mechanical design data book.pdf

Upload: dileep-kumar-pm

Post on 14-Apr-2018

245 views

Category:

Documents


6 download

TRANSCRIPT

  • 7/27/2019 Mechanical Design Data Book.pdf

    1/69

    Shinto Mathew

    MAYOTH

    Mechanical Design Data Book

  • 7/27/2019 Mechanical Design Data Book.pdf

    2/69

    1

    Design Data Hand Book

    Contents:-

    1 Friction Clutches

    Single plate clutches05

    Multi plate clutches05

    Cone clutches06

    Centrifugal clutches06

    2 Brakes

    External Contracting Brakes08

    Internal Expanding Brake09

    Band Brakes10

    Thermal Considerations11

    3 Belt Drives

    Geometrical Relationships12

    Analysis of Belt Tensions13 Condition for Maximum Power13

    Selection of Flat Belts from the ManufacturesCatalogue13

    Selection of V-Belts15

    4 Chain Drives

    Roller Chains20

    Geometrical Relationships20

    Power Rating of Roller Chains21 Sprocket Wheels24

    5 Rolling Contact Bearings

    Stribecks Equation25

    Equivalent Bearing Load26

  • 7/27/2019 Mechanical Design Data Book.pdf

    3/69

    2

    Load Life Relationship26

    Selection of Bearing from the ManufacturesCatalogue27

    Selection of Taper Roller Bearings32

    Design for Cyclic Load and Speed38

    Bearing With a Probability of Survival Other Than90 Percent38

    6 Sliding Contact Bearings

    Effect of Temperature on Viscosity39

    Hydrostatic Step Bearing40

    Energy Losses in Hydrostatic Bearing40

    Reynolds Equation41

    Raimondi and Boyd Method41

    Temperature Rise43

    Bearing Design Selection of Parameters44

    7 Spur Gears

    Standard System of Gear Tooth45

    Force Analysis50

    Beam Strength of Gear Tooth47

    Effective Load on Gear Tooth48

    Estimation of Module Based on Beam Strength50

    Wear Strength of Gear Tooth50

    Estimation of Module Based on Wear Strength51

    Gear Design for Maximum Power TransmittingCapacity51

    8 Helical Gears

    Virtual Number of Tooth52

    Tooth Proportions53

    Beam Strength of Helical Gears54 Effective Load on Gear Tooth54

    Wear Strength of Helical Gears55

    9 Bevel Gears

    Force Analysis57

  • 7/27/2019 Mechanical Design Data Book.pdf

    4/69

    3

    Beam Strength of Bevel Gears58

    Wear Strength of Bevel Gears59

    Effective Load on Gear Tooth60

    10Worm Gears

    Proportions of Worm Gears62

    Force Analysis64

    Friction in Worm Gears64

    Strength Rating of Worm Gears65

    Wear rating of worm gears67

  • 7/27/2019 Mechanical Design Data Book.pdf

    5/69

    4

    FRICTION CLUTCHES

    Notations:-

    D = outer diameter of friction disk.

    d = inner diameter of friction disk.

    p = intensity of pressure.

    P = total operating force.

    ( )ft

    M = torque transmitted by friction.

    z = number of pairs of contacting surfaces, for single plate

    clutch z=one. (z = number of plates 1).

    = coefficient of friction.

    ap = intensity of pressure at the inner edge. = semi cone angle.

    dr = radius of the drum.

    gr = radius of the centre of gravity of the shoe in engagedposition.

    m = mass of each shoe.

    cfP = centrifugal force.

    =sP Spring force

    2 = running speed. (Rad/sec)

    1 = speed at which engagement starts. (Rad/sec)

  • 7/27/2019 Mechanical Design Data Book.pdf

    6/69

    5

    Single Plate & Multi Plate Clutches

    Uniform pressure theory

    )(4

    22dDP =

    ( ))(

    )(

    3 22

    33

    dD

    dDPzM

    ft

    =

    Uniform wear theory)(

    2dD

    dpP a =

    ( ) )(4

    dDPz

    Mft

    +=

  • 7/27/2019 Mechanical Design Data Book.pdf

    7/69

    6

    Cone Clutches

    Uniform pressure theory

    )(4

    22dDP =

    ( ))(

    )(

    sin3 22

    33

    dD

    dDPzM

    ft

    =

    Uniform wear theory

    )(2

    dDdpP a =

    ( ) )(sin4

    dDPz

    Mft

    +=

    Centrifugal Clutches

    1000

    2

    1 g

    s

    rmP

    =

    ( )1000

    )( 212

    2 =

    zrmrM

    dg

    ft

    Note: - here z = number of shoes.

  • 7/27/2019 Mechanical Design Data Book.pdf

    8/69

    7

    Brakes

    Notations:-

    E = total energy absorbed by the brake.K.E = kinetic energy absorbed by the brake.P.E = potential energy absorbed by the brake.m = mass of the system.I = mass moment of inertia of the rotating body.k = radius of gyration.

    21,vv = Initial and final velocities of the system

    21, = Initial and final angular velocities of the body

    tM = braking torque.

    = angle through which the brake drum rotates during thebraking period.

    mghEP

    mkEK

    IEK

    vvmEK

    =

    =

    =

    =

    .

    )(2

    1.

