPARATIONSlide‐making is the least standardized and understood of cytogenetic protocols, about which 

technologists have widely variable and sometimes contradictory ideas. In the end what really 

matters is that slide preparations are consistent and appropriate for the desired analysis. The 

protocol presented here  is not  the only approach  to chromosome  slide preparation but  it 

works under varied physical conditions  (slide‐making  is very climate‐dependent) and  for a 

wide range of cell cultures.  It can be used  for peripheral blood, bone marrow, ascites and 

pleural effusions, amniotic fluid and tissue flask harvests, somatic cell or radiation hybrids, 

lymphoblastoid  cell  lines,  and  nonhuman  and  hybridoma  cultures—in  short,  any  culture 

harvest that results in a fixed suspension of mitotic cells. Harvested peripheral blood cultures 

suspended in methanol/acetic acid fixative are applied to wet microscope slides, flooded with 

fixative, and air‐dried. The drying process is adjusted according to ambient temperature and 

humidity to optimize spreading and morphology of chromosomes for subsequent banding and 

analysis. The protocol described here produces preparations that are particularly suitable for 

analysis by G‐banding or  in situ hybridization, although many other staining  techniques or 

procedures may be used. 

Materials Fixed cultures prepared as previously described 

Fixa ve: 3:1 (v/v) methanol/ace c acid (use 100% methanol and glacial ace c acid) 

Microscope slides (one end frosted) stored in 100% methanol (absolute) in Coplin jars 

Lint‐free tissue (e.g., Kimwipe or gauze pad) 

Standard phase‐contrast microscope 

Page 10: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

10 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

Procedures1. Remove slide from methanol and polish with lint‐free tissue, such as a folded Kimwipe 

or gauze pad. Dip slide once in methanol and then several times in deionized water 

until the methanol is gone and a thin, uniform film of water covers the slide. 

Good slides have few pits and imperfections and will hold a thin film of water 

across the entire slide, which reduces the surface tension prior to addition of 

the cell suspension. Cleaning each slide is essential, as few precleaned slides 

are truly clean enough for chromosome preparations. 

2. Holding the frosted end between the thumb and finger, position the slide with the 

one long edge parallel to the bench top, and blot the lower long edge on a paper towel 

to draw off excess water. Keeping the lower long edge in contact with the paper towel, 

lower the opposite edge un l the slide forms a 30◦ angle with the bench top, with the 

film of water facing up (Fig. 1). 

3. From a Pasteur pipet held in a horizontal posi on 1 to 2 inches above the slide, place 

3 drops of cell suspension, evenly spaced, onto the slide, moving successively toward 

the frosted end. Drops should strike the tilted slide one‐third of  its width from the 

elevated long edge (Fig. 1.a). The drops should burst on the water film and spread out 

evenly as they strike. 

Positioning and spacing of drops is critical. The goal is even dispersal of cells 

across  the  entire  surface  of  the  slide.  This  contributes  to  consistent  and 

uniform slide‐drying, which will optimize chromosome spreading.  If discrete 

areas of cells are observed at  the drop sites, surrounded by areas with  few 

cells, the slide should be held at a lower angle (i.e., <30◦) when the drops are 

applied. Applying  drops  in  sequence  toward  the  frosted  end  allows  excess 

water and fixative to flood onto the frosted end without pooling. Placing drops 

closer to the elevated edge of the angled slide helps to disperse the cells  in 

suspension uniformly across the width of the slide. If amount of cell pellet is 

limited, slides should be made using one or two drops. 

Some in situ hybridization protocols call for an array of different hybridization 

probes on the same slide. An array of metaphases can easily be prepared by 

adding a  small amount  (e.g., 10  μl)  to each area of  the  slide  that  is  to be 

hybridized. This is best done in succession before proceeding to step 4 below. 

4. Position the slide with one long edge parallel to the bench top and blot the lower long 

edge to draw off excess fixative. Tilt the slide at a 30◦ angle as in step 2 and flood with 

fresh 3:1 methanol/ace c acid fixa ve, dropwise, using a Pasteur pipet. Start at the 

elevated  corner of  the nonfrosted end and move  toward  the  frosted end, placing 

drops on the upper edge of the slide (Fig. 1.b). 

This will uniformly displace any  remaining water and allow  the slide  to dry 

evenly.  It  is critical to  flood  the slide toward  the  frosted end so that excess 

fixative does not pool on the slide surface. As fixative is placed across the top 

of the slide,  it will displace a  front of water and  leave a uniform surface of 

fixative. This process also serves to remove debris that might otherwise collect 

over cells and thus disturb any future procedures that are to be performed on 

the preparations, such as banding or in situ hybridization. 

Page 11: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

11 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

5. Position the slide again so that one  long edge  is parallel to the bench top, blot the 

lower long edge, and wipe off the back of the slide. Place so that the nonfrosted end 

is elevated 30◦ with respect to the frosted end, with the cell side facing up. Air dry. 

Correct drying, as  indicated by  chromosome  spreading and  contrast under 

phase microscopy, must be monitored on a slide‐by‐slide basis. It is a function 

of surface tension, which  in turn  is related to relative humidity and ambient 

temperature. Simply placing a slide on an angle  to dry as suggested above 

may work well if ambient conditions are conducive (20◦ to 22◦C with a rela ve 

humidity of ∼50%). More o en, addi onal manipula ons to control rate and 

duration of drying will be necessary to optimize quality of preparations. 

6. Examine slides for good chromosome spreading and morphology by phase‐contrast 

microscopy. 

Storage of a slide preparation will depend on its intended use. Slides to be used 

for  fluorescence  in  situ  hybridization  (FISH)  should  be  used within  several 

weeks  without  baking  or  artificial  aging.  Because  the  chromosome 

preparations on slides are biodegradable, they should be stored in a clean, dry 

container in the dark at room temperature (short‐term storage), or frozen at 

−70◦C (long‐term storage). 

AGINGSLIDESWITHHEATTime,  heat,  and  drying  cause  an  alteration  in  chromosomal  material  (probably  protein 

denaturation) that affects banding. Underaged slides result in fuzzy banding. Overaged slides 

do  not  band.  Techniques  for  manipulating  the  aging  of  chromosome  slides  vary  widely. 

Optimal aging conditions may vary with cell type or tissue source. 

Incubate air‐dried slide of metaphase chromosomes 2 days at 55°C or 20 min at 90° to 95°C 

(using dry oven or  slide warmer).  If  it  is necessary  to  reduce  time of  incubation,  increase 

temperature. If incuba on  me will be  longer than 2 days (e.g., over a weekend), decrease 

temperature.  Optimal  times  and  temperatures  must  be  established  empirically  in  each 

laboratory. 

AgingofSlideswithHydrogenPeroxideWhen  immediate banding of  slides  is  required,  the effects of  aging  can be obtained with 

hydrogen peroxide treatment. 

Materials Air‐dried slides of metaphase chromosomes (prepare freshly) 

15% (v/v) H2O2 (dilute 30% H2O2 1:1 with water immediately before use) 

50°C hot plate or slide warmer 

CAUTION: H2O2 is hazardous 

1. Flood freshly prepared slide with 15% H2O2. Leave peroxide in contact with slide for 

7 min. 

Slide can be aged immediately after preparation. 

2. Place slide in Coplin jar filled with water and rinse under running tap water 2 min. 

Page 12: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

12 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

3. Place  slide  on  50°C  hot  plate  or  slide  warmer  1  hr  to  overnight.  Cool  to  room 

temperature and proceed with banding. 

 

 

Figure 1 Chromosome slide preparation: (A) After blotting the long edge of the slide to obtain 

a  thin uniform  layer of water,  the slide  is  tilted  to ∼30◦ and 3 separate drops of fixed cell suspension  are  applied  starting  away  from  and  proceeding  toward  the  frosted  end.  This 

sequence allows excess fixative and water to flood onto the frosted end without pooling on the 

slide. Application of the drops 1/3 of the distance from the top of the slide (indicated by Xs) 

counteracts the downhill dispersal tendency of cells on the slide and promotes even dispersal 

across  the slide width.  (B) After application of  the cell suspension,  the slide  is  flooded with 

fixative across the top edge, again proceeding toward the frosted end. This displaces a front 

of remaining water across the slide and onto the frosted end. It is important to avoid pooling 

of excess fluid on the surface of the slide, and to obtain a thin, even film of fixative to ensure 

uniform drying. 

Page 13: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

13 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

 

 

 

 

 

Page 14: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

14 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

CHROMOSOMEBANDINGTECHNIQUESChromosome banding techniques produce a series of consistent landmarks along the length 

of metaphase chromosomes that allow for both recognition of individual chromosomes within 

a  genome  and  identification  of  specific  segments  of  individual  chromosomes.  These 

landmarks  facilitate  assessment  of  chromosome  normalcy,  identification  of  sites  of 

chromosome  breaks  and  alterations,  and  location  of  specific  genes.  The  basic  banding 

techniques  (Q‐banding, G‐banding,  and  R‐banding)  produce  virtually  identical  patterns  of 

bands along the length of human chromosomes, although the bands and polymorphic regions 

highlighted may differ with each technique. Utility of these banding patterns stems from the 

fact that the pattern of bands obtained will be identical from cell to cell, from tissue to tissue, 

and, except within polymorphic regions, from  individual to  individual within a species. The 

fidelity of chromosome‐banding patterns most likely stems from the underlying organization 

of DNA  sequences and associated proteins  in  chromosomes. This organization  is  faithfully 

preserved at each cell division, and no mechanisms are currently recognized that disrupt these 

patterns.  Even  in  rearrangements  of  a  chromosome,  such  as  those  that  occur  in 

translocations, the fidelity of the banding pattern in the rearranged segment is maintained, 

allowing identification of the translocated segment. These basic banding techniques highlight 

reproducible  landmarks  along  the  length  of  the  chromosome  and  specialized  staining 

techniques  can  be  used  to  highlight  particular  regions  of  chromosomes,  such  as 

heterochromatic and repeated‐sequence segments. The technique presented can be applied 

to both metaphase and prometaphase (extended, high‐resolution) chromosome preparations 

from  any  tissue  source.  Choice  of  staining  technique  will  vary  with  the  application  and 

available equipment (bright‐field versus fluorescence microscopy).  

GTGTechniqueforG‐BandingG‐banding is the most frequently used technique in clinical cytogenetics laboratories because 

of the permanence of the bands produced and the ease with which they can be photographed. 

There are numerous G‐banding techniques, but all combine a pretreatment step that probably 

alters  chromosomal  proteins,  followed  by  a  staining  step  with  a  Romanowsky‐type  dye 

mixture (a thiazine eosin‐azure dye mixture, usually Giemsa stain, hence G‐banding). The basic 

protocol described below, known as GTG‐banding (G‐banding by trypsin with Giemsa), uses 

the proteolytic enzyme trypsin for pretreatment followed by staining with Giemsa. G‐banding 

patterns can be viewed and photographed with a bright‐field microscope. 

Materials HBSS (Hanks balanced salt solution) 

o 0.40 g KCl (5.4 mM) 

o 0.09 g Na2HPO4⋅7H2O (0.3 mM) 

o 0.06 g KH2PO4 (0.4 mM) 

o 0.35 g NaHCO3 (4.2 mM) 

o 0.14 g CaCl2 (1.3 mM) 

o 0.10 g MgCl2⋅6H2O (0.5 mM) 

o 0.10 g MgSO4⋅7H2O (0.6 mM) 

o 8.0 g NaCl (137 mM) 

o 1.0 g D‐glucose (5.6 mM) 

Page 15: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

15 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

o 0.01 g phenol red (0.01%; op onal) 

o Add H2O to l liter and adjust to pH 7.4 

o Filter sterilize and store at 4°C 

HBSS can also be purchased from a number of commercial suppliers.  

HBSS may be made or purchased without CaCl2 and MgCl2. These components 

are optional and usually have no effect on an experiment; in a few cases, however, 

their  presence may  be  detrimental.  Consult  individual  protocols  to  see  if  the 

presence or absence of these components is recommended. 

Trypsin solution (see recipe) 

o Stock solution: 0.5% Trypsin‐EDTA (10X), no Phenol Red (GIBCO). Divide into 

2‐ml aliquots and store frozen at −20°C. 

o Working solution: Combine 2.5 ml 10X stock solu on with 47.5 ml disodium 

phosphate buffer (see recipe) in a Coplin jar. Prepare fresh. 

