mechanical engineering vehicle design devhx

Upload: 113314

Post on 07-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    1/39

    Mechanical EngineeringME 481

    Vehicle Design

    Fall 2000

     Lecture Notes

     By

     Richard B. Hathaway, Ph.D., PE 

     Professor 

     Mechanical and Aeronautical Engineering 

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    2/39

    Section 1

    Energy Consumption

    and

    Poer !e"uirements in Design

    2

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    3/39

     Aerodynamics and Rolling Resistance

    #E$E!%& F'!M(&%S ) %E!'D*$%M+C

    Dynamic Pressure,

    2

    2

    1v P d    ρ =

    Drag Force,

    -.2

    1   2  RE  f  Av F d 

      ρ =

     AC v F  d d 2

    2

    1 ρ =   20 -.-2/1.

    2

    1vv AC  F  d d    +=

    %ero Poer 

     f(RE) AV (2) = P  3 ρ 

    Cd  coeicient o drag   ρ  air density ≈ 1/2 g3m

    % pro5ected rontal area .m2- f(RE) = Reynolds number6 6ehicle 6elocity .m3sec- V0  headind 6elocity

    ENGLISH UNITS

    V  AC  )10 X (6.93= HP 3

    d -6 

    aero

    where: A = area (f!) " = #elo$%y (&'H) d = dra $oe*$%en

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    4/39

    SI UNITS

       

      

     

       

       W 

    kW 

      AC V 

    (2) = P d 

    3

     KW 1000

    1

    1000

    4700

    2/1

    4

    -.872 02

    V V V  AC   )10 .(1= P  d -6 

    aero   +

    P poer .- % area .m2-

    V 6elocity .p9- V0  headind 6elocity

    Cd drag coeicient   ρ 1/2 g3m

    #E$E!%& F'!M(&%S : !'&&+$# !ES+S;%$CE

    E$#&+S9 ($+;S

    3!"

    V   W C = HP  rr rr 

    here, Crr   coeicient o rolling resistance < eight .l=s- V 6elocity .MP9-

    S+ ($+;S

    V   #  C   )10 (2.!2= P 

    V   #  C  3600

    9.$1 = P 

    rr 3-

    rr 

    rr rr       

      

    here, P poer .- Crr  coeicient o rolling resistanceM mass .g- V 6elocity .p9-

    4

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    5/39

    RA!"#E $%R!E RE&'"REMEN( .

    Vehicles re"uire thrust orces> generated at the tires> to initiate and maintain motion/ ;hese orces

    are usually reerred to as tracti6e orces or the tracti6e orce re"uirement/ + the re"uired tracti6e

    orce .F- is =roen into components the ma5or components o the resisting orces to motion are

    comprised o acceleration orces .Faccel  ma ? +α orces-> #radea=ility re"uirements .Fgrade->

    %erodynamic loads .Faero- and chassis losses .Froll resist -/

    F Faero @ Froll resist @ Fgrade @ Faccel

      .ρ32- Cd % 62  @ Crr  m g @ Aslope mBg @ m a

      .ρ32- Cd % 62  @ m gCrr @ A slope @ a3g

    in S+ units,

    % rontal area .m2- 6 6elocity .m3s- m mass .g-Crr   coeicient o roll resistance .$3$- usually appro /01

    Cd  coeicient o aero drag or most cars / ) /7

    A slope !ise3!un ;an o the roaday inclination angle

    Steady state orce are e"ual to the summation o Faero @ Froll resist @ Fgrade

    FgraderesistFrollFaero   ++∑= %% F 

    ;ransient orces are primarily comprised o acceleration related orces here a change in6elocity is re"uired/ ;hese include the rotational inertia re"uirements .F+α - and the translational

    mass .Fma- re"uirements> including steady state acceleration/

    VE9+C&E E$E!#* !EG(+!EME$;S/

    ;he energy consumption o a 6ehicle is =ased on the tracti6e orces re"uired> the mechanicaleiciency o the dri6e train system> the eiciency o the energy con6ersion de6ice and the

    eiciency o the storage system/ Eamples o the a=o6e might =est =e demonstrated ith the

    olloing/

    Storage eiciency,% lyheel used or energy storage ill e6entually lose its total energy stored due to