    )(2

    1.

    )(2

    1.

    2

    2

    2

    1

    2

    2

    2

    2

    1

    2

    2

    2

    1

    tME=

  • 7/27/2019 Mechanical Design Data Book.pdf

    9/69

    8

    External Contracting Brakes

    Block brake with short shoe

    NRMt = Where

    tM = Braking Torque

    R = Radius of the Brake Drum

    = Coefficient of Friction

    N = Normal reaction

    plwN = Where

    p = Permissible pressure between the block andthe brake drum

    l = length of the blockw = width of the block

    )( PNRNR

    Y

    X

    ==

    Nb

    caP

    =

    )(

    Pivoted block brake with long shoecosmaxPP =

    2sin2

    sin4

    +=

    Rh

  • 7/27/2019 Mechanical Design Data Book.pdf

    10/69

    9

    sin2 max2wpRMt =

    )2sin2(2

    1max += RwpRY

    Internal expanding brake

    ( ) ( )[ ]

    max

    2121max

    sin4

    2cos2coscoscos4

    =

    hRRwpMf

    ( ) ( )[ ]

    max

    1212max

    sin4

    2sin2sin2

    =

    RwhpMn

    max

    21max

    2

    sin

    )cos(cos

    =

    wpR

    Mt

    C

    MMP

    fn = (Clock wise rotation of the brake drum)

    C

    MMP

    fn += (Anti clock wise rotation of the brake drum)

    0

    2

    0

    max 9090 >= when 0

    22max 90

  • 7/27/2019 Mechanical Design Data Book.pdf

    11/69

    10

    fM = moment due to friction.

    nM = moment due to normal force.

    tM = elemental torque due to frictional force.

    R = radius of the brake lining.w = face width of frictional lining.

    Band Brakes

    1

    P = tension on the tight side of the band.

    2P = tension on the loose side of the band.

    = angle of wrap (rad).

    tM = torque capacity of the brake.

    R = radius of the brake drum.RPPMt )( 21 =

    Rw

    Pp =

    Rw

    Pp 1max =

    p = intensity of pressure.w = width of the frictional lining.Differential band brake.

    l

    ebaPp

    )(2

    =

  • 7/27/2019 Mechanical Design Data Book.pdf

    12/69

    11

    Thermal Considerations

    mc

    Et =

    Where t = temperature rise of the brake drum assembly( C0 )

    E = total energy absorbed by the brakem = mass of the brake drum assemblyc = specific heat of the brake drum material

  • 7/27/2019 Mechanical Design Data Book.pdf

    13/69

    12

    Belt Drives

    GEOMETRICAL RELATIONSHIPS

    Open belt drive

    )2(sin2180 1

    C

    dDs

    =

    )2(sin2180 1

    CdD

    b +=

    C

    dDdDCL

    4

    )(

    2

    )(2

    2+

    ++=

    Cross belt drive

    )2(sin2180 1

    C

    dDbs

    ++==

    C

    dDdDCL

    4

    )(

    2

    )(2

    2++

    ++=

  • 7/27/2019 Mechanical Design Data Book.pdf

    14/69

    13

    Analysis of belt tension

    fe

    mvP

    mvP=

    2

    2

    2

    1

    (For flat belts)

    )2

    1sin(

    2

    2

    2

    1f

    emvP

    mvP

    =

    (For V-belts)

    Power transmitted= vPP )( 21

    Condition for maximum power transmission

    m

    Pv i

    3=

    SELECTION OF FLAT BELT FROM THE

    MANUFACTURES CATALOGUE

    )()( max kWFkW a=

    Where max)(kW = power transmitted by the belt for the

    design purpose

  • 7/27/2019 Mechanical Design Data Book.pdf

    15/69

    14

    )(kW = actual power transmitted by the belt

    aF = load correction factor

    Type of load aF

    (i) Normal load 1.0

    (ii) Steady load, e.g. centrifugal pumps-fans-lightmachine tools-conveyors 1.2

    (iii) Intermittent load, e.g. heavy duty fans-

    blowers-compressors- reciprocating pumps-lineshafts-heavy duty machines

    1.3

    (iv) Shock load, e.g. vacuum pumps-rolling mills-hammers-grinders 1.5

    Arc of contact factor

    s (degrees)120 130 140 150 160 170 180 190 200

    dF 1.33 1.26 1.19 1.13 1.08 1.04 1.00 0.97 0.94

    HI-SPEED 0.0118 kW per mm width per ply

    FORT 0.0147 kW per mm width per ply

  • 7/27/2019 Mechanical Design Data Book.pdf

    16/69

    15

    Standard widths of the belt are as

    follows

    3-Ply 25 40 50 63 764-Ply 40 44 50 63 76 90 100 112 125 1525-Ply 76 100 112 125 1526-Ply 112 125 152 180 200

    dcorrected FkWkW = max)()( For HI-SPEED belt,

    Corrected kW rating= (5.08)

    0.0118v

    For FORT belt,

    Corrected kW rating=(5.08)