70% and 90% (v/v) ethanol 

Giemsa Stain: 

o Add 1g Giemsa powder to 66 ml methanol and 66 ml glycerin and s r for 2 

days at room temperature. 

o The stain should be prepared at  least 2 weeks before used and stored  in a 

darkened container in a refrigerator 

2% Giemsa (v/v) staining solu on 

o 1 ml Giemsa stain 

o 49 ml H2O 

o Prepare fresh daily in Coplin jar 

Disodium phosphate buffer, pH 7.0 

o 0.2 g KCl (2 mM final) 

o 8.0 g NaCl (0.14 M final) 

o 0.2 g monobasic potassium phosphate (KH2PO4; 1.4 mM final) 

o 1.16 g dibasic sodium phosphate (Na2HPO4; 8 mM final) 

o 1 liter H2O 

o Adjust pH to 7.0 with monobasic or dibasic phosphate solution if needed 

o Store ≤6 months at room temperature 

Aged slides of metaphase chromosomes (see support protocols) 

Xylene (CAUTION: Xylene is hazardous) 

NOTE: Because the stain is difficult to remove from skin, it is advisable to wear gloves 

when working with Giemsa. 

Procedures1. Prepare a series of Coplin jars containing the following at room temperature: 

jar 1—HBSS 

jar 2—trypsin solution 

jar 3—HBSS 

jar 4—70% ethanol 

jar 5—90% ethanol 

Page 16: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

16 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

jar 6—2% Giemsa staining solu on 

jar 7—H2O. 

2. Place aged slide of metaphase chromosomes briefly (∼10 sec) in jar 1. 

3. Transfer slide to jar 2. Incubate for op mal trypsiniza on  me. 

Insufficient trypsinization results in evenly stained slides with no bands. Over‐

trypsinization results  in pale “puffy” chromosomes with staining around the 

outside of  the chromosome. Optimal  trypsinization  times will vary with  the 

source of cells. Three to five  identical slides should be available so that  it  is 

possible to vary trypsinization time as needed to obtain optimal banding.  

Recommended initial trypsinization time is 60 sec for good‐quality, well‐aged 

slides  from  lymphocytes or amniocytes, 90 sec  for slides of other cells  from 

long‐term  tissue  culture  (chorionic  villus  samples,  solid  tumors,  skin 

fibroblasts, etc.), and 30 sec for slides from bone marrow. 

4. Place slide in jars 3 to 5, dipping slide 3 to 4  mes in each jar. Air dry. 

It is possible to pause at this point for several hours before proceeding to step 

5. 

5. Place slide in jar 6 for 4 min.  

Optimal staining time may need to be determined empirically. 

6. Place slide in jar 7 for ∼30 sec. Air dry. 

Once stained, slide can be stored for months or years. 

7. View and photograph with bright‐field microscope (see Fig. 2).  

It is not necessary to mount slide with a coverslip; oil can be placed directly on 

the slide. For storage of slides, rinse off immersion oil using fresh xylene. 

Use a green interference filter for black and white photography. 

 

Figure 2 G‐banded metaphase spread from a phenotypically normal 46,XY male. X and Y 

chromosomes indicated by arrows. Chromosomes are stained with Giemsa.  

Page 17: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

17 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

3.FluorescentIn‐SituHybridization(FISH)

ProcedureforFISHanalysisofchromosomes13/21/X/Y/18

 

Reagents:Poseidon™ Repeat Free™ Chromosome 13/21, X/Y/18 specific DNA Probes 

Vial 1 

Cri cal  region  1  (red):  The  21q  specific  DNA  probe  is  direct‐labeled  with Pla numBright550. 

Cri cal  region 2  (green):  The 13q14  specific DNA probe  is direct‐labeled with Pla numBright495. 

Vial 2 

Cri cal  region  3  (blue):  The  18  SE  DNA  probe  is  direct‐labeled  with Pla numBright415. 

Cri cal  region  4  (green):  The  X  SE  DNA  probe  is  direct‐labeled  with Pla numBright495. 

Cri cal  region  5  (red):  The  Y  SE  DNA  probe  is  direct‐labeled  with 

Pla numBright550. 

Intendeduse:The  chromosome  21  specific  region  probe  is  op mized  to  detect  copy  numbers  of chromosome 21 at 21q22.1 on uncultured amnio c cells. The  chromosome  13  specific  region  probes  is  op mized  to  detect  copy  numbers  of Chromosome 13 at 13q14.2 on uncultured amnio c cells. The chromosome 18 specific Satellite probe (D18Z1) is op mized to detect copy numbers of Chromosome 18 at 18p11‐18q11 on uncultured amnio c cells. The chromosome X specific Satellite probe  (DXZ1)  is op mized  to detect copy numbers of Chromosome X at Xp11‐Xq11 on uncultured amnio c cells. The chromosome Y specific Satellite probe  (DYZ3)  is op mized  to detect copy numbers of Chromosome Y at Yp11‐Yq11 on uncultured amnio c cells.  

 The class will be divided into three groups. Each group will prepare 2 slides from uncultured 

blood. 

One  interphase  slide‐preparation  (labeled  I‐1)  and  one metaphase  slide  prepara on 

(labeled M‐1) will be selected for chromosomes 13/21 probe mix. 

One  interphase  slide‐preparation  (labeled  I‐2)  and  one metaphase  slide  prepara on 

(labeled M‐2) will be selected for chromosomes X/Y/18 probe mix. 

Specimen: Uncultured blood and bone marrow preparations for interphase FISH: 

Sample preparation: 

1. Add 10 ml of 75 mM KCl at room temperature to 0.25‐1 ml of blood or bone 

marrow and gently mix. Let stand 15 min at room temperature.  

Page 18: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

18 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

2. Add 10 to 12 drops of fixative with a Pasteur pipet and mix well. Centrifuge 

for 8 min at 180×g, room temperature. 

3. Remove all but 0.5 ml of the supernatant and resuspend pellet in remaining 

supernatant by drawing it gently up and down with a Pasteur pipet. Add 1 ml 

fixative and immediately mix gently. Adjust volume to 5 ml with fixa ve and 

mix thoroughly. Centrifuge as previously.  

4. The  pellet  will  be  brown  and  clumpy  because  of  erythrocyte  debris. 

Resuspend gently but thoroughly to avoid clumped lymphocytes which may 

complicate slide‐making. 

5. Aspirate  supernatant,  resuspend  pellet  in  5 ml  fixa ve,  and  centrifuge  as 

previously. 

6. Remove supernatant and resuspend pellet in a volume of fixative sufficient to 

produce a light milky suspension. Allow to stand 30 min at room temperature 

or store overnight at 4◦C. 

Slidemaking:1. Clean microscope slides by dipping in methanol and drying by wiping with lint‐

free cloth to ensure the slides are grease‐free. 

2. Add a drop of the fixed cells suspension onto a microscope slide. 

3. Allow to air dry. 

4. Check the cell density under phase contrast microscope. 

 

Heparinized whole blood  cultured  in RPMI 1640 medium  supplemented with  fetal 

bovine  serum,  penicillin,  streptomycin  and  L‐glutamine  and  2%  PHA.  The  blood 

cultures  are harvested  and  fixed by methanol/acetic  acid  and  the  slides prepared 

according  to  standard  techniques  (refer  to  materials  from  karyotyping  training 

session). 

Slidespretreatment:1. Fill a ver cal Coplin jar with 50 ml pretreatment buffer (see preparations). 

2. Incubate the  jar at 37°C for enough time to worm the pretreatment buffer, before 

proceeding with the procedure 

3. Dip the prepared slides into the pre‐wormed buffer 

4. Incubate at 37°C for 15 min. 

Dehydration:During the incuba on period prepare 3 horizontal Coplin jars containing 100 ml of the 

following ethanol concentra ons at room temperature: (70%, 85% and 100%). 

a. Dip the slides in 70% ethanol for 1 min 

b. Dip the slides in 85% ethanol for 1 min 

c. Dip the slides in 100% ethanol for 1 min 

d. Air‐dry the slides. 

Co‐Denaturation/Hybridization:1. Apply 10μl of 13/21 probe prepara on or (ready to use)  onto each of slides # I‐2 and 

M‐1. Avoid genera on of air bubbles. 

Page 19: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

19 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

2. Apply 10μl of X/Y+18 probe prepara on or (ready to use) onto each of slides # I‐4 

and M‐2. Avoid genera on of air bubbles. 

3. Gently cover each slide with (22 X 22 mm) cover slip, and make sure that the applied 

probe preparation is uniformly spread beneath the cover slips. 

4. Seal the cover slips to the slides with Fixogum. 

5. Incubate  the  slides  at  75°C  for  5‐10 min  on  a  hotplate with  precise  temperature 

control (Thermal cycler or a slide thermo‐mixer may be used). 

6. Incubate  the  slides  in  a  sealed  humidified  box  or  slide  thermo‐mixer  at  37°C  for 

overnight (12‐16 Hrs). 

Post‐Hybridizationstringencywashing:1. Prepare two Coplin jars: 

a. Fill the first with 100 ml of Post‐wash buffer I, and pre  incubate  in a water 

bath adjusted at 72°C for enough  me to raise the buffer temperature to the 

desired temperature (72°C). 

b. Fill  the  second  jar with  100 ml  of  Post‐wash  buffer  II  and  keep  at  room 

temperature. 

2. Remove the Fixogum seal. 

3. If necessary incubate the slides in Post‐wash buffer II for 2 min at room temperature 

to slide off the cover slips. 

4. Incubate the slides in a Coplin jar containing pre‐wormed (72°C) Post‐wash Buffer I 

for 2 min. 

5. Wash slides in Post‐ wash Buffer II for 1 min at room temperature. 

6. Dehydrate the slides for 1 min in each of: 70 %, 85 % and 100 % ethanol. 

7. Air‐dry at room temperature. 

Counter‐staining: Apply 15 μl of DAPI/an fade and apply a glass cover slip 

Visualize by a fluorescent microscope. 

Interpretation:Recommendationsforfluorescencemicroscopy:For optimal visualization use a well maintained and regularly calibrated microscope equipped with a 100 W mercury lamp and a 63x or 100x fluorescent objec ve. Triple band‐pass filters (DAPI/FITC/Texas Red or DAPI/FITC/Rhodamine) are used to view multiple colours, single band‐pass filters are used for individual colour visualization.  Suitable excitation and emission range for REPEAT‐FREE POSEIDON fluorophores: 

Fluorophore  Excitation  Emission  

Pla numBright415  415 ±20 nm  475 ±30 nm 

Pla numBright 495  495 ±20 nm  525 ±30 nm 

Pla numBright 550  546 ±12 nm  580 ±30 nm 

 The Chromosome 13/21 specific probe  is designed as a dual‐color assay to detect gains of chromosome 21 and 13. Trisomy 21 will be detected by three red signal at the 21q22 region 

Page 20: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

20 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

and two green signals  for chromosome 13  (3R2G). Trisomy 13 will be detected by 3 green signals at the 13q14 region and two red signals for chromosome 21 (2R3G). Two single color red (R) and green (G) signals will iden fy the normal chromosomes 13 and 21 (2R2G). The Chromosome X/Y/18 specific probe is designed as a triplecolour assay to detect gains or losses of chromosome X, Y and or 18. Turner syndrome will be detected by one green signal only at Xcen. Meta‐Females  (or Triple‐X  females) will be detected by  three or more green signals at Xcen. Klinefelter will be detected by 2 or more green and 1 red signal. XYY males will be detected by one green and two red signals. Two single green (G) signals will identify the normal X chromosome in females, one green and one red signal will identify the normal X and Y chromosomes in male. Trisomy 18 will be detected by three blue signals at 18 cen. Two single blue signals will iden fy the normal chromosome 18. 