     =earing and aerodynamic losses/ % storage =attery may e6entually discharge due tointrinsic losses in the storage de6ice/ ;hese losses can =e a unction o the A o the total

    system capacity at hich the system is currently operating/ % li"uid uel usually has

    etremely high storage eiciency hile a lyheel may ha6e considera=ly les storageeiciency/ Hoth hoe6er ha6e the storage eiciency a unction o time/

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    6/39

    100  E 

     E  E  Eff&'&e'*+or,e

    &&+&a 

     f&a &&+&a 

     %+ore    

      

        −==η 

    Con6ersion eiciency,

    %n internal com=ustion engine changes chemical energy to mechanical energy/ ;hesystem also produces unanted heat and due to mo6ing parts has internal riction hich

    urther reduces the system eiciency/ % storage =attery has an eiciency loss during the

    discharge cycle and an eiciency loss during the charge cycle/ ;hese eiciencies may =ea unction o the rate at hich the poer is etracted/

    100  E 

     P  E  Eff&'&e'Cover%&o

     fe 

    de&vered  fe 

    'ov

    −==η 

    /e'a&'a +er/a 'ov  η η η    =

    Dri6e system Eiciency,

    Con6ersion o chemical or electrical to mechanical energy does not complete the poerlo to the heels/ Dri6e train ineiciencies urther reduce the poer a6aila=le to produce the tracti6e orces/ ;hese losses are typically a unction o the system design

    and the tor"ue =eing deli6ered through the system/

    100  P 

     P  P  Eff&'&e' #e'a&'a 

     %or'e oer 

    +ra'+&ve %or'e oer 

    dr&ve/e'

    −==η 

    red red red dr&ve/e'     η η η η    //////

    21=

    7

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    7/39

     Reasona)le Efficiencies to use for cycle com*arisons

    .Eiciencies shon are only approimations-

    • Electric Motor .Pea- η  IA

    • Electric Motor Eiciency .%6g i 1 spd ;rans-   η  JA

    • Electric Motor Eiciency .%6g i CV;-   η  IA

    • ;ransmission Eiciency (0.9")= 1)-(Rη 

    • Hattery Eiciency .!egen-   η  J)8A

    • Hattery ? #enerator Eiciency .!egen-   η  = 0)A

    • Hattery ? Motor Eiciency .%ccel-   η  80A

    • Solar Cell Eiciency   η  1A

    • +C Engine .Pea Eiciency-   η  0A

    • Flyheel Eiciency

    (Storage and Conversion Average)   η = 70%

    J

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    8/39

     E+*erimental !oast Down esting 

    1- Perorm a high speed and a lo speed test ith an incremental .≈ m3hr- 6elocity change at

    each 6elocity/

    2- 9igh Speed &o Speed

    Va1  70 m3h Va2  20 m3h

    V =1  m3h V =2  1 m3h

    - !ecord the times o6er hich the 6elocity increments occur/

    ;h  4 sec ;l  7 sec

    4- Determine the mean speed at each 6elocity/

    - Determine the mean deceleration at each 6elocity/

    7- Determine the drag coeicient

    J- Determine the coeicient o rolling resistance/

    8

    k/vvv a =+=2

    111

    k/vvv 3a =+=

    2

    222

     %

    k/

    vva a

      3

    1

    111   =

    −=

     %

    k/

    vva 3a

      3

    2

    222   =

    −=

    -.

    -.72

    2

    2

    1

    21

    vv

    aa

     A

    /'d 

    −=

    -.

    -.

    10

    2/28

    22

    21

    2

    21

    2

    12

    vv

    vava

    'rr  −

    =

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    9/39

    Section 2

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    10/39

    E"-H and R%A"%NAL "NER"A E$$E!(

    ;hrust orce .F-> at the tire ootprint> re"uired or 6ehicle motion,

    F Faero @ Froll resist @ Fgrade @ Faccel  .ρ32- Cd % 62  @ Crr  m g @ Aslope mBg @ m a