    0.0147v

    SELECTION OF V-BELTS

    Dimensions of standard cross-sectionsBelt Section Width

    W(mm)Thickness

    T(mm)Minimum pitch

    diameter of pulley(mm)A 13 8 125B 17 11 200C 22 14 300D 32 19 500

    E 38 23 630

  • 7/27/2019 Mechanical Design Data Book.pdf

    17/69

    16

    Conversion of inside length to pitch length of the beltBelt section A B C D E

    Difference between pitch length andinside length (mm) 36

    43 56 79

    92

    Preferred values for pitch diameters (mm)

    125 132 140 150 160 170 180 190 200 212 224236 250 265 280 300 315 355 375 400 425 450475 500 530 560 600 630 670 710 750 800 9001000

  • 7/27/2019 Mechanical Design Data Book.pdf

    18/69

    17

    ld

    a

    FFbeltofratingkWFkWinpowerdtransmittebeltsofNumber

    =

    ___)___(__

    Where aF = correction factor for industrial service

    dF = correction factor for arc of contact

    lF= correction factor for belt length

  • 7/27/2019 Mechanical Design Data Book.pdf

    19/69

    18

  • 7/27/2019 Mechanical Design Data Book.pdf

    20/69

  • 7/27/2019 Mechanical Design Data Book.pdf

    21/69

  • 7/27/2019 Mechanical Design Data Book.pdf

    22/69

    21

    ++

    +=

    2

    12

    2

    2121

    28

    224

    zzzzL

    zzL

    pa nn

    POWER RATING OF ROLLER CHAINS

    1000

    1vPkW =

    Where

    1P = allowable tension in the chain (N)

    v = average velocity of chain

  • 7/27/2019 Mechanical Design Data Book.pdf

    23/69

    22

    kW rating of chain =( )

    21

    ___

    KK

    KdtransmittebetokW s

    Where sK = service factor

    Multiple strand factors )( 1K

    Number of strands 1K1 1.02 1.73 2.5

    4 3.35 3.96 4.6

  • 7/27/2019 Mechanical Design Data Book.pdf

    24/69

    23

    Tooth correction factor )( 2K

    Number of teeth on thedriving sprocket 2

    K

    15 0.85

    16 0.9217 1.0018 1.0519 1.11

    20 1.1821 1.2622 1.29

    23 1.3524 1.41

    25 1.4630 1.73

  • 7/27/2019 Mechanical Design Data Book.pdf

    25/69

  • 7/27/2019 Mechanical Design Data Book.pdf

    26/69

    25

    Rolling Contact Bearing

    Stribecks Equation

    ( ) ...............2cos2cos2 3210 +++= PPPC

    cos

    1

    2 =

    32

    1

    2

    1

    2

    =

    P

    P

    MPC 10 =

    Where,

    ( ) ( ) 2525 2cos2cos21 ++=M

    0C = Static load

    ..., 21 = radial deflections at the respective balls.

    z

    360=

    Wherez is number of balls

    M

    zis practically constant and Stribeck suggested a value of

    5 for

    M

    z

    105

    1zPC

    =

  • 7/27/2019 Mechanical Design Data Book.pdf

    27/69

    26

    2

    1 kdP = Where d is, the ball diameter and factor kdepends upon radii of curvature at the point of contact andon the modulii of elasticity of the materials.

    Stribecks Equation

    5

    2

    0

    zkdC =

    Equivalent Bearing Load

    ar YFXFP += Where, P= equivalent dynamic load

    rF = radial load

    aF = axial or thrust load

    X and Y are radial and thrust factors respectively andthere values are given in the manufactures catalogue.

    Load Life Relationship

    p

    P

    CL

    =

    Where L = bearing life (in million revolutions)

    C = dynamic load capacity (N)p = 3 (for ball bearing)p = 10/3 (for roller bearing)

  • 7/27/2019 Mechanical Design Data Book.pdf

    28/69

    27

    Relationship between life in million revolutions and and life inworking hours is given by

    610

    60 hnL

    L =

    Where hL =bearing life (hours)

    n = speed of rotation (rpm)

    Selection of bearing from manufacturescatalogue

    X and Y factors for single-row deep groove ball bearings

    0C

    Fa

    eF

    F

    r

    a

    eF

    F

    r

    a >

    e

    X Y X Y

    0.0250.0400.0700.1300.250

    0.500

    11111

    1

    00000

    0

    0.560.560.560.560.56

    0.56

    2.01.81.61.41.2

    1.0

    0.220.240.270.310.37

    0.44

    ar YFXFP +=

  • 7/27/2019 Mechanical Design Data Book.pdf

    29/69

  • 7/27/2019 Mechanical Design Data Book.pdf

    30/69

    29

    52 15 14000 6950 620562 17 22500 11400 630580 21 35800 19600 6405

    30 42 7 3120 2080 61806

    55 9 11200 5850 1600655 13 13300 6800 600662 16 19500 10000 620672 19 28100 14600 630690 23 43600 24000 6406

    35 47 7 4030 3000 6180062 9 12400 6950 1600762 14 15900 8500 6007

    72 17 25500 13700 620780 21 33200 18000 6307

    100 25 55300 31000 6407

    40 52 7 4160 3350 6180868 9 13300 7800 1600868 15 16800 9300 600880 18 30700 16600 620890 23 41000 22400 6308