InterpretationTable:

 Normal Signal 

Pattern Trisomy 21  Trisomy 13  Trisomy 18 

Expected Signals Using 13/21 

2R2G  3R2G  2R3G   

Expected Signals Using 13/21+18 

2R2G2B  

3R2G2B  2R3G2B  2R2G3B 

  Female  Male      Female  Male 

Expected Signals Using X/Y + 18 

2G2B  1R1G2B      2G3B  1R1G3B 

  Female  Male  Turner XO  Meta‐female  Klinefelter  XYY 

Expected Signals Using X/Y 

2G  1R1G  1G  3‐5G 

2G1R 3‐4G1R 

1R1G/1R2G in mosaics 

1G2R 

Expected Signals Using X/Y + 18 

2G2B  1R1G2B  1G2B  3‐5G2B 

2G1R2B 3‐4G1R2B 

1R1G2B/1R2G2B in mosaics 

1G2R2B 

 

Trisomy 21: One of the most common chromosomal abnormalities  in  live born children and causes Down syndrome, a particular combination of phenotypic  features that  includes mental retardation and characteristic facies. Molecular analysis has revealed that the 21q22.1‐q22.3 region appears to contain the gene(s) responsible for the congenital heart disease observed in Down syndrome.  

Trisomy 13: Also called Patau syndrome,  is a chromosomal condition that  is associated with severe mental  retardation  and  certain  physical  abnormalities.  The  critical  region  has  been reported  to  include  13q14‐13q32  with  variable  expression,  gene  interac ons,  or interchromosomal effects. 

Trisomy 18: Causing Edwards syndrome is the second most common autosomal trisomy after trisomy 21. The disorder/condi on  is characterized by severe psychomotor and growth retardation,  microcephaly,  microphthalmia,  malformed  ears,  micrognathia  or 

Page 21: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

21 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

retrognathia,  microstomia,  distinctively  clenched  fingers,  and  other  congenital malformations. Chromosomal abnormalities involving the X and Y chromosome (sex chromosomes) are slightly less common than autosomal abnormalities and are usually much less severe in their effects. The high frequency of people with sex chromosome aberrations is partly due to the fact that they are rarely lethal conditions. 

Turner syndrome: Occurs when females inherit only one X chromosome; their genotype is X0. 

Metafemales or triple‐X females:  Inherit three X chromosomes; their genotype is XXX or more rarely XXXX or XXXXX. 

Klinefelter syndrome: Males  inherit one or more extra X chromosomes; their genotype  is XXY or more rarely XXXY, XXXXY, or XY/XXY mosaic. 

XYY syndrome: Males inherit an extra Y chromosome; their genotype is XYY. 

Buffersandpreparations:1. Fixative: 

Component  Amount  Final conc. 

Methanol (Absolute)  30 ml   

Glacial acetic acid  10 ml   

Total  40 ml   

 

2. SSC (sodium chloride/sodium citrate), 20× 

Component  Amount  Final conc. 

NaCl   175 g   3 M 

trisodium citrate dihydrate Na3C6H5O7⋅2H2O 

88 g  0.3 M 

H2O  To 800 ml   

Adjust pH to 7.0 with 1 M HCl 

Add H2O to 1 liter 

 

3. Pretreatment buffer: (2 x SSC / 0.5% igepal, pH 7.0) 

Component  Amount  Final conc. 

20 X SSC buffer pH 7.0  5 ml  2 X 

Igepal or Triton‐X‐100  250 μl  0.5 % 

Distilled Water  45 ml   

Total  50 l   

   

4. Probe preparation: (in case not ready to use) 

Probe mix  Hybridization Buffer  Probe  Total 

13/21   ready to use 

X/Y + 18   8 μl  2 μl  10 μl 

ON, PN, and MD REPEAT‐FREE POSEIDON probes are supplied Ready to Use (RtU). SE, ST, and WC REPEAT‐FREE POSEIDON probes are provided at 5 x concentrated and must be diluted  

Page 22: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

22 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

To combine several 5 x conc. probes, replace FISH Hybridiza on Buffer (FHB or WHB) with 2 μl for each added probe.  

51 Post‐Wash buffer I: (0.4 x SSC / 0.3% igepal) 

Component  Amount  Final conc. 

20 X SSC buffer pH 7.0  1 ml  0.4 X 

Igepal or Triton‐X‐100  150 μl  0.3 % 

Distilled Water  49 ml   

Total  50 ml   

 

52 Post‐Wash buffer II: (2 x SSC / 0.1% igepal) 

Component  Amount  Final conc. 

20 X SSC buffer pH 7.0  5 ml  2 X 

Igepal or Triton‐X‐100  50 μl  0.1 % 

Distilled Water  45 ml   

Total  50 ml   

 

   

Page 23: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

23 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

4.GenomicDNAExtraction 

Leukocytes genomic DNA will be extracted from pereferal blood using the (Wizard® Genomic 

DNA Purifi cation Kit) according to the manufacturer instructions attached to the end of this 

manual. 

   

Page 24: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

24 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

5.DetectionofCommonFamilialMediterraneanFever(FMF)MutationsByPCR/RFLP

Familial Mediterranean fever (FMF) is a genetic disease of the inflammatory pathway. FMF is 

the  most  frequent  of  the  hereditary  fevers  and  mainly  affects  populations  of  the 

Mediterranean  basin,  such  as  Arabs,  Armenians,  Sephardic  Jews  and  Turks.  The  disease 

typically  presents  as  recurrent  episodes  of  fever  accompanied  by  topical  signs  of 

inflammation, mainly involving the peritoneal, pleural and articular cavities. In most patients 

the first symptoms may appear by the age of 10 and in 90% of the pa ents by the age of 20. 

The  symptoms  and  severity  vary  among  affected  individuals,  sometimes  even  among 

members of the same family. Amyloidosis, which can lead to renal failure, is the most severe 

complica on. FMF type 2 is characterized by amyloidosis as the first clinical manifesta on of 

FMF in an otherwise asymptomatic individual.  

The gene responsible for FMF (designated MEFV) encodes a protein named marenostrin or 

pyrin. The spectrum of MEFV mutations responsible for FMF has been regularly widening, and 

more than fifteen mutations have now been discovered. There are five frequent mutations: 

four regrouped in exon 10 (V726A, M694V, M694I, M680I) and one in exon 2 (E148Q). They 

cover more than 85% of the muta ons present in the above‐mentioned populations. 

Mutation  M680I 

2040 G>C 

2040 G>A 

M694V 

2080A>G 

 

M694I 

2082 G>A 

V726A 

2177 T>C 

E148Q 

442 G>C 

These muta ons and par cularly M694V were  shown  to be  related  to  the  severity of  the 

disease. The relationship with amyloidosis has also been demonstrated. Moreover, it seems 

that other genetic modifiers and environmental factors may play a role in the manner of FMF 

expression and its complications in the various populations. 

The diagnosis of FMF is clinical and is suspected in individuals with recurrent episodes of fever 

associated with abdominal pain (peritonitis) and/or pleuritic pain and/or arthritis (ankle/knee) 

usually lasting two to three days. A high erythrocyte sedimentation rate, leukocytosis, and a 

high serum concentration of fibrinogen are characteristic.  

FMF is inherited in an autosomal recessive manner. In general, both parents of a proband are 

considered to be obligate carriers. However, in populations with a high carrier rate and/or a 

high rate of consanguineous marriages, it is possible that affected children may be born to an 

affected individual and a carrier, or even to two affected individuals. Thus, it is appropriate to 

consider molecular genetic testing of the parents of the proband to establish their genetic 

status. If both parents are heterozygotes, the risk to sibs of being affected  is 25%. Prenatal 

testing is possible if the MEFV mutations in an affected family member are known. 

   

Page 25: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

25 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

Procedures:

The primers used for amplifica on are listed in table 1. 

ID  Sequence (5' to 3') 

FMF7   GAATGGCTACTGGGTGGAGAT 

FMF8  GGCTGTCACATTGTAAAAGGAG 

FMF9  GCTACTGGGTGGTGATAATCAT 

p12.2  TATCATTGTTCTGGGCTC 

met1  CTGGTACTCATTTTCCTTC 

EQF  GCCTGAAGACTCCAGACCACCCCG 

EQR  CAGAGAGAAGGCCTCGGAGGGCCT 

 

To detect muta ons M694V and V726A, the primers FMF7 and FMF8 are used. The M694V 

variant creates a Hph‐I restriction site in the PCR product of the mutant allele but not of the 

normal allele. The FMF7 primer was designed (mismatch) to abolish another constitutive Hph‐

I site proximal to the mutation. After Hph‐I restriction the mutant allele yields one 118‐base 

pair (bp) and one 36‐bp fragment; the normal allele gives a 154‐bp uncut fragment. 

The V726A variant creates an Alu‐I restriction site in the PCR product of the mutant allele. The 

Alu‐I restriction site yields a 122‐bp and a 32‐bp fragment for the mutant allele, whereas the 

normal allele gives a 154‐bp uncut fragment. 

M694V and V726A

Reaction Components: 

Reagent  Amount  Final concentration 

2X Master Mix  12.5 µl  1X 

FMF7 (5 µM)  1.5 µ1  0.325 µM 

FMF8 (5 µM)  1.5 µ1  0.325 µM 

H2O  7.5 µl    

DNA  2 µl    

Total  25 µl    

 

Cycling Conditions: 

One Cycle:       

   95˚C  5 min. 

35 Cycles: 

95˚C  45 sec. 

55˚C  30 sec. 

72˚C  1 min. 

One cycle:  72˚C  10 min. 

Page 26: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

26 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

 

M694V 

Hph‐I Restriction reaction 

Reagents  Amount  Final 

Enzyme Hph‐I (5 U/l)  0.5 µl  0.12U/l 

Water  7.5 l    

NEBuffer 4 (10X)  2.0 µl  1X 

PCR product  10 l    

TOTAL  20 l    

Incubate at 37˚C for 1 hour 

mutant allele:  118‐bp + 36‐bp 

normal allele:   154‐bp 

 

V726A 

Alu‐I  Restriction reaction 

Reagents  Amount  Final 

Enzyme Alu‐I  (10 U/l)  0.5 µl  0.25U/l 

Water  7.5 l    

NEBuffer 4 (10X)  2.0 µl  1X 

PCR product  10 l    

TOTAL  20 l    

Incubate at 37˚C for 1 hour 

mutant allele:   122‐bp + 32‐bp 

normal allele:   154‐bp 

 

To detect  the M694I variant, a mismatch  is  introduced  into a primer  (FMF9)  that anneals 

adjacent to the mutation locus and thus creates a BspH‐I site in the normal allele restriction. 

Primers FMF9 and FMF8 are used for PCR amplifica on. The BspH‐I restriction site yields a 

130‐bp and a 19‐bp fragment for the normal allele whereas the mutant allele gives a 149‐bp 

uncut fragment. 

 

M694I

Reaction Components: 

Reagent  Amount  Final concentration 

2X Master Mix  7.5 µl  1X 

FMF9 (5 µM)  1.0 µ1  0.325 µM 

FMF8 (5 µM)  1.0 µ1  0.325 µM 

H2O  4.5 µl    

DNA  1 µl    

Total  15 µl    

 

Page 27: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

27 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

Cycling Conditions:     

One Cycle:       

   95˚C  5 min. 

35 Cycles: 

95˚C  45 sec. 

55˚C  30 sec. 

72˚C  1 min. 

One cycle:  72˚C  10 min. 

 

M694I 

BspH‐I Restriction reaction 

Reagents  Amount  Final 

Enzyme BspH‐I  (10 U/l)  0.5 µl  0.25U/l 

Water  7.5 l    

NEBuffer 4 (10X)  2.0 µl  1X 

PCR product  10 l    

TOTAL  20 l    

Incubate at 37˚C for 1 hour 

mutant allele:   149‐bp 

normal allele:   130‐bp + 19‐bp 

 

The M680I variant abolishes a na ve Hinf‐I restriction site. The mutation is distinguished by 

primers p12.2 and met1. The Hinf‐I restriction site yields a 124‐bp and a 60‐bp fragment for 

the normal allele whereas the mutant allele gives a 184‐bp uncut fragment.  

M680I

Reaction Components:     

Reagent  Amount  Final concentration 

2X Master Mix  7.5 µl  1X 

p12.2 (5 µM)  1.0 µ1  0.325 µM 

met1 (5 µM)  1.0 µ1  0.325 µM 

H2O  4.5 µl    

DNA  1 µl    

Total  15 µl    

 

Cycling Conditions:     

One Cycle:       

   95˚C  5 min. 

35 Cycles: 

95˚C  1 min. 

55˚C  1.5 min. 

72˚C  1 min. 

One cycle:  72˚C  10 min. 

