mechanical vibrations chapter 5 - faculty server contact |...

33
1 Dr. Peter Avitabile Modal Analysis & Controls Laboratory 22.457 Mechanical Vibrations - Chapter 5 Mechanical Vibrations Chapter 5 Peter Avitabile Mechanical Engineering Department University of Massachusetts Lowell

Upload: doankhanh

Post on 09-Mar-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

1 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

Mechanical VibrationsChapter 5

Peter AvitabileMechanical Engineering DepartmentUniversity of Massachusetts Lowell

Page 2: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

2 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

Multiple Degree of Freedom Systems

• Referred to as a Multiple Degree of Freedom• An NDOF system has ‘N’ independent degrees offreedom to describe the system

• There is one natural frequency for every DOF inthe system description

Systems with more than one DOF:

Page 3: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

3 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

Multiple Degree of Freedom Systems

• Each natural frequency has a displacementconfiguration referred to as a ‘normal mode’

• Mathematical quantities referred to as‘eigenvalues’ and ‘eigenvectors’ are used todescribe the system characteristics

• While the resulting motion appears morecomplicated, the system set of equations canalways be decomposed into a set of equivalentSDOF systems for each mode of the system.

Properties of a MDOF system:

Page 4: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

4 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

Multiple Degree of Freedom Systems

• lumped mass• stiffness proportionalto displacement

• damping proportional tovelocity

• linear time invariant• 2nd order differentialequations

Assumptions

m

m

k

k

c

c

1

1

2

2

1

2

f 1

f 2

x1

x2

Page 5: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

5 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

Multiple Degree of Freedom Systems

Free body diagram

f 1

f 2

(k 2 x1x2 )- (c 2 x1x2 )-

x1

x2

k 1x1 c1x1

m2

m1

Page 6: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

6 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

Multiple Degree of Freedom Systems

Newton’s Second Law

Rearrange terms

( ) ( ) ( )( ) ( ) ( )122122222

1221112211111

xxkxxctfxmxxkxkxxcxctfxm

−−−−=−+−−+−=

&&&&

&&&&&

( ) ( ) ( )( )tfxkxkxcxcxm

tfxkxkkxcxccxm

22212221222

1221212212111

=+−+−=−++−++

&&&&

&&&&

f 1

f 2

(k 2 x1x2 )- (c 2 x1x2 )-

x1

x2

k 1x1 c1x1

m2

m1

Page 7: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

7 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

Multiple Degree of Freedom Systems

Matrix Formulation

( )

( )

=

−++

−++

)t(f)t(f

xx

kkkkk

xx

ccccc

xx

mm

2

1

2

1

22

221

2

1

22

221

2

1

2

1

&

&

&&

&&Matrices andLinear Algebraare important !!!

Page 8: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

8 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Frequencies and Mode Shapes

Example 5.1.1

(5.1.1)( )

( ) 2122

1211

kxxxkxm2xxkkxxm−−−=−+−=

&&

&&

Page 9: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

9 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Frequencies and Mode Shapes

For normal mode type of oscillation, we can write

substituting into the differential equation yields

(5.1.2)ti

222

ti111

eAortsinAx

eAortsinAxω

ω

ω=

ω=

( )( ) 0Am2k2kA

0kAAmk2

22

1

212

=ω−+−

=−ω−(5.1.3)

Page 10: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

10 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Frequencies and Mode Shapes

In matrix form this is

and the determinant of the matrix is

whose solution yields the eigenvalues

(5.1.4)

(5.1.5)

( )( )

=

ω−−−ω−

00

AA

m2k2kkmk2

2

12

2

( )( ) 0

m2k2kkmk2

2

2=

ω−−−ω−

0mk

23

mk3

mk

23

mk3 2

22

24 =

+λ−λ=

+ω−ω (5.1.6)

Page 11: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

11 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Frequencies and Mode Shapes

The frequencies of the system are

and the general ratio of response is

(5.1.7)