    110 27 63700 36500 640845 58 7 6050 3800 61809

    75 10 15600 9300 1600975 16 21200 12200 600985 19 33200 18600 6209

    100 25 52700 30000 6309120 29 76100 45500 6409

    50 65 7 6240 4250 61810

    80 10 16300 10000 1601080 16 21600 12300 601090 20 35100 19600 6210

    110 27 61800 36000 6310130 31 87100 52000 6410

    55 72 9 8320 5600 61811

  • 7/27/2019 Mechanical Design Data Book.pdf

    31/69

    30

    90 11 19500 12200 1601190 18 28100 17000 6011

    100 21 43600 25000 6211120 29 71500 41500 6311

    140 33 99500 63000 641160 78 10 8710 6100 61812

    95 11 19900 13200 1601295 18 29600 18300 6012

    110 22 47500 28000 6212130 31 81900 48000 6312150 35 108000 69500 6412

    65 85 10 11700 8300 61813

    100 11 21200 14600 16013100 18 30700 19600 6013120 23 55900 34000 6213140 33 92300 56000 6313160 37 119000 78000 6413

    70 90 10 12100 9150 61814110 13 28100 19000 16014110 20 37700 24500 6014

    125 24 61800 37500 6214150 35 104000 63000 6314180 42 143000 104000 6414

    75 95 10 12500 9800 61815115 13 28600 20000 10615115 20 39700 26000 6015130 25 66300 40500 6215160 37 112000 72000 6315

    190 45 153000 114000 6415

  • 7/27/2019 Mechanical Design Data Book.pdf

    32/69

    31

    Dynamic load capacityp

    P

    CL

    =

  • 7/27/2019 Mechanical Design Data Book.pdf

    33/69

    32

    Selection of Taper Roller Bearings

    YFF ra 5.0=

    Where Y is the thrust factor

    Equivalent dynamic load for single row taper roller bearingsis given by

    ( )

    ( ) eFFwhenYFFP

    eFFwhenFP

    raar

    rar

    >+=

    =

    4.0

    Dimensions, Dynamic capabilities and calculation factors forsingle row taper roller bearing

    d D B C Designation e Y20 42 15 22900 32004X 0.37 1.6

    47 15.25 26000 30204 0.35 1.752 16.25 31900 30304 0.30 2.052 72.25 41300 32304 0.30 2.0

    25 47 15 25500 32005X 0.43 1.452 16.25 29200 30205 0.37 1.652 19.25 34100 32205B 0.57 1.0552 22 44000 33205 0.35 1.7

    62 18.25 41800 30305 0.30 2

    62 18.25 35800 31305 0.83 0.7262 25.25 56100 32305 0.30 2

    30 55 17 33600 32006X 0.43 1.462 17.25 38000 30206 0.37 1.6

    62 21.25 47300 32206 0.37 1.662 21.25 45700 32206B 0.57 1.05

  • 7/27/2019 Mechanical Design Data Book.pdf

    34/69

  • 7/27/2019 Mechanical Design Data Book.pdf

    35/69

    34

    50 80 24 64400 33010 0.31 1.9

    85 26 80900 33110 0.40 1.590 21.75 70400 30210 0.43 1.490 24.75 76500 32210 0.43 1.4

    90 32 108000 33210 0.40 1.5100 36 145000 T2ED050 0.35 1.7105 32 102000 T7FC050 0.88 0.68110 29.25 117000 30310 0.35 1.7

    110 29.25 99000 31310 0.83 0.72110 42.25 161000 32310 0.35 1.7110 42.25 151000 32310B 0.54 1.1

    60 95 23 76500 32012X 0.43 1.4

    95 27 85800 33012 0.33 1.8100 30 110000 33112 0.40 1.5110 23.75 91300 30212 0.40 1.5110 29.75 119000 32212 0.40 1.5

    110 38 157000 33212 0.40 1.5115 39 157000 T5ED060 0.54 1.1115 40 183000 T2EE060 0.33 1.8

    125 37 145000 T7FC060 0.83 0.72

    130 33.5 161000 30312 0.35 1.7130 33.5 134000 31312 0.83 0.72130 48.5 216000 32312 0.35 1.7

    130 48.5 205000 32312B 0.54 1.170 110 25 95200 32014X 0.43 1.4

    110 31 121000 33014 0.28 2.1

    120 37 161000 33114 0.37 1.6125 26.25 119000 30214 0.43 1.4

    125 33.25 147000 32214 0.43 1.4125 41 190000 33214 0.40 1.5

    130 43 220000 T2ED070 0.33 1.8140 39 168000 T7FC070 0.88 0.68140 32 264000 T4FE070 0.44 1.35150 38 209000 3014 0.35 1.7

  • 7/27/2019 Mechanical Design Data Book.pdf

    36/69

    35

    70 150 38 176000 31314 0.83 0.72

    150 54 275000 32314 0.35 1.7150 54 264000 32314B 0.54 1.1

    80 125 29 128000 32016X 0.43 1.4

    125 36 157000 33016 0.28 2.1130 37 168000 33116 0.43 1.4140 28.25 140000 30216 0.43 1.4140 35.25 176000 32216 0.43 1.4