 

Page 28: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

28 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

M680I 

Hinf‐I Restriction reaction 

Reagents  Amount  Final 

Enzyme Hinf‐I (10 U/l)  0.5 µl  0.25U/l 

Water  7.5 l    

NEBuffer 4 (10X)  2.0 µl  1X 

PCR product  10 l    

TOTAL  20 l    

Incubate at 37˚C for 1 hour 

mutant allele:   184‐bp 

normal allele:   124‐bp + 60‐bp 

 

The E148Q muta on is detected by amplifica on of the region using the EQF and EQR primers. 

The mutation  creates    a  new MvaI  (BstNI)  restriction  site  in  the  amplified  fragment.  The 

mutant allele will yield 92 bp and 65 bp restric on fragments while the uncut normal allele 

will yield a 157 bp fragment. 

 

 

E148Q

Reaction Components: 

Reagent  Amount Final 

concentration 

2X Master Mix  7.5 µl  1X 

EQF (5 µM)  1.0 µ1  0.325 µM 

EQR (5 µM)  1.0 µ1  0.325 µM 

H2O  4.5 µl    

DNA  1 µl    

Total  15 µl    

 

Cycling Conditions: 

One Cycle:       

   95˚C  5 min. 

35 Cycles: 

95˚C  30 sec. 

60˚C  30 sec. 

72˚C  30 sec. 

One cycle:  72˚C  10 min. 

 

 

 

 

Page 29: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

29 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

E148Q 

MvaI (BstNI) Restriction reaction 

Reagents  Amount  Final 

Enzyme MvaI (BstNI) (10 U/l) 0.5 µl  0.25U/l 

Water  7.5 l    

Buffer R (10X)  2.0 µl  1X 

PCR product  10 l    

TOTAL  20 l    

Incubate at 37˚C for 1 hour 

mutant allele:   92‐bp + 65‐bp 

normal allele:   157‐bp 

 

The  products are preferentially separated on 8% nondenatura ng polyacrylamide gel, or 3% 

Agarose gels stained by ethidium bromide, and visualized under an ultraviolet lamp 

 

References; 

1. Brik  R.,  Shinawi  M.,    Kepten  I.,  Berant  M.,  And  Gershoni‐Baruch  R.  Familial Mediterranean  Fever:  Clinical  And  Genetic  Characterization  In  A  Mixed  Pediatric Population Of Jewish And Arab Patients. (1999) Pediatrics, 103(5).  

2. Iffet Sahin, F., Yilmaz, Z.,   Erkan Yurtcu, E., And Esra Baskin, E. Comparison Of The Results Of PCR‐RFLP And Reverse Hybridization Methods Used In Molecular Diagnosis Of FMF.(2008) Genetic Testing, 12(1).  

Page 30: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

30 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

6.  AgaroseGelElectrophoresis: 

Agarose gel electrophoresis is a simple and highly effective method for separating, 

iden fying, and purifying 0.5‐ to 25‐kb DNA fragments. 

The protocol can be divided into three stages: (1) a gel is prepared with an agarose 

concentra on appropriate for the size of DNA fragments to be separated; (2) the DNA 

samples are loaded into the sample wells and the gel is run at a voltage and for a time 

period that will achieve op mal separa on; and (3) the gel is stained or, if ethidium bromide 

has been incorporated into the gel and electrophoresis buffer, visualized directly upon 

illumination with UV light. 

RESOLUTIONOFDNAFRAGMENTSONSTANDARDAGAROSEGELSMaterials

Electrophoresis buffer (TAE or TBE) TAE (Tris/acetate/EDTA) electrophoresis buffer 

50× stock solu on: 

242 g Tris base 

57.1 ml glacial ace c acid 

37.2 g Na2EDTA⋅2H2O 

H2O to 1 liter 

TBE (Tris/borate/EDTA) electrophoresis buffer 

10× stock solu on, 1 liter: 

108 g Tris base (890 mM) 

55 g boric acid (890 mM) 

40 ml 0.5 M EDTA, pH 8.0 (Dissolve 186.1 g Na2EDTA⋅2H2O in 700 ml H2O, Adjust pH to 8.0 with 10 M NaOH (∼50 ml), Add 

H2O to 1 liter) 

Ethidium bromide solution (10mg/ml) 

Working solu on, 0.5 g/ml: 

Dilute stock 5l for 100 ml gels or stain solution 

Protect from light. 

Electrophoresis‐grade agarose 

10× loading buffer 20% Ficoll 400 

0.1 M disodium EDTA, pH 8 (APPENDIX 2) 

1.0% sodium dodecyl sulfate 

0.25% bromphenol blue 

0.25% xylene cyanol (op onal; runs ¡«50% as fast as bromphenol blue 

and can interfere with visualization of bands of moderate molecular 

weight, but can be helpful for monitoring very long runs) 

Page 31: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

31 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

DNA molecular weight markers To prepare loading mixutres:  

Distilled water ‐ 4 μl 

6X Blue Loading Dye ‐ 1 μl 

DNA Ladder ‐ 1 μl 

Total volume ‐ 6 μl 

Mix gently 

Load onto the agarose gel 

  100 bp DNA Ladder visualized by 

ethidium bromide staining on a 1.3% 

TAE agarose gel. Mass values are for 

0.5 µg/lane. 

55°C water bath 

Horizontal gel electrophoresis apparatus 

Gel casting platform 

Gel combs 

      DC power supply 

Preparingthegel1. Prepare an adequate volume of electrophoresis buffer (TAE or TBE) to fill the 

electrophoresis tank and prepare the gel. To facilitate visualization of DNA fragments during the run, ethidium bromide 

solution can be added to the electrophoresis buffer to a final concentration of 

0.5 mg/ml.  

If buffer is prepared for the electrophoresis tank and the gel separately, be sure 

to bring both to an identical concentration of ethidium bromide.  

CAUTION: Ethidium bromide is a mutagen and potential carcinogen. Gloves 

should be worn and care should be taken when handling ethidium bromide 

solutions. 

Page 32: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

32 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

2. Add  the  desired  amount  of  electrophoresis‐grade  agarose  to  a  volume  of electrophoresis buffer sufficient for construc ng the gel (see Table 1). Melt the agarose  in a microwave oven or autoclave and swirl to ensure even mixing. Gels typically contain 0.8 to 1.5% agarose. 

Melted agarose should be cooled to 55°C in a water bath before pouring onto 

the gel platform. This prevents warping of the gel apparatus.  

Gels are typically poured between 0.5 and 1 cm thick. Remember to keep in 

mind that the volume of the sample/wells will be determined by both the 

thickness of the gel and the size of the gel comb 

Table 1. Appropriate Agarose 

Concentrations for Separating DNA 

Fragmentsof Various Sizes 

Agarose (%) 

Effective range of 

resolution of linear 

DNA fragments (kb) 

0.5  30 to 1 

0.7  12 to 0.8 

1.0  10 to 0.5 

1.2  7 to 0.4 

1.5  3 to 0.2 

3. Seal the gel casting platform if it is open at the ends. Pour in the melted agarose and insert the gel comb, making sure that no bubbles are trapped underneath the combs and all bubbles on the surface of the agarose are removed before the gel sets. 

Most gel platforms are sealed by taping the open ends with adhesive tape. As 

an added measure to prevent leakage, hot agarose can be applied with a 

Pasteur pipet to the joints 

and edges of the gel platform and allowed to harden. 

 

 

 

Page 33: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

33 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

Loadingandrunningthegel4. After the gel has hardened, remove the tape from the open ends of the gel 

platform and withdraw the gel comb, taking care not to tear the sample wells. Most gel pla orms are designed so that 0.5 to 1 mm of agarose remains 

between the bottom of the comb and the base of the gel platform. This is 

usually sufficient to ensure that the sample wells are completely sealed 

and to prevent tearing of the agarose upon removal of the comb. Low 

percentage gels and gels made from low gelling/melting temperature 

agarose should be cooled at 4°C to gain extra rigidity and prevent 

tearing. 

5. Place  the gel  casting platform  containing  the  set gel  in  the electrophoresis tank. Add sufficient electrophoresis buffer to cover the gel to a depth of about 1 mm  (or  just un l  the  tops of  the wells are submerged). Make sure no air pockets are trapped within the wells. 

6. DNA samples should be prepared  in a volume that will not overflow the gel wells by addi on of the appropriate amount of 6× loading buffer. Samples are typically  loaded  into  the wells with  a micropipet.  Care  should  be  taken  to prevent mixing of the samples between wells. 

Be sure to include appropriate DNA molecular weight markers. 

 

7. Be sure that the leads are attached so that the DNA will migrate into the gel toward the anode or positive lead. Set the voltage to the desired level, typically 1 to 10 V/cm of gel, to begin electrophoresis. The progress of the separation can be monitored by the migration of the dyes in the loading buffer. 

CAUTION: To prevent electrical shocks, the gel apparatus should always 

be covered and kept away from heavily used work spaces. 

 

Page 34: Medicall genetics lab manual وراثة عملي

AL Aqsa university     Medical Technology department 

34 

Medical Genetics   2014‐2015  Dr. Basim M. Ayesh  

8. Turn off the power supply when the bromphenol blue dye from the  loading buffer has migrated a distance  judged  sufficient  for  separation of  the DNA fragments. If ethidium bromide has been incorporated into the gel, the DNA can be visualized by placing on a UV  light source and can be photographed directly. 

Gels that have been run in the absence of ethidium bromide can be stained by 

covering the  �gel in a dilute solu on of ethidium bromide (0.5  g/ml in water) 

and gently agita ng for 10 to 30 min. If necessary, gels can be destained by 

shaking in water for an addi onal 30 min. This serves to remove excess ethidium 

bromide which causes background fluorescence and makes visualization of small 

quantities of DNA difficult. 

PHOTOGRAPHYOFDNAINAGAROSEGELSDNA can be photographed in agarose gels stained with ethidium bromide by 

illumination with UV light (>2500 μW/cm2). A UV transilluminator is typically used 

for this purpose, and commercial models are available designed specifically for DNA 

visualization and photography. 

CAUTION: UV light is damaging to eyes and exposed skin. Protective eyewear 

should be worn at all times while using a UV light source. 

 

 

 

 

 

Page 35: Medicall genetics lab manual وراثة عملي

Wizard® Genomic DNA

Purifi cation Kit Instruc ons for use of ProductA1120 , A1123, A1125 AND A1620

T E C H N I C A L M A N U A L

Revised 12/10 TM050

Page 36: Medicall genetics lab manual وراثة عملي

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 1

1. Description ..........................................................................................................1

2. Product Components and Storage Conditions ............................................2

3. Protocols for Genomic DNA Isolation ..........................................................5A. Isolating Genomic DNA from Whole Blood

(300µl or 3ml Sample Volume)...........................................................................5B. Isolating Genomic DNA from Whole Blood

(10ml Sample Volume) ........................................................................................7C. Isolating Genomic DNA from Whole Blood

(96-Well Plate) .......................................................................................................9D. Isolating Genomic DNA from Tissue Culture Cells and

Animal Tissue .....................................................................................................11E. Isolating Genomic DNA from Plant Tissue ...................................................13F. Isolating Genomic DNA from Yeast................................................................14G. Isolating Genomic DNA from Gram Positive and

Gram Negative Bacteria ....................................................................................16

4. Troubleshooting...............................................................................................17

5. References .........................................................................................................18

6. Appendix ...........................................................................................................19A. Composition of Buffers and Solutions ............................................................19B. Related Products.................................................................................................19

1. Description

The Wizard® Genomic DNA Purification Kit is designed for isolation of DNAfrom white blood cells (Sections 3.A, B and C), tissue culture cells and animaltissue (Section 3.D), plant tissue (Section 3.E), yeast (Section 3.F), and Grampositive and Gram negative bacteria (Section 3.G). Table 1 lists the typical yieldfor DNA purified from each of these sources.

The Wizard® Genomic DNA Purification Kit is based on a four-step process (1).The first step in the purification procedure lyses the cells and the nuclei. Forisolation of DNA from white blood cells, this step involves lysis of the redblood cells in the Cell Lysis Solution, followed by lysis of the white blood cellsand their nuclei in the Nuclei Lysis Solution. An RNase digestion step may be

Wizard® Genomic DNAPurification Kit

All technical literature is available on the Internet at: www.promega.com/tbs/ Please visit the web site to verify that you are using the most current version of this

Technical Manual. Please contact Promega Technical Services if you have questions on useof this system. E-mail: [email protected].