    F .ρ32- Cd % 62  @ m gCrr @ A slope @ a3g

    in S+ units,% rontal area .m2- 6 6elocity .m3s- m mass .g-

    Crr   coeicient o roll resistance .$3$- usually appro /01

    Cd  coeicient o aero drag or most cars / ) /7

    A slope !ise3!un ;an o the roaday inclination angle

    + rotational mass is added it adds not only rotational inertia =ut also translational inertia/

    a = k /= 4 =

    d+ 

    d   4 =5 

    +&re

    ve&'eee 'o/

    2'o/&   α α α 

    ω 

     22

    α  angular acceleration radius o gyration t time ; ;or"ue m mass

    δ  ratio =eteen rotating component and the tire

    ;hereore i the mass rotates on a 6ehicle hich has translation>

    a6/17r 

     k  = F   R

    2+&re

    22

    & + 8r •  

     

      

        δ 

    F Faero @ Froll resist @ Fgrade @ Faccel  .ρ32- Cd % 62 @ Crr  

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    11/39

    ;he PoerPlant ;or"ue is,

     : 

    r   F  =5 

    +&re&

     PP +)8(r 

    ;he speed o the 6ehicle in m3h is,

     )( r  : 

     RP#  =0k/ +&re

     PP  JJ/03   ••

    r tire  ;ire !olling !adius .meters- $ $umerical !atio =eteen P/P/ and ;ire

    11

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    12/39

    WEIGHT PROPAGATION

    +t might simply =e said that eight =egets eight in any designK

    •  $early all 6ehicle systems are aected =y a change in eight o any one component/

    • Poer increases and3or perormance decreases are associated ith eight increases/

    • L!ule o ;hum= approimations can =e made to predict the eects o eight increases/

     For a-+era+e 1o2er %%+e/% ('o%&der&, +0e 1o2er %%+e/ a% a .&+)

    ∆< due to eight 22A total eight increment

    [ ]*;*#  W W W    −=   22/1mod

    ∆< due to poer increase 4/A total eight poer increment

       

      

     −+=   104/01mod

     P*;

     P*# 

    3a%e P 

     P W W 

    Com=ining the a=o6e actors into a single e"uation,

    [ ]*;*#  P*;

     P*# 

    3a%e W W  P 

     P W W    −+

      

     

     

     

     −+=   22/1104/01mod

    12

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    13/39

    Section

    Poer ;rain Systems and Eiciencies

    1

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    14/39

    E$E!#* S;'!%#E in VE9+C&ES

    +/ &+G(+D F(E&S .9eat Energy- Fossil

     $on)Fossil .%lcohol-

    ++/ #%SE'(S F(E&S .9eat Energy- Fossil .largely-

     $on)Fossil 9ydrogen

    +++/ F&* Volume-

     P'

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    15/39

    ENERGY CONVERSION

    +/ +$;E!$%& C'MH(S;+'$ E$#+$ES, 'tto cycle

    Diesel cycle

    Hrayton cycle

    ++/ EN;E!$%& C'MH(S;+'$ E$#+$ES, Stirling cycle

     Rak&e ''-e

    +++/ MEC9%$+C%&, Flyheel

    9ydraulic motors

    +V/ E&EC;!+C,

    Electric motors

    ENERGY STORAGE

    +/ &+G(+D F(E&S,

    @ &ong ;erm Storage Possi=le@ 9igh Energy 3

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    16/39

    +++/ F&* $oise

    V/ Hattery,

    @ !echarge 3o Fossil Fuels

    @ ;otal on)demand Energy Con6ersion@ &imited %tmospheric Pollution

    ) Finite Storage &ie

    ) &o Energy 3

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    17/39

    Hybrid Vehicles Power System Matching

    P!'H&EM,

    +/ ;he 6arious poer systems pro6ide tor"ue and poer cur6es hich are considera=lydierent in shape/

    ++/ ;he dierent poer systems pea in eiciency at dierent speeds in their operating

    range/

    +++/ ;he dierent poer systems pea in eiciency at dierent loads)speed points/

    +n &ight o +> ++> and +++ a=o6e a method must =e de6ised to optimiQe or maimiQe,

    1/ ;or"ue 'utput

    2/ Pea Eiciency

    / ;ransition rom one Poer System to the other or 

    Phasing in o the Second Poer System in a Parallel System/

    % S;!%;E#* M(S; HE DEV+SED ;' P!'V+DE P!'PE! ;+M+$# 'F E%C9 S*S;EM

    H%SED '$,

    a/ Demand

     =/ Eiciency

    c/ Perception o the operator 

    d/ System State

    ) ;otal Energy !eser6e

    ) ;otal System Capacity

    ) Energy !e"uired or Completion o Mission

    e/ Energy State o each +ndi6idual System

    1J

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    18/39

    Gearbox: Transmission

    1/ Manual transmission,;he types o manual transmission are, Sliding mesh type

    Constant mesh type Synchromesh gear =o

    ;he 6arious components o a manual gear=o and their respecti6e design considerations are