(5.1.8)

mk366.2

mk366.2

mk634.0

mk634.0

22

11

=ω⇒=λ

=ω⇒=λ

km2k2

mk2k

AA 2

22

1 ω−=

ω−=

Page 12: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

12 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Frequencies and Mode Shapes

The ratio for the first frequency , ω1, is

The ratio for the second frequency, ω2, is

(5.1.8a)

(5.1.8b)

731.0mk2

kAA

2

)1(

2

1 =ω−

=

73.2mk2

kAA

2

)2(

2

1 −=ω−

=

Page 13: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

13 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Frequencies and Mode Shapes

The mode shape for the two different modes is

Each mode oscillates according to

(5.1.8)

(5.1.8b

=φ1

73.2)x(;

1731.0

)x( 21

( )111

)1(

2

1 tsin1731.0

Axx

ψ+ω

=

( )221

)2(

2

1 tsin1

73.2A

xx

ψ+ω

=

Page 14: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

14 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Initial Conditions

The general description of the system(for the example considered) is

and the initial conditions are specified as

(5.2.1)

=φ=ω

=φ=ω

173.2

)x(;mk366.2

1731.0

)x(;mk634.0

22

11

( ) 2,1itsincxx

iiii

)i(

2

1 =ψ+ωφ=

Page 15: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

15 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Initial Conditions

The displacement is written as

The velocity is written as

(5.2.3)

( )

( )222

1112

1

tsin1732.2

c

tsin1731.0

cxx

ψ+ω

+

ψ+ω

=

( )

( )2222

11112

1

tcos1732.2

c

tcos1731.0

cxx

ψ+ω

ω+

ψ+ω

ω=

&

&

(5.2.2)

Page 16: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

16 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Initial Conditions

Example 5.2.1 - Initial conditions are:

which correspond to

(5.2.3a)

(5.2.2a)

=

=

0.00.0

)0(x)0(x

;0.40.2

)0(x)0(x

2

1

2

1

&

&

( ) ( )2211 sin1732.2

csin1731.0

c42

ψ

=

( ) ( )222111 cos1732.2

ccos1731.0

c00

ψ

ω+ψ

ω=

Page 17: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

17 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Initial Conditions

Example 5.2.1 - upon solving these equations forthe response due to the specified initial conditionsyields:

( ) ( )tcos1732.2

268.0tcos1731.0

732.3xx

212

1 ω

=

Page 18: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

18 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Coordinate Coupling

Coordinate coupling exists in many problems.Either static coupling, dynamic coupling or bothstatic and dynamic coupling can exist.The equations of motion are:

and can be cast in matrix form as:

(5.3.2)

(5.3.1)0xkxkxmxm

0xkxkxmxm

222121222121

212111212111

=+++=+++

&&&&

&&&&

=

+

00

xx

kkkk

xx

mmmm

2

1

2221

1211

2

1

2221

1211

&&

&&

Page 19: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

19 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Coordinate Coupling

Coordinate coupling can be eliminated through atransformation to a different coordinate systemwherein the independent variables are not couplingeither statically or dynamically.These coordinates are referred to as

‘principal coordinates’or

‘normal coordinates’

Page 20: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

20 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Coordinate Coupling

For systems with general damping, this is noteasily possible unless the damping is of a specialform or the system is first converted to the statespace formulation of the system equations

(5.3.3)

=

+

+

00

xx

k00k

xx

cccc

xx

m00m

2

1

22

11

2

1

2221

1211

2

1

22

11

&

&

&&

&&

Page 21: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

21 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Coordinate Coupling

Example 5.3.1 Static Coupling

( ) ( )( ) ( )

=

θ

+−−+

+

θ

00x

lklklklklklkkkx

J00m

222

2111122

112221&&

&&

Page 22: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

22 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Coordinate Coupling

Example 5.3.1 Dynamic Coupling

( )( )

=

θ

+

++

θ

00x

lklk00kkx

Jmemem c

242

231

21c

c &&&&

Page 23: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

23 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Coordinate Coupling

Example 5.3.1 Static & Dynamic Coupling

( )