Page 37: Medicall genetics lab manual وراثة عملي

included at this time; it is optional for some applications. The cellular proteinsare then removed by a salt precipitation step, which precipitates the proteinsbut leaves the high molecular weight genomic DNA in solution. Finally, thegenomic DNA is concentrated and desalted by isopropanol precipitation.

DNA purified with this system is suitable for a variety of applications,including amplification, digestion with restriction endonucleases and membranehybridizations (e.g., Southern and dot/slot blots).

2. Product Components and Storage Conditions

Small-Scale Isolation (minipreps)

Product Size Cat.#Wizard® Genomic DNA Purification Kit 100 isolations A1120Each system contains sufficient reagents for 100 isolations of genomic DNA from 300µlof whole blood samples. Includes:

• 100ml Cell Lysis Solution• 50ml Nuclei Lysis Solution• 25ml Protein Precipitation Solution• 50ml DNA Rehydration Solution• 250µl RNase Solution

Product Size Cat.#Wizard® Genomic DNA Purification Kit 500 isolations A1125Each system contains sufficient reagents for 500 isolations of genomic DNA from 300µlof whole blood samples. Includes:

• 500ml Cell Lysis Solution• 250ml Nuclei Lysis Solution• 125ml Protein Precipitation Solution• 100ml DNA Rehydration Solution• 1.25ml RNase Solution

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 2

Page 38: Medicall genetics lab manual وراثة عملي

Large-Scale Isolation (maxiprep)Product Size Cat.#Wizard® Genomic DNA Purification Kit 100 isolations A1620Each system contains sufficient reagents for 100 isolations of genomic DNA from 10mlof whole blood samples. Includes:

• 3L Cell Lysis Solution• 1L Nuclei Lysis Solution• 350ml Protein Precipitation Solution• 150ml DNA Rehydration Solution

Note: Cat.# A1620 does not include RNase Solution.

Items Available SeparatelyProduct Size Cat.#Cell Lysis Solution 1L A7933Nuclei Lysis Solution 1L A7943Protein Precipitation Solution 350ml A7953DNA Rehydration Solution 50ml A7963RNase A (4mg/ml) 1ml A7973

Storage Conditions: Store the Wizard® Genomic DNA Purification Kit at roomtemperature (22–25°C). See product label for expiration date.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 3

Page 39: Medicall genetics lab manual وراثة عملي

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 4

Species and MaterialAmount ofStarting Material

Typical DNAYield

RNaseTreatment

Human Whole Blood(Yield depends on thequantity of white bloodcells present)

96-well plate (Process as little as20µl/well; see Table 2.)

300µl1.0ml10.0ml50µl/well

5–15µg25–50µg250–500µg0.2–0.7µg

OptionalOptionalOptionalOptional

Mouse Whole BloodEDTA (4%) treatedHeparin (4%) treated96-well plate

300µl300µl50µl/well

6µg6–7µg0.2–0.7µg

OptionalOptionalOptional

Cell LinesK562 (human)COS (African green

monkey)NIH3T3 (mouse)PC12 (rat pheo-

chromocytoma)CHO (hamster)

3 × 106 cells

1.5 × 106 cells2.25 × 106 cells

8.25 × 106 cells1–2 × 106 cells

15–30µg

10µg9.5–12.5µg

6µg6–7µg

Required

RequiredRequired

RequiredRequired

Animal TissueMouse LiverMouse Tail

11mg0.5–1.0cm of tail

15–20µg10–30µg

RequiredOptional

InsectsSf9 cells 5 × 106 cells 16µg RequiredPlant TissueTomato Leaf 40mg 7–12µg RequiredGram Negative BacteriaEscherichia coli JM109

overnight culture, ~2 × 109 cells/ml

Enterobacter cloacaeovernight culture,~6 × 109 cells/ml

1ml5ml

1ml5ml

20µg75–100µg

20µg75–100µg

RequiredRequired

RequiredRequired

Gram Positive BacteriaStaphylococcus epidermis

overnight culture, ~3.5 × 108 cells/ml

1ml 6–13µg Required

YeastSaccharomyces cerevisiae

overnight culture, ~1.9 × 108 cells/ml

1ml 4.5–6.5µg Required

Table 1. DNA Yields from Various Starting Materials.

Page 40: Medicall genetics lab manual وراثة عملي

3. Protocols for Genomic DNA Isolation

We tested the purification of genomic DNA from fresh whole blood collected inEDTA, heparin and citrate anticoagulant tubes and detected no adverse effectsupon subsequent manipulations of the DNA, including PCR (2). Anticoagulantblood samples may be stored at 2–8°C for up to two months, but DNA yieldwill be reduced with increasing length of storage.

The protocol in Section 3.A has been designed and tested for blood samples upto 3ml in volume. The protocol in Section 3.B has been designed and tested forblood samples up to 10ml in volume. The yield of genomic DNA will varydepending on the quantity of white blood cells present. Frozen blood may beused in the following protocols, but yield may be lower than that obtainedusing fresh blood, and additional Cell Lysis Solution may be required.

Caution: When handling blood samples (Sections 3.A, B and C), followrecommended procedures at your institution for biohazardous materials or seereference 3.

3.A. Isolating Genomic DNA from Whole Blood (300µl or 3ml Sample Volume)

Materials to Be Supplied by the User

• sterile 1.5ml microcentrifuge tubes (for 300µl blood samples)• sterile 15ml centrifuge tubes (for 3ml blood samples)• water bath, 37°C• isopropanol, room temperature• 70% ethanol, room temperature• water bath, 65°C (optional, for rapid DNA rehydration)

1. For 300µl Sample Volume: Add 900µl of Cell Lysis Solution to a sterile1.5ml microcentrifuge tube.

For 3ml Sample Volume: Add 9.0ml of Cell Lysis Solution to a sterile 15mlcentrifuge tube.

Important: Blood must be collected in EDTA, heparin or citrateanticoagulant tubes to prevent clotting.

2. Gently rock the tube of blood until thoroughly mixed; then transfer blood tothe tube containing the Cell Lysis Solution. Invert the tube 5–6 times to mix.

3. Incubate the mixture for 10 minutes at room temperature (invert 2–3 timesonce during the incubation) to lyse the red blood cells. Centrifuge at13,000–16,000 × g for 20 seconds at room temperature for 300µl sample.Centrifuge at 2,000 × g for 10 minutes at room temperature for 3ml sample.

4. Remove and discard as much supernatant as possible without disturbingthe visible white pellet. Approximately 10–20µl of residual liquid willremain in the 1.5ml tube (300µl sample). Approximately 50–100µl ofresidual liquid will remain in the 15ml tube (3ml sample).

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 5

!

Page 41: Medicall genetics lab manual وراثة عملي

If blood sample has been frozen, repeat Steps 1–4 until pellet is white. Theremay be some loss of DNA from frozen samples.Note: Some red blood cells or cell debris may be visible along with thewhite blood cells. If the pellet appears to contain only red blood cells, addan additional aliquot of Cell Lysis Solution after removing the supernatantabove the cell pellet, and then repeat Steps 3–4.

5. Vortex the tube vigorously until the white blood cells are resuspended(10–15 seconds).

Completely resuspend the white blood cells to obtain efficient cell lysis.

6. Add Nuclei Lysis Solution (300µl for 300µl sample volume; 3.0ml for 3mlsample volume) to the tube containing the resuspended cells. Pipet thesolution 5–6 times to lyse the white blood cells. The solution should becomevery viscous. If clumps of cells are visible after mixing, incubate thesolution at 37°C until the clumps are disrupted. If the clumps are still visibleafter 1 hour, add additional Nuclei Lysis Solution (100µl for 300µl samplevolume; 1.0ml for 3ml sample volume) and repeat the incubation.

7. Optional: Add RNase Solution (1.5µl for 300µl sample volume; 15µl for 3mlsample volume) to the nuclear lysate, and mix the sample by inverting thetube 2–5 times. Incubate the mixture at 37°C for 15 minutes, and then coolto room temperature.

8. Add Protein Precipitation Solution (100µl for 300µl sample volume; 1.0mlfor 3ml sample volume) to the nuclear lysate, and vortex vigorously for10–20 seconds. Small protein clumps may be visible after vortexing.Note: If additional Nuclei Lysis Solution was added in Step 6, add a total of130µl Protein Precipitation Solution for 300µl sample volume and 1.3mlProtein Precipitation Solution for 3ml sample volume.

9. Centrifuge at 13,000–16,000 × g for 3 minutes at room temperature for 300µlsample volume. Centrifuge at 2,000 × g for 10 minutes at room temperaturefor 3ml sample volume.

A dark brown protein pellet should be visible. If no pellet is observed, referto Section 4.

10. For 300µl sample volume, transfer the supernatant to a clean 1.5mlmicrocentrifuge tube containing 300µl of room-temperature isopropanol.For 3ml sample volume, transfer the supernatant to a 15ml centrifuge tubecontaining 3ml room-temperature isopropanol.Note: Some supernatant may remain in the original tube containing theprotein pellet. Leave this residual liquid in the tube to avoid contaminatingthe DNA solution with the precipitated protein.

11. Gently mix the solution by inversion until the white thread-like strands ofDNA form a visible mass.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 6

!

Page 42: Medicall genetics lab manual وراثة عملي

12. Centrifuge at 13,000–16,000 × g for 1 minute at room temperature for 300µlsample. Centrifuge at 2,000 × g for 1 minute at room temperature for 3mlsample. The DNA will be visible as a small white pellet.

13. Decant the supernatant, and add one sample volume of room temperature70% ethanol to the DNA. Gently invert the tube several times to wash theDNA pellet and the sides of the microcentrifuge tube. Centrifuge as in Step 12.

14. Carefully aspirate the ethanol using either a drawn Pasteur pipette or asequencing pipette tip. The DNA pellet is very loose at this point and caremust be used to avoid aspirating the pellet into the pipette. Invert the tubeon clean absorbent paper and air-dry the pellet for 10–15 minutes.

15. Add DNA Rehydration Solution (100µl for 300µl sample volume; 250µl for3ml sample volume) to the tube and rehydrate the DNA by incubating at65°C for 1 hour. Periodically mix the solution by gently tapping the tube.Alternatively, rehydrate the DNA by incubating the solution overnight atroom temperature or at 4°C.

16. Store the DNA at 2–8°C.

3.B. Isolating Genomic DNA from Whole Blood (10ml Sample Volume)

A large-scale kit is available for processing up to 1 liter of whole blood (Cat.#A1620). This kit does not include RNase Solution since the RNase digestionstep is optional. RNase A solution (4mg/ml) is available as a separate item(Cat.# A7973). If it is needed, a total of 5ml of RNase A solution is required toprocess 1 liter of blood.

Materials to Be Supplied by the User• sterile 50ml centrifuge tubes• water bath, 37°C• isopropanol, room temperature• 70% ethanol, room temperature• water bath, 65°C (optional; for rapid DNA rehydration)

1. For 10ml whole blood samples: Add 30ml of Cell Lysis Solution to a sterile50ml centrifuge tube.

Important: Blood must be collected in EDTA, heparin or citrateanticoagulant tubes to prevent clotting.

2. Gently rock the tube of blood until thoroughly mixed; then transfer 10ml ofblood to the tube containing the Cell Lysis Solution. Invert the tube 5–6times to mix.

3. Incubate the mixture for 10 minutes at room temperature (invert 2–3 timesonce during the incubation) to lyse the red blood cells. Centrifuge at 2,000 × g for 10 minutes at room temperature.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 7

!

Page 43: Medicall genetics lab manual وراثة عملي

4. Remove and discard as much supernatant as possible without disturbingthe visible white pellet. Approximately 1.4ml of residual liquid will remain.

If blood sample has been frozen, add an additional 30ml of Cell LysisSolution, invert 5–6 times to mix, and repeat Steps 3–4 until pellet is nearlywhite. There may be some loss of DNA in frozen samples.Note: Some red blood cells or cell debris may be visible along with thewhite blood cells. If the pellet appears to contain only red blood cells, addan additional aliquot of Cell Lysis Solution after removing the supernatantabove the cell pellet, and then repeat Steps 3–4.

5. Vortex the tube vigorously until the white blood cells are resuspended(10–15 seconds).

Completely resuspend the white blood cells to obtain efficient cell lysis.