    listed,

     Design considerations for shaft

    ;here are shats in the gear=o> namely, +nput or clutch shat> +ntermediate or lay

    shat and 'utput or main shat/

    • +nput or clutch shat,

    Design consideration,Shear and torsional stresses as ell as the amount o delection under ull load/ ;his

    should not only =e designed or maimum engine tor"ue> =ut also or a=sor=ingtor"ues as high as i6e times the maimum engine tor"ue hich can =e generated =y

    Rclutch snapping in the loer gear/

    • +ntermediate or lay shat,

    Design consideration,

    Shear and torsional stresses should =e calculated/ %mount o delection should =e

    calculated using the load on the internal gear pair> hich is nearest to the hal ay =eteen the intermediate shat mounting =earings/ For shats ith splines and

    serrations> it is common to use the root diameter as the outside diameter in the stresscalculations/

    • 'utput or main shat,

    Design consideration,

    Shear and torsional stresses should =e calculated/

    #eneral e"uations,

    1/ Maimum shear stress or shat>  s or a solid circular shat,

    here> d diameter o shat ;or"ue in l=)in

    18

    4

    17

    5or>e

     f  % π 

    ×

    =

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    19/39

    2/ %mount o delection,

    here>

    a distance =eteen point o delection and irst support

     = distance =eteen point o delection and second support

    ω1  total eight o shat @ gear at the point o delection

    l length o shat =eteen supports

    Gears:

    Current cars use 6arious inds o Synchromesh units> hich ensure a smooth gear change> hen the 6ehicle is in motion/ ;he Synchromesh unit essentially consists o 

     =locing rings> conical slee6es and engaging dog slee6es/

    ;he Synchomesh system is not "uic enough due to the pause in the =locing ring

    reaction in =ringing the to engaging components in phase/ Most racing cars> thereore

    use gear=o itted ith acedog engagement system instead o a Synchromesh hich pro6ides a "uicer and more responsi6e gear change and a closer eel or engine

     perormance/

     Design consideration for gears

    • Engine speed 6s Vehicle speed graph is plotted or determining the gear ratios/

    • Various important gear design parameters are calculated as ollos,

     $ormal tooth thicness

    ;ooth thicness .at tip-

    Proile o6erlap Measurement o6er =alls

    Span measurement o6er teeth etc/>

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    20/39

    Bearings:

    Hearings ha6e to tae radial and thrust loading .hich is dependent on the heli angle o gear teeth- hen helical gears are used/ Hearings must =e capa=le o coping ith the loads that ill =e

    encountered hen the transmission unit is in use/ Calculations can =e done =y straightorard

    ormulas/

    Dieren!ia" gears:

    ;he unctions o the inal dri6e are to pro6ide a permanent speed reduction and also to turn the

    dri6e round through I0o/ % Rdierential essentially consists o the olloing parts,

    1/ Pinion gear 

    2/ !ing gear ith a dierential case attached to it/ Dierential pinions gears and side gears enclosed in the dierential case/

    Pinion and ring gears,

    ;he pinion and ring gear can ha6e the olloing tooth designs,

    1/ He6el gears :a- Straight =e6el

     =- Spiral =e6el : ;eeth are cur6ed

     More /uiet o*eration, )ecause, cur0ed teeth ma1e sliding contact."t is stronger, )ecause, more

    than one tooth is in contact all times.

    2/ 9ypoid gears ,

    +n this> the centerline o the pinion shat is =elo the center o the ring gear/

     Adva+a,e?  +t allos the dri6e shat to =e placed loer to permit reducing the

    hump on the loor/

    ;erms used in gear design,

    1/ Pitch circle,

    %n imaginary circle> hich =y pure rolling action ould gi6e the same motion as theactual gear/

    2/ Pitch circle diameter,

    ;he diameter o the pitch circle/ ;he siQe o the gear is usually speciied =y the pitchcircle diameter/ +t is also called as pitch diameter/