=

θ

++

θ

00x

lklklkkkx

Jmlmlm 1

222

2211

1

1&&

&&

Page 24: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

24 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Forced Harmonic Vibration

Consider a system excited by a harmonic force

which has a solution assumed to be

(5.4.1)tsin0F

xx

kkkk

xx

mm 1

2

1

2221

1211

2

1

22

11 ω

=

+

&&

&&

tsinXX

xx

2

1

2

1 ω

=

Page 25: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

25 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Forced Harmonic Vibration

Substituting into the differential equation yields

which is generally written in terms of theimpedance matrix as

(5.4.2)( )

( )

=

ω−ω−

0F

XX

mkkkmk 1

2

12

222221

122

1111

[ ]

=

ω0F

XX

)(Z 1

2

1

Page 26: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

26 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Forced Harmonic Vibration

Solving this yields

where the adjoint matrix and determinant are

(5.4.3)[ ] [ ]

ωω

=

ω=

0F

)(Zdet)(ZAdj

0F

)(ZXX 111

2

1

[ ] ( )( )

ω−−−ω−=ω 2

111121

122

2222

mkkkmk)(ZAdj

( )( )222

22121mm)(Zdet ω−ωω−ω=ω

Page 27: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

27 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Forced Harmonic Vibration

The general equation becomes

and the amplitudes of response are

(5.4.6)

(5.4.3)

( )( )

( )( )

ω−ωω−ω

ω−−−ω−

=

0F

mmmkkkmk

XX 1

222

22121

2111121

122

2222

2

1

( )( )( )

( )( )222

22121

1212

222

22121

12

22221

mmFkX

mmFmkX

ω−ωω−ω−

=

ω−ωω−ωω−

=

Example 5.4.1 and 5.4.2 are good examples

Page 28: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

28 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Vibration Absorber

A very common, practical application of a 2 DOFsystem is that of the ‘tuned absorber’. This iscommonly used to minimize objectionable resonanceRecall

The amplitude of response for X1 is

(5.3.2)

(5.6.1)

2

222

1

121 m

k;mk

=ω=ω

1

22

2

2

11

2

2

2

0

11

kk1

kk1

1

FkX

ωω

ωω

−+

ωω

=

Page 29: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

29 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Tuned Absorber

1

22

2

2

11

2

2

2

0

11

kk1

kk1

1

FkX

ωω

ωω

−+

ωω

=

Page 30: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

30 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MDOF - Tuned Absorber

1

22

2

2

11

2

2

2

0

11

kk1

kk1

1

FkX

ωω

ωω

−+

ωω

=

Page 31: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

31 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MATLAB Examples - VTB4_2

VIBRATION TOOLBOX EXAMPLE 4_2

>> clear>> m=[1 0;0 1];k=[2 -1;-1 1];x0=[1;0];v0=[0;0];tf=5;plotpar=1;>> [x,v,t]=VTB4_2(m,k,x0,v0,tf,plotpar);

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Dis

plac

emen

t of X

1

time (s ec)

P res s any key to continue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Dis

plac

emen

t of X

2

time (s ec)

P res s any key to continue

Page 32: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

32 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MATLAB Examples - VTB5_1

VIBRATION TOOLBOX EXAMPLE 5_1

>> clear>> m=1; c=.1; k=2;>> VTB5_1(m,c,k)>>

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15Trans mis s ibility plot for ζ = 0.035355 ω = 1.4142 rad/s

Tran

smis

sibi

lity

Rat

io

Dimens ionles s Frequency

Page 33: Mechanical Vibrations Chapter 5 - Faculty Server Contact | …faculty.uml.edu/pavitabile/22.457/ME22457_Chapter5... ·  · 2003-02-2122.457 Mechanical Vibrations - Chapter 5

33 Dr. Peter AvitabileModal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 5

MATLAB Examples - VTB5_4

VIBRATION TOOLBOX EXAMPLE 5_4

>> beta=1

beta =

1

>> VTB5_4(beta)>>

0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Mas s ratio vers us s ys tem natural frequency for β = 1

mas

s ra

tio - µ

normalized frequency ω/ωa