6. Add 10ml of Nuclei Lysis Solution to the tube containing the resuspendedcells. Pipet the solution 5–6 times to lyse the white blood cells. The solutionshould become very viscous. If clumps of cells are visible after mixing,incubate the solution at 37°C until the clumps are disrupted. If the clumpsare still visible after 1 hour, add 3ml of additional Nuclei Lysis Solution andrepeat the incubation.

7. Optional: Add RNase A, to a final concentration of 20µg/ml, to the nuclearlysate and mix the sample by inverting the tube 2–5 times. Incubate themixture at 37°C for 15 minutes, and then cool to room temperature.

8. Add 3.3ml of Protein Precipitation Solution to the nuclear lysate, and vortexvigorously for 10–20 seconds. Small protein clumps may be visible aftervortexing.Note: If additional Nuclei Lysis Solution was added in Step 6, add 4ml ofProtein Precipitation Solution (instead of 3.3ml).

9. Centrifuge at 2,000 × g for 10 minutes at room temperature.

A dark brown protein pellet should be visible. If no pellet is observed, referto Section 4.

10. Transfer the supernatant to a 50ml centrifuge tube containing 10ml of roomtemperature isopropanol.Note: Some supernatant may remain in the original tube containing theprotein pellet. Leave the residual liquid in the tube to avoid contaminatingthe DNA solution with the precipitated protein.

11. Gently mix the solution by inversion until the white thread-like strands ofDNA form a visible mass.

12. Centrifuge at 2,000 × g for 1 minute at room temperature. The DNA will bevisible as a small white pellet.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 8

!

Page 44: Medicall genetics lab manual وراثة عملي

13. Decant the supernatant and add 10ml of room temperature 70% ethanol tothe DNA. Gently invert the tube several times to wash the DNA pellet andthe sides of the centrifuge tube. Centrifuge as in Step 12.

14. Carefully aspirate the ethanol. The DNA pellet is very loose at this pointand care must be used to avoid aspirating the pellet into the pipette. Air-dry the pellet for 10–15 minutes.

15. Add 800µl of DNA Rehydration Solution to the tube, and rehydrate theDNA by incubating at 65°C for 1 hour. Periodically mix the solution bygently tapping the tube. Alternatively, rehydrate the DNA by incubatingthe solution overnight at room temperature or at 4°C.

16. Store the DNA at 2–8°C.

3.C. Isolating Genomic DNA from Whole Blood (96-well plate)

This protocol can be scaled to 20µl, 30µl or 40µl of blood. Table 2 outlines thevarious solution volumes used in each step. Fifty-microliter preps generallyyield genomic DNA in the range of 0.2–0.7µg, depending upon the number ofleukocytes in the blood sample.

Materials to Be Supplied by the User• V-bottom 96-well plate(s) able to hold 300µl volume/well (Costar® Cat.# 3896)• isopropanol, room temperature• 70% ethanol, room temperature• 96-well plate sealers (Costar® Cat.# 3095) (optional; for use with human

blood)

1. Add 150µl Cell Lysis Solution to each well.

Important: Blood must be collected in EDTA, heparin or citrateanticoagulant tubes.

2. Add 50µl of fresh blood to each well and pipet 2–3 times to mix.

3. Leave the plate at room temperature for 10 minutes, pipetting the solutiontwice during the incubation to help lyse the red blood cells.

4. Centrifuge at 800 × g for 5 minutes in a tabletop centrifuge to concentratethe cells.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 9

Sample

Cell LysisSolution(RBC Lysis)

Nuclei LysisSolution

ProteinPrecipitationSolution Isopropanol

DNARehydrationSolution

20µl 60µl 20µl 6.7µl 20µl 10µl30µl 90µl 30µl 10µl 30µl 15µl40µl 120µl 40µl 13.3µl 40µl 20µl50µl 150µl 50µl 16.5µl 50µl 25µl

Table 2. Volumes of Reagents Required for Various Starting Amounts of Blood.

!

Page 45: Medicall genetics lab manual وراثة عملي

5. Carefully remove and discard as much of the supernatant as possible with amicropipette tip, leaving a small pellet of white cells and some red bloodcells. The use of an extended pipette tip, such as a gel loading tip, isrecommended. Tilting the 96-well plate 50–80° (depending on the amountof liquid present per well) allows more thorough removal of liquid from thewell.

6. Add 50µl of Nuclei Lysis Solution to each well and pipet 5–6 times toresuspend the pellet and lyse the white blood cells. The solution shouldbecome more viscous. As an aid in DNA pellet visualization, 2µl per well ofa carrier (e.g., Polyacryl Carrier [Molecular Research Center, Inc., Cat.#PC152]) can be added at this step. DNA yields are generally equivalent withor without carrier use.

7. Add 16.5µl of Protein Precipitation Solution per well and pipet 5–6 times to mix.

8. Centrifuge at 1,400 × g for 10 minutes at room temperature. A brownprotein pellet should be visible. If no pellet is visible, refer to Section 4.

9. DNA Precipitation/Rehydration in 96-Well Plate

a. Carefully transfer the supernatants to clean wells containing 50µl per wellof room temperature isopropanol and mix by pipetting.

Note: Some of supernatant may remain in the original well containing theprotein pellet. Leave this residual liquid in the well to avoid contaminatingthe DNA solution with the precipitated protein. As in Step 5, tilting theplate will facilitate removal of liquid from the well. Using an extendedpipette tip in this step does not allow easy sample mixing with isopropanol.

b. Centrifuge at 1,400 × g for 10 minutes. Carefully remove the isopropanol with a micropipette tip.

c. Add 100µl of room temperature 70% ethanol per well.

d. Centrifuge at 1,400 × g for 10 minutes at room temperature.

e. Carefully aspirate the ethanol using either a drawn Pasteur pipette or a sequencing pipette tip. Care must be taken to avoid aspirating the DNA pellet. Place the tray at a 30–45° angle and air-dry for 10–15 minutes.

f. Add 25µl of DNA Rehydration Solution to each well. Allow the DNA torehydrate overnight at room temperature or at 4°C.

g. Store the DNA at 2–8°C.Note: Small volumes of DNA can be easily collected at the bottom of a V-well by briefly centrifuging the 96-well plate before use.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 10

Page 46: Medicall genetics lab manual وراثة عملي

3.D. Isolating Genomic DNA from Tissue Culture Cells and Animal Tissue

Materials to Be Supplied by the User• 1.5ml microcentrifuge tubes• 15ml centrifuge tubes• small homogenizer (Fisher Tissue Tearor, Cat.# 15-338-55, or equivalent)

(for animal tissue)• trypsin (for adherent tissue culture cells only)• PBS• liquid nitrogen (for mouse tail) (optional; for freeze-thaw, Step 1.d, and for

tissue grinding, Step 2.b, in place of small homogenizer)• mortar and pestle (optional; for tissue grinding, Step 2.b, in place of small

homogenizer)• 95°C water bath (optional; for freeze-thaw, Step 1.d)• water bath, 37°C• isopropanol, room temperature• 70% ethanol, room temperature• water bath, 65°C (optional; for rapid DNA rehydration)• 0.5M EDTA (pH 8.0) (for mouse tail)• Proteinase K (20mg/ml in water; Cat.# V3021) (for mouse tail)

1. Tissue Culture Cells

a. Harvest the cells, and transfer them to a 1.5ml microcentrifuge tube. Foradherent cells, trypsinize the cells before harvesting.

b. Centrifuge at 13,000–16,000 × g for 10 seconds to pellet the cells.

c. Remove the supernatant, leaving behind the cell pellet plus 10–50µl ofresidual liquid.

d. Add 200µl PBS to wash the cells. Centrifuge as in Step 1.b, and removethe PBS. Vortex vigorously to resuspend cells.

Note: For cells that do not lyse well in Nuclei Lysis Solution alone (e.g.,PC12 cells), perform an additional freeze-thaw step as follows beforeproceeding to Step 1.e: Wash the cells as in Step 1.d; then freeze in liquidnitrogen. Thaw the cells by heating at 95°C. Repeat this procedure for atotal of 4 cycles.

e. Add 600µl of Nuclei Lysis Solution, and pipet to lyse the cells. Pipet untilno visible cell clumps remain.

f. Proceed to Section 3.D, Step 4.

2. Animal Tissue (Mouse Liver and Brain)

a. Add 600µl of Nuclei Lysis Solution to a 15ml centrifuge tube, and chillon ice.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 11

Page 47: Medicall genetics lab manual وراثة عملي

b. Add 10–20mg of fresh or thawed tissue to the chilled Nuclei Lysis Solutionand homogenize for 10 seconds using a small homogenizer. Transfer thelysate to a 1.5ml microcentrifuge tube. Alternatively, grind tissue in liquidnitrogen using a mortar and pestle that has been prechilled in liquidnitrogen. After grinding, allow the liquid nitrogen to evaporate and transferapproximately 10–20mg of the ground tissue to 600µl of Nuclei LysisSolution in a 1.5ml microcentrifuge tube.

c. Incubate the lysate at 65°C for 15–30 minutes.

d. Proceed to Section 3.D, Step 4.

3. Animal Tissue (Mouse Tail)

a. For each sample to be processed, add 120µl of a 0.5M EDTA solution (pH8.0) to 500µl of Nuclei Lysis Solution in a centrifuge tube. Chill on ice.Note: The solution will turn cloudy when chilled.

b. Add 0.5–1cm of fresh or thawed mouse tail to a 1.5ml microcentrifuge tube.Note: The tissue may be ground to a fine powder in liquidnitrogen using a mortar and pestle that has been prechilled in liquidnitrogen. Then transfer the powder to a 1.5ml microcentrifuge tube.

c. Add 600µl of EDTA/Nuclei Lysis Solution from Step 3.a to the tube.

d. Add 17.5µl of 20mg/ml Proteinase K.

e. Incubate overnight at 55°C with gentle shaking. Alternatively, perform a3-hour 55°C incubation (with shaking); vortex the sample once per hour ifperforming a 3-hour incubation. Make sure the tail is completelydigested.

4. Optional for mouse tail: Add 3µl of RNase Solution to the nuclear lysateand mix the sample by inverting the tube 2–5 times. Incubate the mixturefor 15–30 minutes at 37°C. Allow the sample to cool to room temperaturefor 5 minutes before proceeding.

5. To the room temperature sample, add 200µl of Protein Precipitation Solution and vortex vigorously at high speed for 20 seconds. Chill sampleon ice for 5 minutes.

6. Centrifuge for 4 minutes at 13,000–16,000 × g. The precipitated protein willform a tight white pellet.

7. Carefully remove the supernatant containing the DNA (leaving the proteinpellet behind) and transfer it to a clean 1.5ml microcentrifuge tubecontaining 600µl of room temperature isopropanol.Note: Some supernatant may remain in the original tube containing theprotein pellet. Leave this residual liquid in the tube to avoid contaminatingthe DNA solution with the precipitated protein.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 12

Page 48: Medicall genetics lab manual وراثة عملي

8. Gently mix the solution by inversion until the white thread-like strands ofDNA form a visible mass.

9. Centrifuge for 1 minute at 13,000–16,000 × g at room temperature. TheDNA will be visible as a small white pellet. Carefully decant thesupernatant.

10. Add 600µl of room temperature 70% ethanol, and gently invert the tubeseveral times to wash the DNA. Centrifuge for 1 minute at 13,000–16,000 × gat room temperature.

11. Carefully aspirate the ethanol using either a drawn Pasteur pipette or asequencing pipette tip. The DNA pellet is very loose at this point, and caremust be used to avoid aspirating the pellet into the pipette.

12. Invert the tube on clean absorbent paper, and air-dry the pellet for 10–15minutes.

13. Add 100µl of DNA Rehydration Solution, and rehydrate the DNA byincubating at 65°C for 1 hour. Periodically mix the solution by gentlytapping the tube. Alternatively, rehydrate the DNA by incubating thesolution overnight at room temperature or at 4°C.

14. Store the DNA at 2–8°C.

3.E. Isolating Genomic DNA from Plant Tissue

Materials to Be Supplied by the User• 1.5ml microcentrifuge tubes• microcentrifuge tube pestle or mortar and pestle• water bath, 65°C• water bath, 37°C• isopropanol, room temperature• 70% ethanol, room temperature

1. Leaf tissue can be processed by freezing with liquid nitrogen and grindinginto a fine powder using a microcentrifuge tube pestle or a mortar andpestle. Add 40mg of this leaf powder to a 1.5ml microcentrifuge tube.