    140 46 233000 33216 0.43 1.4145 46 264000 T2ED080 0.31 1.9170 42.5 255000 30316 0.35 1.7170 42.5 212000 31316 0.83 0.72

    170 61.5 358000 32316 0.35 1.7170 61.5 336000 32316B 0.54 1.1

    90 140 32 157000 32018X 0.43 1.4140 39 205000 33018 0.27 2.2

    150 45 238000 33118 0.40 1.5155 46 270000 T2ED090 0.33 1.8160 32.5 183000 30218 0.43 1.4

    160 42.5 238000 32218 0.43 1.4

    190 46.5 308000 30318 0.35 1.7190 46.5 251000 31318 0.83 0.72190 67.5 429000 32318 0.35 1.7

    100 145 24 119000 T4CB100 0.48 1.25150 32 161000 32020X 0.46 1.3150 39 212000 33020 0.28 2.1

    165 47 292000 T2EE100 0.31 1.9180 37 233000 30220 0.43 1.4

    180 49 297000 32220 0.43 1.4180 63 402000 33220 0.40 1.5

    215 51.5 380000 30320 0.35 1.7215 56.5 352000 31320X 0.83 0.72215 77.5 539000 32320 0.35 1.7

    150 225 48 347000 32030X 0.46 1.3

  • 7/27/2019 Mechanical Design Data Book.pdf

    37/69

    36

    150 270 49 402000 30230 0.43 1.4

    270 77 682000 32230 0.43 1.4320 72 765000 30330 0.35 1.7320 82 837000 31330X 0.83 0.72

    200 280 51 446000 32940 0.40 1.5310 70 704000 32040X 0.43 1.4360 64 737000 30240 0.43 1.4360 104 1140000 32240 0.40 1.5

    300 420 76 990000 32960 0.40 1.5

  • 7/27/2019 Mechanical Design Data Book.pdf

    38/69

  • 7/27/2019 Mechanical Design Data Book.pdf

    39/69

    38

    Design for Cyclic Load and Speeds

    3

    3

    =

    N

    BPPe

    Bearing With a Probability of Survival Other

    Than 90 Percent

    b

    e

    e

    R

    R

    L

    L

    1

    90

    90 1log

    1log

    =

    Where b = 1.17

  • 7/27/2019 Mechanical Design Data Book.pdf

    40/69

    39

    Sliding Contact Bearing

    Effect of Temperature on Viscosity

  • 7/27/2019 Mechanical Design Data Book.pdf

    41/69

    40

    Hydrostatic Step BearingThe following notations are used in the analysis,W = Trust load

    0R = outer radius of the shaftiR = inner radius of the shaft

    iP = supply of inlet pressure

    oP = outlet or atmospheric pressure

    0h = fluid film thickness

    Q = flow of the lubricant

    = viscosity of the lubricant

    =

    i

    e

    i

    R

    R

    hPQ

    0

    3

    0

    log6

    =

    ie

    ii

    R

    R

    RRPW

    0

    22

    0

    log

    2

    Energy Losses in Hydrostatic Thrust

    Bearing

    )10)(()( 60= PPQkW ip

    pkW)( = power loss in pumping

    0

    44

    0

    2

    6

    )(

    1005.58

    1)(

    h

    RRnkW if

    =

    fkW)( = power loss due to friction

  • 7/27/2019 Mechanical Design Data Book.pdf

    42/69

    41

    fpt kWkWkW )()()( +=

    tkW)( = total power loss

    Reynolds Equation

    =

    +

    x

    hU

    z

    ph

    zx

    ph

    x633

    Raimondi and Boyd Method

    Dimensionless performance parameters for full

    journal bearings with side flow

    d

    l

    c

    h0 S

    fc

    r

    lrcn

    Q

    s

    Q

    Qs

    maxp

    p

    0 1.0 70.92 0 _0.1 0.9 0.240 69.10 4.80 3.03 0 0.826

    0.2 0.8 0.123 67.26 2.57 2.83 0 0.8140.4 0.6 0.0626 61.94 1.52 2.26 0 0.7640.6 0.4 0.0389 54.31 1.20 1.56 0 0.6670.8 0.2 0.021 42.22 0.961 0.760 0 0.4950.9 0.1 0.0115 31.62 0.756 0.411 0 0.358

    0.97 0.03 _ _ _ _ 0 _1.0 0 0 0 0 0 0 0

    1

    0 1.0 85 0 _0.1 0.9 1.33 79.5 26.4 3.37 0.150 0.5400.2 0.8 0.631 74.02 12.8 3.59 0.280 0.5290.4 0.6 0.264 63.10 5.79 3.99 0.497 0.4840.6 0.4 0.121 50.58 3.22 4.33 0.680 0.415

    0.8 0.2 0.0446 36.24 1.70 4.62 0.842 0.3130.9 0.1 0.0188 26.45 1.05 4.74 0.919 0.247

  • 7/27/2019 Mechanical Design Data Book.pdf

    43/69

    42

    0.97 0.03 0.00474 15.47 0.514 4.82 0.973 0.1521.0 0 0 0 0 0 1.0 _

    0 1.0 88.5 0 _0.1 0.9 4.31 81.62 85.6 3.43 0.173 0.523

    0.2 0.8 2.03 74.94 40.9 3.72 0.318 0.5060.4 0.6 0.779 61.45 17.0 4.29 0.552 0.4410.6 0.4 0.319 48.14 8.10 4.85 0.730 0.3650.8 0.2 0.0923 33.31 3.26 5.41 0.874 0.2670.9 0.1 0.0313 23.66 1.60 5.69 0.939 0.206