    / Pitch point,;he common point o contact =eteen to pitch circles/

    20

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    21/39

    4/ Pitch surace,

    ;he surace o rolling discs> hich the meshing gears ha6e replaced> at the pitch

    circle/

    / Pressure angle or angle o o=li"uity,

    ;he angle =eteen the common normal to to gear teeth at the point o contact andthe common tangent at the pitch point/ +t is usually denoted =y φ/ ;he standard

     pressure angles are 14 T 0 and 200/

    7/ %ddendum,

    ;he radial distance o a tooth rom the pitch circle to the top o the tooth/

    J/ Dedendum,

    ;he radial distance o a tooth rom the pitch circle to the =ottom o the tooth/

    8/ %ddendum circle,

    ;he circle dran through the top o the teeth and is concentric ith the pitch circle/

    I/ Dedendum circle,

    ;he circle dran through the =ottom o the teeth/ +t is also called root circle/

    !oot circle diameter Pitch circle diameter cos φ

    here> φ is the pressure angle/

    10/ Circular pitch,;he distance measured on the circumerence o a pitch circle rom a point on one

    tooth to the corresponding point on the net tooth/ +t is usually denoted =y p c/

    Mathematically>

    Circular pitch> pc  πD 3 ;

    here> D Diameter o pitch circle ; $um=er o teeth on heel 

    11/ Diametrical pitch,

    ;he ratio o num=er o teeth to the pitch circle diameter in millimeters/ +t is denoted =y pd/ Mathematically>

    Diametrical pitch>

    here> ; $um=er o teeth D Pitch circle diameter 

    21

    '

    d   @

    5  

      π ==

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    22/39

    12/ Module,

    +t is ratio o pitch circle diameter in millimeters to the num=er o teeth/ +t is usually

    denoted =y m/ Mathematically>

    Module> m D 3 ;

    1/ Clearance,

    ;he radial distance rom the top o the tooth to the =ottom o the tooth> in a meshing

    gear/ ;he circle passing through the top o the meshing gear is non as the clearancecircle/

    14/ ;otal depth,

    ;he radial distance =eteen the addendum and dedendum o a gear/ +t is e"ual to thesum o the addendum and dedendum/

    1/

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    23/39

    24/ Fillet radius,

    ;he radius that connects the root circle to the proile o the teeth/

    2/ Path o contact,

    ;he path traced =y the point o contact o to teeth rom the =eginning to the end o

    engagement/

    27/ &ength o path o contact,

    ;he length o the common normal cut)o =y the addendum circles o the heel and pinion/

    2J/ %rc o contact,

    ;he path traced =y a point on the pitch circle rom the =eginning to the end oengagement o a gi6en pair o teeth/ ;he arc contact consists o to parts> i/e/>

    .a- %rc o approach, ;he portion o the path o contact rom the =eginning o

    engagement to the pitch point/

    .=- %rc o recess, ;he portion o the path o contact rom the pitch point to theend o engagement o a pair o teeth/

    2

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    24/39

    Section 4

    Hrae System Design

    +n con6entional hydraulic =rae systems the apply orce at the =rae pedal is con6erted to hydraulic pressure in the master cylinder/ %pply orce rom the dri6er is multiplied through a mechanical

    ad6antage =eteen the =rae pedal and the master cylinder to increase the orce on the master 

    cylinder/ 9ydraulic pressure is a typical orce transer mechanism to the heel =rae as the luid can =e routed through lei=le lines to the heels hile the heels under comple heel motions/

    M%S;E! C*&+$DE! P!ESS(!E .3o poer assist-,

    d  B

    . #.A  F  = P  2

    /'

     eda  eda 

    /'π 

    Poer assist may =e added to a con6entional hydraulic =rae system to assist the dri6er in =rae

    apply/ Poer assist utiliQes a system hich may use air pressure> atmospheric36acuum pressure

    hydraulic pressure or other means to apply direct orce to the master cylinder/

    M%S;E! C*&+$DE! P!ESS(!E .3 poer assist-,

    d  B

     F 7 ). #.A  F ( 

     = A

     F 

     = P  2/'

    3oo%+er  eda  eda 

    /'

    /'

    /' π 

    ;he pressure rom the master cylinder is typically modiied =y a series o 6al6es =eore reaching theheel cylinders/ ;he 6al6es modiy pressure to proportion pressure as a unction o eight transer>