2. Add 600µl of Nuclei Lysis Solution, and vortex 1–3 seconds to wet thetissue.

3. Incubate at 65°C for 15 minutes.

4. Add 3µl of RNase Solution to the cell lysate, and mix the sample by invertingthe tube 2–5 times. Incubate the mixture at 37°C for 15 minutes. Allow thesample to cool to room temperature for 5 minutes before proceeding.

5. Add 200µl of Protein Precipitation Solution, and vortex vigorously at highspeed for 20 seconds.

6. Centrifuge for 3 minutes at 13,000–16,000 × g. The precipitated proteins willform a tight pellet.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 13

Page 49: Medicall genetics lab manual وراثة عملي

7. Carefully remove the supernatant containing the DNA (leaving the proteinpellet behind) and transfer it to a clean 1.5ml microcentrifuge tubecontaining 600µl of room temperature isopropanol.Note: Some supernatant may remain in the original tube containing theprotein pellet. Leave this residual liquid in the tube to avoid contaminatingthe DNA solution with the precipitated protein.

8. Gently mix the solution by inversion until thread-like strands of DNA forma visible mass.

9. Centrifuge at 13,000–16,000 × g for 1 minute at room temperature.

10. Carefully decant the supernatant. Add 600µl of room temperature 70%ethanol and gently invert the tube several times to wash the DNA.Centrifuge at 13,000–16,000 × g for 1 minute at room temperature.

11. Carefully aspirate the ethanol using either a drawn Pasteur pipette or asequencing pipette tip. The DNA pellet is very loose at this point and caremust be used to avoid aspirating the pellet into the pipette.

12. Invert the tube onto clean absorbent paper and air-dry the pellet for 15 minutes.

13. Add 100µl of DNA Rehydration Solution and rehydrate the DNA byincubating at 65°C for 1 hour. Periodically mix the solution by gentlytapping the tube. Alternatively, rehydrate the DNA by incubating thesolution overnight at room temperature or at 4°C.

14. Store the DNA at 2–8°C.

3.F. Isolating Genomic DNA from Yeast

Materials to Be Supplied by the User• 1.5ml microcentrifuge tubes• YPD broth• 50mM EDTA (pH 8.0)• 20mg/ml lyticase (Sigma Cat.# L2524)• water bath, 37°C• isopropanol, room temperature• 70% ethanol, room temperature• water bath, 65°C (optional; for rapid DNA rehydration)

1. Add 1ml of a culture grown for 20 hours in YPD broth to a 1.5ml microcentrifuge tube.

2. Centrifuge at 13,000–16,000 × g for 2 minutes to pellet the cells. Remove thesupernatant.

3. Resuspend the cells thoroughly in 293µl of 50mM EDTA.

4. Add 7.5µl of 20mg/ml lyticase and gently pipet 4 times to mix.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 14

Page 50: Medicall genetics lab manual وراثة عملي

5. Incubate the sample at 37°C for 30–60 minutes to digest the cell wall. Coolto room temperature.

6. Centrifuge the sample at 13,000–16,000 × g for 2 minutes and then removethe supernatant.

7. Add 300µl of Nuclei Lysis Solution to the cell pellet and gently pipet tomix.

8. Add 100µl of Protein Precipitation Solution and vortex vigorously at highspeed for 20 seconds.

9. Let the sample sit on ice for 5 minutes.

10. Centrifuge at 13,000–16,000 × g for 3 minutes.

11. Transfer the supernatant containing the DNA to a clean 1.5mlmicrocentrifuge tube containing 300µl of room temperature isopropanol.Note: Some supernatant may remain in the original tube containing theprotein pellet. Leave this residual liquid in the tube to avoid contaminatingthe DNA solution with the precipitated protein.

12. Gently mix by inversion until the thread-like strands of DNA form a visiblemass.

13. Centrifuge at 13,000–16,000 × g for 2 minutes.

14. Carefully decant the supernatant and drain the tube on clean absorbentpaper. Add 300µl of room temperature 70% ethanol and gently invert thetube several times to wash the DNA pellet.

15. Centrifuge at 13,000–16,000 × g for 2 minutes. Carefully aspirate all of theethanol.

16. Drain the tube on clean absorbent paper and allow the pellet to air-dry for10–15 minutes.

17. Add 50µl of DNA Rehydration Solution.

18. Add 1.5µl of RNase Solution to the purified DNA sample. Vortex thesample for 1 second. Centrifuge briefly in a microcentrifuge for 5 secondsto collect the liquid and incubate at 37°C for 15 minutes.

19. Rehydrate the DNA by incubating at 65°C for 1 hour. Periodically mix thesolution by gently tapping the tube. Alternatively, rehydrate the DNA by incubating the solution overnight at room temperature or at 4°C.

20. Store the DNA at 2–8°C.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 15

Page 51: Medicall genetics lab manual وراثة عملي

3.G. Isolating Genomic DNA from Gram Positive and Gram Negative Bacteria

Materials to Be Supplied by the User• 1.5ml microcentrifuge tubes• water bath, 80°C• water bath, 37°C• isopropanol, room temperature• 70% ethanol, room temperature• water bath, 65°C (optional; for rapid DNA rehydration)• 50mM EDTA (pH 8.0) (for gram positive bacteria)• 10mg/ml lysozyme (Sigma Cat.# L7651) (for gram positive bacteria)• 10mg/ml lysostaphin (Sigma Cat.# L7386) (for gram positive bacteria)

1. Add 1ml of an overnight culture to a 1.5ml microcentrifuge tube.

2. Centrifuge at 13,000–16,000 × g for 2 minutes to pellet the cells. Remove thesupernatant. For Gram Positive Bacteria, proceed to Step 3. For GramNegative Bacteria go directly to Step 6.

3. Resuspend the cells thoroughly in 480µl of 50mM EDTA.

4. Add the appropriate lytic enzyme(s) to the resuspended cell pellet in a totalvolume of 120µl, and gently pipet to mix. The purpose of this pretreatmentis to weaken the cell wall so that efficient cell lysis can take place.Note: For certain Staphylococcus species, a mixture of 60µl of 10mg/mllysozyme and 60µl of 10mg/ml lysostaphin is required for efficient lysis.However, many Gram Positive Bacterial Strains (e.g., Bacillus subtilis,Micrococcus luteus, Nocardia otitidiscaviarum, Rhodococcus rhodochrous, andBrevibacterium albidium) lyse efficiently using lysozyme alone.

5. Incubate the sample at 37°C for 30–60 minutes. Centrifuge for 2 minutes at13,000–16,000 × g and remove the supernatant.

6. Add 600µl of Nuclei Lysis Solution. Gently pipet until the cells areresuspended.

7. Incubate at 80°C for 5 minutes to lyse the cells; then cool to roomtemperature.

8. Add 3µl of RNase Solution to the cell lysate. Invert the tube 2–5 times to mix.

9. Incubate at 37°C for 15–60 minutes. Cool the sample to room temperature.

10. Add 200µl of Protein Precipitation Solution to the RNase-treated cell lysate.Vortex vigorously at high speed for 20 seconds to mix the ProteinPrecipitation Solution with the cell lysate.

11. Incubate the sample on ice for 5 minutes.

12. Centrifuge at 13,000–16,000 × g for 3 minutes.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 16

Page 52: Medicall genetics lab manual وراثة عملي

13. Transfer the supernatant containing the DNA to a clean 1.5mlmicrocentrifuge tube containing 600µl of room temperature isopropanol.Note: Some supernatant may remain in the original tube containing theprotein pellet. Leave this residual liquid in the tube to avoid contaminatingthe DNA solution with the precipitated protein.

14. Gently mix by inversion until the thread-like strands of DNA form a visiblemass.

15. Centrifuge at 13,000–16,000 × g for 2 minutes.

16. Carefully pour off the supernatant and drain the tube on clean absorbentpaper. Add 600µl of room temperature 70% ethanol and gently invert thetube several times to wash the DNA pellet.

17. Centrifuge at 13,000–16,000 × g for 2 minutes. Carefully aspirate theethanol.

18. Drain the tube on clean absorbent paper and allow the pellet to air-dry for10–15 minutes.

19. Add 100µl of DNA Rehydration Solution to the tube and rehydrate theDNA by incubating at 65°C for 1 hour. Periodically mix the solution bygently tapping the tube. Alternatively, rehydrate the DNA by incubatingthe solution overnight at room temperature or at 4°C.

20. Store the DNA at 2–8°C.

4. Troubleshooting

For questions not addressed here, please contact your local Promega Branch Office or Distributor.Contact information available at: www.promega.com. E-mail: [email protected]

Symptoms Comments

Blood clots present in The tube may have been stored improperly;blood samples the blood was not thoroughly mixed, or

inappropriate tubes were used for drawing blood. Discard the clotted blood and drawnew samples using EDTA-, heparin- or citrate-treated anticoagulant tubes.

Poor DNA yield The blood sample may contain too few whiteblood cells. Draw new blood samples.

The white blood cell pellet was not resuspendedthoroughly in Step 5 of Section 3.A or B. Thewhite blood cell pellet must be vortexed vigorously to resuspend the cells.

The blood sample was too old. Best yields areobtained with fresh blood. Samples that havebeen stored at 2–5°C for more than 5 days maygive reduced yields.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 17

Page 53: Medicall genetics lab manual وراثة عملي

4. Troubleshooting (continued)

Symptoms Comments

Poor DNA yield The DNA pellet was lost during isopropanol(continued) precipitation. Use extreme care when removing

the isopropanol to avoid losing the pellet.

Degraded DNA Improper collection or storage of the blood (<50kb in size) sample. Obtain a new sample under the proper

conditions.

Poor DNA yield using Cultures grown for an extended time containGram positive bacteria a high proportion of cells that lyse easily uponprotocol exposure to lysostaphin treatment. Start

purifications with a healthy culture.

No protein pellet The sample was not cooled to room temperaturebefore adding the Protein Precipitation Solution.Cool the sample to room temperature (at least5 minutes) or chill on ice for 5 minutes, vortex20 seconds, centrifuge for 3 minutes at 13,000–16,000 × g (10 minutes at 2,000 × g for 3mlsample volume) and proceed with the protocol.

The Protein Precipitation Solution was notthoroughly mixed with the nuclear lysate.Always mix the nuclear lysate and Protein Precipitation Solution completely.

DNA pellet difficult to dissolve Samples may have been overdried. RehydrateDNA by incubating 1 hour at 65°C, and thenleave the sample at room temperature or 4°Covernight. Caution: Do not leave the DNA at65°C overnight.

Samples were not mixed during the rehydrationstep. Remember to mix the samples periodicallyduring the rehydration step.

5. References

1. Miller, S.A., Dykes, D.D. and Polesky, H.F. (1988) A simple salting out procedure forextracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215.

2. Beutler, E., Gelbart, T. and Kuhl, W. (1990) Interference of heparin with thepolymerase chain reaction. BioTechniques 9, 166.

3. U.S. Department of Labor, Occupational Safety and Health Administration (1991)Occupational exposure to bloodborne pathogens, final rule. Federal Register 56, 64175.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 18

Page 54: Medicall genetics lab manual وراثة عملي

6. Appendix

6.A. Composition of Buffers and Solutions

6.B. Related Products

DNA Purification SystemsProduct Size Cat.#ReadyAmp™ Genomic DNA Purification System 100 reactions A7710Wizard® Plus SV Minipreps DNA Purification System 50 preps A1330Wizard® Plus SV Minipreps DNA Purification System + Miniprep Vacuum Adapters 50 preps A1340Wizard® Plus SV Minipreps DNA Purification System 250 preps A1460Wizard® Plus SV Minipreps DNA Purification System + Miniprep Vacuum Adapters 250 preps A1470Miniprep Vacuum Adapters 20 each A1331

DNA Amplification SystemsProduct Size Cat.#PCR Core System I 200 reactions M7660PCR Core System II 200 reactions M7665

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPrinted in USA. Part# TM050Revised 12/10 Page 19

DNA Rehydration Solution(provided)10mM Tris-HCl (pH 7.4)1mM EDTA (pH 8.0)

RNase ADissolve RNase A to 4mg/ml in DNARehydration Solution, boil 10 minutesto remove contaminating DNase andstore in aliquots at –20°C. This solutionis also available from Promega (Cat.#A7973).