    0.97 0.03 0.00609 13.75 0.610 5.88 0.980 0.1261.0 0 0 0 0 _ 1.0 0

    0 1.0 89.5 0 _0.1 0.9 16.2 82.31 322.0 3.45 0.180 0.5150.2 0.8 7.57 75.18 153.0 3.76 0.330 0.4890.4 0.6 2.83 60.86 61.1 4.37 0.567 0.4150.6 0.4 1.07 46.72 26.7 4.99 0.746 0.3340.8 0.2 0.261 31.04 8.8 5.60 0.884 0.2400.9 0.1 0.0736 21.85 3.50 5.91 0.945 0.180

    0.97 0.03 0.0101 12.22 0.922 6.12 0.984 0.1081.0 0 0 0 0 _ 1.0 0

    c = R-rWhere c = radial clearance (mm)

    R = radius of bearingr = radius of journal

    c

    e=

    Where e =eccentricity ratio,

    = eccentricity ratio

    =

    c

    h01

    Where 0h =film thickness

  • 7/27/2019 Mechanical Design Data Book.pdf

    44/69

    43

    c

    h0is called the minimum film thickness variable

    The Sommerfed number is given by

    p

    n

    c

    rS s2

    =

    Where sn =journal speed

    p = unit bearing pressureThe Coefficient of Friction Variable (CFV) is given by

    fc

    r

    CFV

    =)(

    Where f is the coefficient of friction

    Frictional power 610

    2)(

    fWrnkW sf

    =

    The Flow Variable (FV) is given by

    lrcn

    QFV

    s

    =)(

    Where l = length of the bearingQ= flow of the lubricant

    Temperature Rise

    )(

    )(3.8

    FV

    CFVpt=

    2tTT iav +=

  • 7/27/2019 Mechanical Design Data Book.pdf

    45/69

    44

    Bearing Design Selection of

    Parameters

  • 7/27/2019 Mechanical Design Data Book.pdf

    46/69

    45

    Spur GearsThe pitch circle diameter is given by

    mzd =1

    Centre to centre distance,

    2

    )( gpn zzma

    +=

    Here transmission ratiog

    p

    p

    g

    n

    n

    z

    zi ==

    Standard System of Gear Tooth

    Choice 1(preferred)

    1.005.00

    1.256.0

    1.508.00

    2.0010.00

    2.512.00

    3.0016.00

    4.020.00

    Choice2 1.12

    5.5

    1.375

    7.00

    1.75

    9.00

    2.25

    11.00

    2.75

    14.0

    3.50

    18.00

    4.5

    Addendum( )ah =(m)

    Dedendum ( )fh =1.25m

    Clearance(c) =0.25mTooth thickness = 1.5708m

    Fillet radius = 0.4m

  • 7/27/2019 Mechanical Design Data Book.pdf

    47/69

    46

    Force Analysis

    n

    kWMt

    2

    )(1060 6=

    1

    2

    d

    mp tt =

    tantr PP =

    cos

    t

    N

    PP =

    Number of Teeth

    2minsin

    2=z

    Pressure angle ( ) 05.14 020 025

    minz (Theoretical)32 17 11

    minz (Practical)27 14 9

    Face Width(3m)

  • 7/27/2019 Mechanical Design Data Book.pdf

    48/69

    47

    Beam Strength of Gear Tooth

    YmbS bb =

    Values of the Lewis form factor Y for 20 0 full depth involutesystem

    z Y z Y z Y

    15 0.289 27 0.348 55 0.415

    16 0.295 28 0.352 60 0.421

    17 0.302 29 0.355 65 0.425

    18 0.308 30 0.358 70 0.429

    19 0.314 32 0.364 75 0.43320 0.320 33 0.367 80 0.436

    21 0.326 35 0.373 90 0.442

    22 0.330 37 0.380 100 0.446

    23 0.333 39 0.386 150 0.458

    24 0.337 40 0.389 200 0.463

    25 0.340 45 0.399 300 0.47126 0.344 50 0.408 Rack 0.484

  • 7/27/2019 Mechanical Design Data Book.pdf

    49/69

    48

    Effective Load on Gear Tooth

    (1)For ordinary and commercially cut gears made with formcutters with v

  • 7/27/2019 Mechanical Design Data Book.pdf

    50/69

    49

    (2) C.I Pinion with C.I gear:

    ( )222121

    3785 rr

    rbrzenP

    pp

    d

    +=

    (3) Steel Pinion with C.I Gear

    ( )222121

    92.03260 rr

    rbrzenP

    pp

    d

    +=

    e = sum of errors between two meshing teeth (mm)

    gp eee +=

    where pe =error for pinion

    ge =error for gear

    Type of drivenmachines

    Source of power

    Electricmotor

    Turbine/Multicylinder engine

    Single-cylinderengine

    Generators-feedingmechanisms-belt conveyors-

    blowers-compressors-agitators

    and mixers

    1.10 1.25 1.50

    Machine tools-hoist andcranes-rotary drives-pistonpumps-distribution pumps

    1.25 1.50 1.75

    Blanking and shearing presses-rolling mills-centrifuges-steel

    work machinery

    1.75 2.00 2.25

  • 7/27/2019 Mechanical Design Data Book.pdf

    51/69

    50

    Estimation of Module Based on BeamStrength

    ( ) ( )