    6ehicle static load and load location> and the heel =rae characteristics/ Val6es may also =e placed

    ithin these lines to pro6ide or anti)loc =raing> traction control and3or ya sta=ility control/

    ;he modiied master cylinder pressure is deli6ered to a hydraulic heel cylinder hich utiliQes the

    hydraulic pressure to create a mechanical apply orce/

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    25/39

    acts at the mean radius o the =raing surace/ For an internal or eternal epanding =rae the mean

    radius o the =raing surace is the radius o the =raing surace/

    For a dis =rae the mean radius .r m- o the =raing surace is

    D+SC H!%E ME%$ !%D+(S

    ;he heel tor"ue the =rae system creates during =raing .;- is a unction o the heel cylinder 

    orce .Fc-> the coeicient o riction =eteen the riction pad and the =rae surace .µ-> the mean

    radius o the =raing surace .r m-> the num=er o =raing suraces .$-> and the multiplication actor .eecti6eness actor- o the =rae .E-/

    compound and 6endor identiication/ %n eamplemight =e FF)20)%H/ FF identiies the riction coeicient and the 20)%H identiy the compound and

    6endor respecti6ely/ ;he olloing ta=le identiies the coeicient o riction 6alues/ ;he irst letter in the code pro6ides inormation as to the moderate .normal- temperature characteristics> the second

    letter pro6ides inormation as to the high temperature characteristics o the lining/

    2

    2

    22&o

    /

    r r r  +=

    / ad ' r   E   :    F 5    µ =

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    26/39

    Edge &etter Code Friction coeicient

    C   µ ≤ 0/1

    D 0/1 ≤ µ ≤ 0/2

    E 0/2 ≤ µ ≤ 0/

    F 0/ ≤ µ ≤ 0/4

    # 0/4 ≤ µ ≤ 0/

    9   µ O 0/

    unclassiied

     ;he =raing orce a6aila=le at the tire)to)road interace is the heel tor"ue di6ided =y the rolling

    radius o the tire/

    i the =raes are properly propotioned> is,

     , 

    a

    2

     D

     , 

    a W -W 

     = F 

     R

    rake R

       

      

    27

        

      ==

    / ad '

    3

    r r   E   :    F 

    r 5  F    µ 

    [ ]   [ ]    

      

     

       

      

     =

    / ad 2

    /'

    '

    3oo%+er  eda-  eda- 3r 

    r   E   :   

    d   F 7 ). #.A  F (  F    µ 

    2

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    27/39

    &+M+;+$# H!%+$# F'!CE,

    ;he limiting =raing orce o6er hich heel slide ill occur at each ront heel is,

     µ  µ 

    road -+&re

     F 

    rake2

     ) D

     W 7W ( 

     = F   F 

    ;he limiting =raing orce o6er hich heel slide ill occur at each rear heel is,

     µ  µ 

    road -+&re

     R

    rake2

     ) D

     W -W ( 

     = F   R

    + the =raes are properly proportioned the =raing orce maimum is,

     µ 

     µ  µ 

      2

     ) D

     W -W ( 

     

    2

     ) D

    W 7W ( 

     = F  road -+&re

     R F 

    r    2maE

    +

     µ  µ r -+ +o+ r -+ r  f rake

      W =  )W 7W ( = F  maE

    2J

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    28/39

    Section 4

    Suspension Design Considerations

    28

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    29/39

    ENPE!+ME$;%& DE;E!M+$%;+'$ 'F ;9E S;!(C;(!%& +$;E#!+;*

    'F VE9+C&ES

    • Vehicle stiness is an important parameter hich inluences ride "uality> handling properties>and 6ehicle aesthetics/

    • Vehicle stiness determines the "uality o it o many eternal panels and the interaction o 

    the surace panels as uniorm and asymmetric loads are applied/

    • !oad noise transmission and dynamic response is inluenced =y the 6ehicle stiness/

    • Vehicles typically are called upon to meet delection criteria in design/

    a- meeting delection criteria ill esta=lish designs that inherently meet stress related

    criteria/

     =- Chassis design ill re"uire the engineer assure that ey delection limits are imposedor critical locations on the chassis> rame and =ody/

    c- Vehicles modeled to meet crash standards may also meet delection standards in the

    design process/

    d- %ll measuresU delection> stress and yield> and impact must =e 6eriied in the design process/