Page 55: Medicall genetics lab manual وراثة عملي

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.comPart# TM050 Printed in USA.

Revised 12/10Page 20

© 2010 Promega Corporation. All Rights Reserved.Wizard is a registered trademark of Promega Corporation. ReadyAmp is a trademark of Promega Corporation.Costar is a registered trademark of Corning, Inc.Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for moreinformation.All prices and specifications are subject to change without prior notice.Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for themost up-to-date information on Promega products.

Page 56: Medicall genetics lab manual وراثة عملي

Printed in USA. Revised 10/10Part #9FB022

P R O T O C O LQuick

Blood

Transfer supernatantto new tube containingisopropanol.

Centrifuge.

Aspirate ethanol.Air-dry pellet.Rehydrate DNA.

Discard supernatant.Add ethanol.

Centrifuge.

Centrifuge.

Discard supernatant.Vortex pellet. Add Nuclei Lysis Solution.Mix. Add ProteinPrecipitation Solution.

Centrifuge.

Add Cell LysisSolution. Incubate.

•••••

•••

••

••••

••••

••

28

18

MA

11

_9

A

Isolation of Genomic DNA from Whole Blood

Wizard® Genomic DNA Purification KitINSTRUCTIONS FOR USE OF PRODUCTS A1120, A1123, A1125 AND A1620.

ORDERING / TECHNICAL INFORMATION:www.promega.com • Phone 608-274-4330 or 800-356-9526 • Fax 608-277-2601

©1999–2010 Promega Corporation. All Rights Reserved.

Lysis Protein DNASample Solution Precipitation RehydrationSize Cell Nuclei Solution Isopropanol Solution300µl 900µl 300µl 100µl 300µl 100µl

1ml 3ml 1ml 330µl 1ml 150µl3ml 9ml 3ml 1ml 3ml 250µl

10ml 30ml 10ml 3.3ml 10ml 800µlAs little as 20µl can be processed with this system. Please see Technical Manual #TM050, Section 3.C.

Red Blood Cell Lysis1. Using volumes from the table above, combine the appropriate volumes of

Cell Lysis Solution and blood. Mix by inversion.2. Incubate for 10 minutes at room temperature.3. Centrifuge:≤300µl sample 13,000–16,000 × g* ; 20 seconds1–10ml sample 2,000 × g ; 10 minutes

4. Discard supernatant. Vortex pellet.

Nuclei Lysis and Protein Precipitation5. Using volumes from the table above, add Nuclei Lysis Solution and mix by

inversion.6. Add Protein Precipitation Solution; vortex for 20 seconds.7. Centrifuge:≤300µl sample 13,000–16,000 × g*; 3 minutes1–10ml sample 2,000 × g; 10 minutes

DNA Precipitation and Rehydration8. Transfer supernatant to a new tube contaning isopropanol (using volumes

from table above). Mix.9. Centrifuge:≤300µl sample 13,000–16,000 × g*; 1 minute1–10ml sample 2,000 × g; 1 minute

10. Discard supernatant. Add 70% ethanol (same volume as isopropanol).11. Centrifuge as in Step 9.12. Aspirate the ethanol and air-dry the pellet (10–15 minutes).13. Rehydrate the DNA in the appropriate volume of DNA Rehydration Solution for

1 hour at 65°C or overnight at 4°C.*Maximum speed on a microcentrifuge.

Additional protocol information is available in Technical Manual #TM050,available online at: www.promega.com

Page 57: Medicall genetics lab manual وراثة عملي

Printed in USA. Revised 10/10Part #9FB022

Isolation of Genomic DNA from Animal Tissue and Tissue Culture Cells

Wizard® Genomic DNA Purification KitINSTRUCTIONS FOR USE OF PRODUCTS A1120, A1123, A1125 AND A1620. P R O T O C O LQuick

Cells or tissuewith Nuclei

Lysis Solution.

Transfersupernatantto new tubecontaining isopropanol.

Centrifuge.

Aspirate ethanol.Air-dry pellet.Rehydrate DNA.

Discardsupernatant.Add ethanol.

Centrifuge.

Centrifuge.

Add ProteinPrecipitationSolution.

Add RNaseSolution.Incubate at 37°C.

28

23

MA

11

_9

A

•••••

•••

••

••••

••••

••

Prepare TissuesTissue Culture Cells: Centrifuge at 13,000–16,000 × g* for 10 seconds.Wash the cell pellet with PBS, vortex and then add 600µl of Nuclei LysisSolution and mix by pipetting.Animal Tissue: Add 10–20mg of fresh or thawed tissue to 600µl of chilledNuclei Lysis Solution and homogenize for 10 seconds. Alternatively, use10–20mg of ground tissue. Incubate at 65°C for 15–30 minutes.Mouse Tail: Add 600µl of chilled EDTA/Nuclei Lysis Solution to 0.5–1cm offresh or thawed mouse tail. Add 17.5µl of 20mg/ml Proteinase K and incubateovernight at 55°C with gentle shaking.

Lysis and Protein Precipitation1. Add 3µl of RNase Solution to the cell or animal tissue nuclei lysate and mix.

Incubate for 15–30 minutes at 37°C. Cool to room temperature.2. Add 200µl of Protein Precipitation Solution. Vortex and chill on ice for

5 minutes.3. Centrifuge at 13,000–16,000 × g* for 4 minutes.

DNA Precipitation and Rehydration4. Transfer supernatant to a fresh tube containing 600µl of room temperature

isopropanol.5. Mix gently by inversion.6. Centrifuge at 13,000–16,000 × g* for 1 minute.7. Remove supernatant and add 600µl of room temperature 70% ethanol. Mix.8. Centrifuge as in Step 6.9. Aspirate the ethanol and air-dry the pellet for 15 minutes.

10. Rehydrate the DNA in 100µl of DNA Rehydration Solution for 1 hour at 65°Cor overnight at 4°C.

*Maximum speed on a microcentrifuge.

Additional protocol information is available in Technical Manual #TM050,available online at: www.promega.com

ORDERING / TECHNICAL INFORMATION:www.promega.com • Phone 608-274-4330 or 800-356-9526 • Fax 608-277-2601

©1999–2010 Promega Corporation. All Rights Reserved.

Page 58: Medicall genetics lab manual وراثة عملي

Printed in USA. Revised 10/10Part #9FB022

Isolation of Genomic DNA from Gram Positive and Gram Negative Bacteria

Wizard® Genomic DNA Purification KitINSTRUCTIONS FOR USE OF PRODUCTS A1120, A1123, A1125 AND A1620. P R O T O C O LQuick

•••••

•••

••

••••

••••

••ORDERING / TECHNICAL INFORMATION:www.promega.com • Phone 608-274-4330 or 800-356-9526 • Fax 608-277-2601

Transfer supernatant tonew tube containingisopropanol.

Centrifuge.

Aspirate ethanol.Air-dry pellet.Rehydrate DNA.

Discard supernatant.Add ethanol.

Centrifuge.

Centrifuge.

Add ProteinPrecipitationSolution.

Add Nuclei LysisSolution. Incubate at 80°C for 5 minutes,then add RNase solution and incubate.

Suspend in EDTA.Add lytic enzymes.

Gram –Pellet cells.

Gram +Pellet cells.

©1999–2010 Promega Corporation. All Rights Reserved.

Pellet CellsCentrifuge 1ml of overnight culture for 2 minutes at 13,000–16,000 × g*.Discard the supernatant.

A. For Gram Positive Bacteria1. Suspend cells in 480µl 50mM EDTA.2 Add lytic enzyme(s) (120µl) [lysozyme and/or lysostaphin].3 Incubate at 37°C for 30–60 minutes.4. Centrifuge for 2 minutes at 13,000–16,000 × g* and remove supernatant.5. Go to Step 1, Lyse Cells (below).

B. For Gram Negative BacteriaGo to Step 1, Lyse Cells (below).

Lyse Cells1. Add 600µl Nuclei Lysis Solution. Pipet gently to mix.2. Incubate for 5 minutes at 80°C, then cool to room temperature.3. Add 3µl of RNase Solution. Mix, incubate at 37°C for 15–60 minutes, then

cool to room temperature.

Protein Precipitation4. Add 200µl of Protein Precipitation Solution. Vortex.5. Incubate on ice for 5 minutes.6. Centrifuge at 13,000–16,000 × g* for 3 minutes.

DNA Precipitation and Rehydration7. Transfer the supernatant to a clean tube containing 600µl of room temperature

isopropanol. Mix.8. Centrifuge as in “Pellet Cells” above, and decant the supernatant.9. Add 600µl of room temperature 70% ethanol. Mix.

10. Centrifuge for 2 minutes at 13,000–16,000 × g*. 11. Aspirate the ethanol and air-dry the pellet for 10–15 minutes.12. Rehydrate the DNA pellet in 100µl of Rehydration Solution for 1 hour at 65°C

or overnight at 4°C.

*Maximum speed on a microcentrifuge.

Additional protocol information is available in Technical Manual #TM050,available online at: www.promega.com

28

25

MA

11

_9

A

Page 59: Medicall genetics lab manual وراثة عملي

Isolation of Genomic DNA from Yeast Cultures or Plant Tissue

Wizard® Genomic DNA Purification KitINSTRUCTIONS FOR USE OF PRODUCTS A1120, A1123, A1125 AND A1620. P R O T O C O LQuick

Transfersupernatantto new tubecontainingisopropanol.

Centrifuge.

Aspirate ethanol.Air-dry pellet.Rehydrate DNA.For yeast, addRNase and incubateat 37°C.

Discardsupernatant.Add ethanol.

Centrifuge.

Centrifuge.

Add Protein PrecipitationSolution.

PlantGrind 40mg of leaf tissue

Suspend in EDTA.Add lyticase.

Incubate at 37°C.

Centrifuge.Remove supernatant.

Add NucleiLysis Solution.

YeastPellet cells.

Add Nuclei LysisSolution. Incubate at

65°C. Add RNase.Incubate at 37°C.

28

26

MA

11

_9

A

Printed in USA. Revised 10/10Part #9FB022

•••••

•••

••

••••

••••

••ORDERING / TECHNICAL INFORMATION:www.promega.com • Phone 608-274-4330 or 800-356-9526 • Fax 608-277-2601

©1999–2010 Promega Corporation. All Rights Reserved.

Prepare Yeast Lysate1. Pellet cells from 1ml of culture by centrifugation at 13,000–16,000 × g* for

2 minutes.2. Suspend the cell pellet in 293µl of 50mM EDTA.3. Add 7.5µl of 20mg/ml lyticase and mix gently.4. Incubate for 30–60 minutes at 37°C. Cool to room temperature.5. Centrifuge as in Step 1. Discard the supernatant.6. Add 300µl of Nuclei Lysis Solution. Proceed to Protein Precipitation

and DNA Rehydration, Step 1 (below).

Prepare Plant Lysate1. Grind approximately 40mg of leaf tissue in liquid nitrogen.2. Add 600µl of Nuclei Lysis Solution. Incubate at 65°C for 15 minutes.3. Add 3µl of RNase Solution. Incubate at 37°C for 15 minutes. Cool sample to

room temperature for 5 minutes. Proceed to Protein Precipitation andDNA Rehydration, Step 1 (below).

Protein Precipitation and DNA RehydrationYeast Plant

1. Add Protein Precipitation Solution. Vortex. 100µl 200µlFor yeast only: Incubate 5 minutes on ice.

2. Centrifuge at 13,000–16,000 × g*. 3 minutes 3 minutes3. Transfer supernatant to clean tube

containing room temperature isopropanol. 300µl 600µl4. Mix by inversion and centrifuge at

13,000–16,000 × g*. 2 minutes 1 minute5. Decant supernatant and add room

temperature 70% ethanol. 300µl 600µl6. Centrifuge at 13,000–16,000 × g*. 2 minutes 1 minute7. Aspirate the ethanol and air-dry the pellet.8. Add DNA Rehydration Solution. 50µl 100µl9. For yeast only: Add RNase. Incubate

at 37°C for 15 minutes. 1.5µl —10. Rehydrate at 65°C for 1 hour or overnight at 4°C.

*Maximum speed on a microcentrifuge.

Additional protocol information is available in Technical Manual #TM050,available online at: www.promega.com