    31

    6

    3

    1060

    =

    YS

    m

    bznC

    fsCkWm

    utv

    s

    Wear Strength of Gear Tooth

    ( )4.1

    11cossin 212 EE

    K c+

    =

  • 7/27/2019 Mechanical Design Data Book.pdf

    52/69

    51

    KbQdS pw1=

    pg

    g

    zz

    zQ

    =2

    Expression for the load stress factor K can be simplifiedwhen all the gears are made of steel with a 20 0 pressureangle . in this special case,

    2

    21 207000 mmNEE == 020=

    2))(81.9(27.0 mmNBHNc = where BHN=Brinell Hardness Number.Therefore,

    2

    10016.0

    =

    BHNK

    Estimation of Module Based on

    Wear Strength

    ( ) ( )

    31

    2

    61060

    =

    QKm

    bCnz

    fsCkWm

    vpp

    s

    Gear Design for Maximum Power

    Transmitting Capacitydw PS 2=

    2

    w

    dt

    SPP ==

  • 7/27/2019 Mechanical Design Data Book.pdf

    53/69

    52

    Helical gears

    cos

    PPn =

    cosmmn =

    nm = normal module

    m = transverse module

    tan

    ppa =

    tan

    tancos n=

    cos

    nzmd =

    cos2

    )( 21 zzma n+

    =

    p

    g

    g

    p

    z

    zi ==

    Where i=speed ratio for helical gearSuffixes p and g refer to the pinion and gear respectivelya is the centre to centre distance between two helical gearshaving 1z and 2z as the number of teeth.

    The normal pressure angle is usually 020 .

    Virtual number of teeth

    31

    cos

    zz =

  • 7/27/2019 Mechanical Design Data Book.pdf

    54/69

    53

    Tooth proportionsIn helical gears, the normal module nm should be selected

    from standards. The first preference values of the normal

    module are nm (mm) 1, 1.25, 1.5, 2, 2.5,3,4,5,6,8 and10.The standard proportions of the addendum and dedendumare,

    Addendum na mh =)(

    Dedendum nf mh 25.1)( =

    Clearance nmc 25.0)( =

    Addendum circle diameter ad is given by

    += 2cos

    zmd na

    Dedendum circle diameter fd is given by

    = 5.2

    cos

    zmd nf

    sin

    nmb

    This is the minimum face width.Force Analysis

    =tp Tangential component

    =rp Radial component

    =ap Axial or thrust component

    coscos nt pp = tanta pp =

  • 7/27/2019 Mechanical Design Data Book.pdf

    55/69

    54

    =

    cos

    tan ntr pp

    dmp tt 2=

    Beam strength of helical gears

    YmS bnb =

    Effective load on gear tooth

    n

    kWMt

    2

    )(1060 6=

    d

    MP tt2

    =

    v

    ts

    effC

    PCP =

    sC = service factor (from table)

    vC = velocity factor

    The velocity factor ,

    vCv

    +=6.5

    6.5

    Dynamic load is given by

  • 7/27/2019 Mechanical Design Data Book.pdf

    56/69

    55

    2

    2

    2

    1

    21

    2530 rr

    rbrzenP

    pp

    d

    +=

    )coscos( ndtseff PPCP +=

    )( fsPS effb =

    Wear strength of helical gears

    2cos

    KbQdS

    p

    w =

    11

    12

    pg

    g

    zz

    zQ

    +=

    pg

    g

    zzzQ+

    = 2

    for internal helical gear

    pg

    g

    zz

    zQ

    =2

    4.1

    11cossin

    21

    2

    +

    =EE

    K

    nnc

  • 7/27/2019 Mechanical Design Data Book.pdf

    57/69

  • 7/27/2019 Mechanical Design Data Book.pdf

    58/69

    57

    Bevel Gears

    cos2

    Drb =

    cos

    1 zz =

    g

    p

    z

    z=tan

    p

    g

    z

    z=tan

    2

    =+

    The cone distance 0A is given by22

    022

    +

    =

    gp

    DDA

    Force Analysis

    =2

    sin

    2

    bDr

    p

    m

    Where mr

    = radius of the pinion at the mid point along theface widthb = face width of the tooth

  • 7/27/2019 Mechanical Design Data Book.pdf

    59/69

    58

    m

    tt

    r

    MP =

    tants PP =

    Where tP = tangential or useful component which isperpendicular to the plane of the paper.

    sP = the separating force between the two meshingteeth

    sintancostan

    ta

    tr

    PP

    PP

    =

    =

    Beam Strength of Bevel Gears

    =0

    1A

    bYmbS bb

    Where bS beam strength of the toothm = module at the large end of the toothb = face width

    b = permissible bending stress ( 3utS )Y = Lewis form factor based on formative number of

    teeth

    0A = cone distance

    D

    MP tt2

    =

    face width of the bevel gear is generally taken as (10 m) or( 30A ) whichever is smaller

  • 7/27/2019 Mechanical Design Data Book.pdf

    60/69

    59

    b = (10 m) or ( )30A (Whichever is smaller)