    STI##NESS IS $EAS%RED IN A N%$BER O# $ODES.

    a- Torsiona" ri&gi&i!' is commonly used as measure o the o6erall stiness "uality/

    1/ Fundamentally this is a measure o the delection that occurs i all the loadere place on diagonally opposite tires o the 6ehicle/ %s delection occurs in

    this mode the "uality o it o the surace components on the =ody is altered/

    2/ ;orsion o the chassis also occurs due to the diering roll stiness o the rontand rear suspension systems/

     =- H(beaming is used to determine the leural stiness o the chassis/

    1/ =asically =ending a=out the rocer panels o the 6ehicle/2/ measured as leure along the longitudinal ais o the 6ehicle as a 6ertical

    load is applied at speciic locations along the longitudinal ais/

    / Vertical delection o the chassis is measured at critical points/4/ ;his mode may inluence glass =reaage and aect ride "uality/

    c- Co)" "oa&ing is the term used to deine the stiness as it might =e 6ieed =y theoperator/

    1/ ;his stiness criteria is esta=lished such that the operator does not percei6e

    ecessi6e delection o the steering column and related interior components/

    2I

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    30/39

    d- Rear en& beaming is a term used to deine =ending due to the rame Lic)ups that

    are present in rear heel dri6e and dependent rear suspension 6ehicles/

    1/ ;his is measured ith the rame supported and eight added to the rear etremities o the 6ehicle at or near the rear =umper location/

    2/ ;he measure as to assure ade"uate stiness as the rame as shaped to

    allo clearance or rear ale mo6ement/

    • % parameter that is commonly used to esta=lish the stiness is the re"uency o the system/

    • Minimum 6alues are alays ar a=o6e those anticipated in the suspension or sprung

    and un)sprung natural re"uencies/

    • ;his usually sets minimum 6alues at approimately 1 9Q hile most current

    designs ill eceed 20 9Q/

    • &oad actors are the percentage o the maimum torsional rigidity the 6ehicle might see in

    ser6ice hich is the maimum diagonal moment/

    &oad Factor Determination/1/ !aise the 6ehicle and place the cali=rated ero reerenced scales under each

    heel/ Veriy the tires are properly inlated/

    2/ !ecord the eight at each heel location/

    / Determine the load actor =y

    a. taing the sum o the eights on the let and right ront suspensions

    and multiplying the sum =y T the heel trac/

    b. taing the sum o the eights on the let and right rear suspensions andmultiplying the sum =y T the heel trac/

    *. taing the smaller o a and = and it is to =e called a load factor of one.&. ;ypically to T load actor> incrementally applied> ill =e used to

    esta=lish the torsional rigidity or the chassis/

    0

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    31/39

    ANA+YSIS o #RONT S%SPENSION +OADS

    ,#OR DESIGN-

      &%;E!%&  C'!$E!+$# @ +MP%C; 

    &'$#+;(D+$%&

      H!%+$# @ +MP%C; VE!;+C%&

      S;%;+C @ +MP%C; 

    H!%+$#, use 1)2 g =raing load-

    [ ] D;A@ @:A#4C  D;A@*5A54C  D   +=2

    2 µ 

       

      + 

      

      =

     D

    0a/

     D

    - W  D r 

    3  µ 

     

            

       +     =  D

    0 , aW 

     D- W  D r 3   µ 

     here> h C/# 9eight &

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    32/39

    &%;E!%& commonly considered as 2g load

       

      

        +=

     D , 

    a ,  W  D r  

    2

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    33/39

    $R%N ('(PEN("%N L%AD( 

    %P #"E

    F&

    Σ MPS% 0

    0=−−+  % FH  D* * * r  ' F  F d  F 

    ( )3 F r  ' F d 

     F *  % FH  D* *   −+=

      1

    −−+=   -.-. '3a'r 

    d   F   %

     FH *

    Σ F9)&at  0

    F(C9 @ FSH : F&C9 : F&%;  0

    F&C9  F(C9 @ FSH ) F&

    Σ F9)&ong  0

    F(S : F&S @HF9  0 or HF9  F&S ) F(S

    Pro5ected Steer %is .PS%-

    FSH

    d

    F&C9

    (pper Hall Woint to PS% .=-Scru= !adius .r s-

    &oer Hall Woint to PS% .c-

    F(S

    F&SHraing Force 9oriQontal .HF9-

    &ateral Force .F&%;-F(C9

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    34/39

    $R%N ('(PEN("%N L%AD( 

     ("DE #"E

     

