mechanical behavior of materials marc a. meyers & krishan k. chawla cambridge university press

57
Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Upload: dale-chad-potter

Post on 28-Dec-2015

261 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Mechanical Behavior of Materials

Marc A. Meyers & Krishan K. Chawla

Cambridge University Press

Page 2: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Chapter 1Materials, Structure, Properties, and

Performance

Page 3: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Thomas’s Iterative Tetrahedron

Page 4: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Properties of Main Classes of Materials

Page 5: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Biomaterials: Dental Implants in the Jawbone

Steps required for insertion of implant into mandible.

(Courtesy of J. Mahooti.)

Page 6: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Biomaterials: Typical Hip and Knee Prostheses

Total hip replacement prosthesis Total knee replacement prosthesis.

Page 7: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Composites: Schematic representations of different classes

Page 8: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Composites: Different Types of Reinforcement

Page 9: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Specific Modulus and Strength of Some Materials

Page 10: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Hierarchical Structure: Biological and Synthetic Materials

Tendon

Advanced Synthetic Composite

Page 11: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Crystal Structures:7 Crystal Systems, 14 Bravais lattices

Page 12: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Directions in Cubic Unit Cell

Page 13: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Miller Indices for Planes in Cubic Cell

Page 14: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Direction and Planes: Miller Indices

Page 15: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Hexagonal Structure

Three to four index conversion

Page 16: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Three Most Common Crystal Structures

Page 17: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

(001) Plane in Molybdenum

Atomic Resolution Transmission Electron Microscopy; Courtesy R. Gronsky

Page 18: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

FCC and HCP Structures: Stacking of Closest Packed Planes

(a)Layer of most closely packed atoms corresponding to (111) in FCC and (00.1) in HCP.

(b) Packing sequence of most densely packed planes in AB and AC sequence.

(c) Ball model showing the ABAB sequence of the HCP structure.

(d) Ball model showing the ABCABC sequence of the FCC structure.

Page 19: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Different Structures of Ceramics

Page 20: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Ordered Structure: Intermetallic Compound

Page 21: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Important Intermetallic Compounds

Page 22: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Structure of Glasses

Ordered crystalline of silica Random-network of glassy silica

Page 23: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Structure of Glasses

(c)

Atomic arrangements in crystalline and glassy metals

Page 24: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Glasses and Crystals: Specific Volume

Page 25: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Classification of Polymers

Different types of molecular chain configurations.

(a) Homopolymer: one type of repeating unit.

(b) Random copolymer: two monomers, A and B, distributed randomly.

(c) Block copolymer: a sequence of monomer A, followed by a sequence of monomer B.

(d) Graft copolymer: Monomer A forms the main chain, while monomer B forms the branched chains.

Page 26: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Tacticity in Polypropylene

Tacticity : Order of placement of side groups.

Page 27: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Crystallinity of Polymers

A lamellar crystal showing growth spirals around screw dislocations. TEM.

(Courtesy of H.D. Keith.)

Spherulitic structures:a.Spherulitic structure

b. Each spherulite consists of radially arranged, narrow crystalline lamellae.

c. Each lamella has tightly packed polymer chains folding back and forth

Page 28: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Polymer Chain Configuration

Page 29: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Molecular Weight Distribution in Polymers

Page 30: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Liquid Crystals

Different types of order in the liquid crystalline state

Page 31: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Stress-Strain Curves for Biological Materials

Urether

(After F. C. P. Yin and Y. C. Fung, Am. J. Physiol. 221 (1971), 1484.)

Human femur bone

(After F. G. Evans, Artificial Limbs, 13 (1969) 37.)

Page 32: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Crack Propagation in an Abalone Shell

Cross section of abalone shell showing how a crack, starting at left, is deflected by viscoplastic layer between calcium carbonate lamellae (mesoscale).

Arrangement of calcium carbonate in nacre, forming a miniature“brick and mortar” structure (microscale).

Page 33: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Porous and Cellular Materials

Compressive stress–strain curves for foams. (a) Polyethylene with different initial

densities.

(b) Mullite with relative density = 0.08.

(c) Schematic of a sandwich structure.

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties (Oxford, U.K.: Pergamon Press, 1988), pp. 124, 125.)

Page 34: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Biological Material: Toucan Beak

Toucan beak

External shell made of keratin scales

Page 35: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Foams: Synthetic and Natural

Synthetic aluminum foam

Foam found in the inside of toucan beak

Courtesy of M. S. Schneider and K. S. Vecchio.

Page 36: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Biological Minerals: Atomic Structure

Atomic structure of hydroxyapatite: small white atoms (P), large gray atoms (O), black atoms (Ca).

Atomic structure of aragonite: large dark atoms (Ca), small gray atoms (C), large white atoms (O).

Courtesy K. S. Vecchio

Page 37: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press
Page 38: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Amino Acids

Missing eqn

Page 39: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Polypeptide ChainsAlpha Helix and Beta Sheet Structures

Page 40: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Collagen

Triple helix structure of collagen

Adapted from Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Berlin: Springer, 1993).

Page 41: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Collagen: Hierarchical Structure

Hierarchical organization of collagen,starting with triple helix,

and going to fibrils.

(From H. Lodish et al., Molecular Cell Biology, 4th ed. (New York, W.H. Freeman & Company, 1999).)

Page 42: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Mechanical Properties of a Collagen Fiber

Idealized configuration of a wavy collagen fiber.

Stress–strain curve of collagen with three characteristic stages.

Page 43: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Muscles:Actin

Molecular structure of actin.

Page 44: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Muscles: Myosin

Page 45: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Muscles:Movement of Actin and Myosin Filaments

Action of cross-bridges when actin filament is moved to left with respect to myosin filament; notice how cross-bridges detach themselves, then reattach themselves to actin.

Page 46: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Muscle Structure: Sarcomere Units

Page 47: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Muscle Structure: Myofibril

Page 48: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Muscle Hierarchical Structure: from Fibrils to Fibers

Page 49: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Biological Material: Sponge Spicule

Stress-deflection responses of synthetic silica rod and sponge spicule in flexuretesting. (Courtesy of M. Sarikaya and G. Mayer.)

SEM of fractured sponge spicule showing two-dimensional onion-skin structure of concentric layers.

(Courtesy of G. Mayer and M. Sarikaya.)

Page 50: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Active (Smart) Materials:Ferroelectricity

(a)Effect of applied field E on dimension of ferroelectric material.

(b) Linear relationship between strain and electric field.

(a) (Courtesy of G. Ravichandran.)

Page 51: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Electronic Materials

Cross section of a complementary metal-oxide semiconductor (CMOS).

(Adapted from W. D. Nix, Met. Trans., 20A (1989) 2217.)

Page 52: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Nanomaterials: Carbon NanotubesThree configurations for single wall carbon nanotubes:

arm chair;

“zig-zag”;

chiral.

(Adapted from M. S. Dresselhaus, G. Dresselhaus and R. Saito, Carbon, 33 (1995) 883.)

Page 53: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Nanomaterials: Carbon Nanotubes

Array of parallel carbon nanotubes grown as a forest. (From R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science, 297 (2002) 787.)

Page 54: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Strength of Copper Whisker

Page 55: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Strength of Whiskers

Page 56: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Tensile Strength of Whiskers at R. T.

Page 57: Mechanical Behavior of Materials Marc A. Meyers & Krishan K. Chawla Cambridge University Press

Turbine Blade Subjected to Centripetal Forces