    WEAR STRENGTH OF BEVEL GEARS

    Buckinghams equationKbQdS pw1=

    Where wS = wear strengthb = face width of gears

    Q = ratio factors1

    pd = pitch circle diameter of the formative pinion

    K = material constant

    bp rd 21=

    cos

    75.0 KbQDS

    p

    w = (Buckinghams equation)

    tan

    2

    pg

    g

    zz

    zQ

    +=

    4.1

    11cossin2

    +

    =gp

    cEE

    K

    When pinion as well as the gear is made of steel with 020 pressure angle, the value of K is given by

    2

    10016.0

    =

    BHN

    K

  • 7/27/2019 Mechanical Design Data Book.pdf

    61/69

    60

    EFFECTIVE LOAD ON GEAR TOOTH

    n

    kWMt

    2

    )(1060 6=

    D

    MP tt2

    =

    v

    ts

    effC

    PCP =

    s

    C= service factor (from table)

    Type of drivenmachines

    Source of power

    Electricmotor

    Turbine/Multicylinder engine

    Single-cylinderengine

    Generators-feedingmechanisms-belt conveyors-

    blowers-compressors-agitatorsand mixers

    1.10 1.25 1.50

    Machine tools-hoist andcranes-rotary drives-pistonpumps-distribution pumps

    1.25 1.50 1.75

    Blanking and shearing presses-rolling mills-centrifuges-steel

    work machinery

    1.75 2.00 2.25

    vC = velocity factor

    The velocity factor for cut teeth is given by

  • 7/27/2019 Mechanical Design Data Book.pdf

    62/69

  • 7/27/2019 Mechanical Design Data Book.pdf

    63/69

    62

    Worm Gears

    Notations:-

    1z = number of starts on the worm2z = number of teeth on the worm wheel

    q = diametral quotientm = module

    1d = pitch circle diameter of the worm

    1ad = outer diameter of the worm

    2ad = outer diameter of the worm wheel

    2d = pitch circle diameter of the worm wheell = lead of the worm

    xp = axial pitch of the worma = the centre distancei = the speed ratio.F = the effective face width

    rl = the length of the root of the worm gear teeth.

    Proportions of Worm Gears

  • 7/27/2019 Mechanical Design Data Book.pdf

    64/69

    63

    m

    dq 1=

    1zpl x=

    22 mzd = mp x =

    1mzl =

    )(2

    12zqma +=

  • 7/27/2019 Mechanical Design Data Book.pdf

    65/69

    64

    1

    2

    z

    zi =

    )1(2 += qmF

    ++=

    cd

    F

    cdla

    ar2sin)2( 1

    1

    1

    Force Analysis

    tP )( 1 = tangential component on the worm

    aP )( 1 = axial component on the worm

    rP )( 1 = radial component on the worm

    1

    1 2)(dMP tt =

    ( )( )

    cossincos

    sincoscos)()( 11

    +

    = ta PP

    )cossin(cos

    sin)()( 11

    += tr PP

    Friction in worm gears

    sv = rubbing velocity

    1v = pitch line velocity of the worm

    2v = pitch line velocity of the worm wheel

    )1000)(60(

    111

    ndv

    =

    cos)60000(

    11ndvs =

    ( ))cot(

    tancos

    +

    =

    cas

  • 7/27/2019 Mechanical Design Data Book.pdf

    66/69

    65

    Strength Rating Of Worm Gears

    cos65.17)(

    cos65.17)(

    2222

    2111

    dmlSXM

    dmlSXM

    rbbt

    rbbt

    =

    =

    1)( tM , 2)( tM = permissible torque on the worm wheel

    1bX , 2bX = speed factors for the strength of worm andworm wheel

    1bS , 2bS = bending stress factors for worm and wormwheel

  • 7/27/2019 Mechanical Design Data Book.pdf

    67/69

    66

    m = module

    rl = the length of the root of the worm gear teeth.

    2d = pitch circle diameter of the worm wheel

    = lead angle of the wormPower transmitting capacity of the worm gear based on thebeam strength is given by

    61060

    2

    = t

    nMkW

    Where )( tM is the lower value between 1)( tM and 2)( tM .

  • 7/27/2019 Mechanical Design Data Book.pdf

    68/69

    67

    Wear Rating of Worm Gears

    mdYSXM

    mdYSXM

    Zcct

    Zcct

    8.1

    2224

    8.1

    2113

    )(64.18)(

    )(64.18)(

    =

    =

    3)( tM , 4)( tM = permissible torque on the worm wheel

    1cX , 2cX = speed factors for the strength of worm andworm wheel

    1cS , 2cS = surface stress factors of the worm and worm

    wheel

    zY = zone factor

    Thermal Considerations

    kWHg )1(1000 =

    Where gH = rate heat generation

  • 7/27/2019 Mechanical Design Data Book.pdf

    69/69

    68

    = efficiency of the of the worm gear (fraction)kW = power transmitted by the gears

    AttkHd )( 0=

    Where dH = rate of heat dissipationk = overall heat transfer coefficient of housing

    walls ( )CmW 02 t = temperature of the lubrication oil. ( C0 )

    0t = temperature of the surrounding air( C0 )A = effective surface area of housing

    kA

    kWtt

    AttkkW

    )1(1000

    )1(1000

    )(

    0

    0

    +=

    =