    F(S

     

    F&S 

    Σ MH 0a  F   FH *    =

       

      =

    a  F   FH * 

    Σ FN  0

    F(S : F&S @ HF9  0

    F&S  F(S @ HF9

       

       +=   1

    a  F   FH  D* 

    4

    hSH

    &H

    (H

    HF9

    a

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    35/39

    $R%N ('(PEN("%N L%AD( 

     REAR #"E

    Σ M&H 0

    F(CV h tan φ @ F(C9 h @ FSH e @ F& a : V .r s @ c- 0

    α sinC CV   F  F    =α cosC CH   F  F    =

    ( )

    ( ) a F e F 'r V 

     F   D* %C α φ α    costansin   +−−+

    =

    ( ) ( )  DC  % FH 

     DCH   F  F '3

    a'r 

      F    −+

    −−+=   α cos

    Σ FV 0

    V : F&CV @ F(C 0

    F&CV V @ F(C sin α

    F(C 

    V

    F&C9 

    FSH 

    &H

    F(CV

    F(C9α

    φ

    F&

    (H

    F&HV

    e h

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    36/39

    SUMMARY

       

      

    +=   1a

      F   FH  D* 

    −−+=   -.-. '3

    a'r 

      F   %

     FH *

    ( )( )

    a F e F 'r V  F   D* %C 

    α φ α    costansin   +−−+

    =

    ( ) ( )  DC  % FH 

     DCH   F  F '3

    a'r 

      F    −+

    −−+=   α cos

    F&CV V @ F(C sin α

    'PPER !%NR%L ARM 

      F(FM

      F(&F 

     

      F(C

      g F(S

      F EDR

      F(!9  F(C  lu

     

    F(C

    7

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    37/39

    Σ M(FP  0

    F(C .- @ F(S .lu- : F(&! .@g- 0

    F(&!   F(C .- @ F(S .lu- +n the direction o F(C  @g

    Σ F%N+S  0

    F(&F @ F(&!   F(CF(&F  F(C ) F(&!  ;o determine F(F9 and F(!9 the geometry and the understanding that all loads pass through (H

    can =e used,

    g3 lu F(!9 3 F(&! 

    ∴ F(!9  F(&!  .g-

      lu

     F EFH  7 F ERH  = F E* F(F9  F(S : F(!9

    LOWER CONTROL ARM

    Spring orce and =ump stop orce need =e determined

     F&S

     

    i  F&C

      5

    FH  F&CV  FSP  l =  ls  F&C9

    β  ll

    J

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    38/39

    LOGARITHMIC !CR!M!"T

    &ogarithmic decrement can =e used to eperimentally determine the amount o damping present in aree 6i=rating system/

    For damped 6i=ration the displacement .- is epressed as e"uation 1/

    φ ω ξ ω ξ   7-1e X =  + 

    2+ - Sin

    ;he logarithmic decrement is then deined as the natural log or the ratio o any to successi6e

    amplitudes as shon in e"uation 2/

      

      =

    2

    1lnδ 

    (   )φ τ ω ξ φ ω ξ 

    δ τ ω ξ 

    ω ξ 

    7 )7+ ( -1e

     7+ -1e =

    d 1

    2 )7+ ( -

    1

    2+ -

    d 1

    1

    Sin

    Sinln

    E"uation 2 can =e reduced to e"uation =ased on the act that the 6alue o the sines are e"ual or 

    each period at t t1@τd/

    e=e

    e = d 

    d 1

    1

     )7+ ( -

    + -

    τ ω ξ 

    τ ω ξ 

    ω ξ 

    δ    lnln

    τ ω ξ δ  d =

    Since the damped period is

    ξ ω 

    π τ 

    2

    -1

    2 =

    e"uation can =e reduced to e"uation /

    ξ 

    πξ δ 

    2-1

    2 =

    8

  • 8/20/2019 Mechanical Engineering Vehicle Design Devhx

    39/39

    ;hereore the amplitude ratio or any to consecuti6e cycles is as shon in e"uation 7/

    e= 

     

    2

    1   δ 

    +t can also =e sho that or n cycles the olloing relationship eists

     

      

    1 =

    0lnδ