measurement of the energy spectrum of ultra-high energy cosmic rays using the pierre ... · 2019....

18
Measurement of the energy spectrum of ultra-high energy cosmic rays using the Pierre Auger Observatory 1 Valerio Verzi 1 for the Pierre Auger Observatory 2 1 INFN, Sezione di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italia 2 Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina Full author list: http://www.auger.org/archive/authors_icrc_2019.html

Upload: others

Post on 19-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Measurement of the energy spectrum of ultra-high energy cosmic rays using the

    Pierre Auger Observatory

    1

    Valerio Verzi1 for the Pierre Auger Observatory2 1 INFN, Sezione di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italia 2 Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

    Full author list: http://www.auger.org/archive/authors_icrc_2019.html

  • Hybrid Observatory

    Fluorescence Detector (FD) 27 telescopes in 4 sites (-) duty cycle ~ 15% (+) calorimetric measurement of E

    Surface Detector array (SD) 1661 water-Cherenkov detectors on 1500 m and 750 m triangular grid (+) duty cycle ~ 100% (-) shower size at ground ∝ E (systematics)

    •  energy scale of the Observatory set by the FD with a 14% systematic uncertainty

    •  precise measurement of the flux up to 1020 eV

    B. Dawson #231 A. Coleman #225

    SD

    FD

    3000 km2

    2

    A. Castellina highlight

  • energy spectrum over 4 decades in energy

    SD 1500 m θ < 600

    E > 1018.4 eV

    SD 1500 m

    600 < θ < 800

    E > 1018.6 eV signal ~ Nµ

    FD + SD stat. hybrid

    (15% duty cycle)

    E > 1018 eV

    SD 750 m θ < 400

    A. Coleman #225

    E > 1017 eV

    FD-HEAT Cherenkov

    V. Novotny #374

    E > 1016.5 eV 3

  • energy estimation for 1500 m array θ < 600 events

    θsec

    1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

    Attenuation factor

    0.4

    0.6

    0.8

    1

    1.2

    1

    I

    2

    I

    3

    I

    fit the lateral distribution of the signals to get S(1000)

    use the CIC method to remove the zenith angle dependence of S(1000). CIC at different intensity thresholds

    note: correction determined from data (no use of simulations)

    3 EeV 8 EeV 20 EeV

    S38

    D. Mockler #353

    500 1000 1500 2000 2500 3000

    Axial Distance [m]

    1

    10

    210

    310

    Sign

    al [V

    EM]

    Measured Signals

    LDF Fit

    S(1000)

    4

  • [eV]FDE1910 2010

    [VEM

    ]38S

    10

    210

    B38E = A S 3338 events

    eV18 10× 0.003) ±A = (0.186 0.004±B = 1.031

    = -0.98ρ

    D/n.d.f. = 3419/3336

    energy estimation for 1500 m array θ < 600 events

    high-quality events triggered independently by SD and FD correlation well described by a power-law relationship maximum-likelihood fit using a “bootstrap” estimate of the p.d.f. and event-by-event uncertainties

    5

  • E [eV]1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E) 3710

    3810

    (E/eV)10

    log18.5 19 19.5 20

    rawJ 0 < 60θ1500m

    8314

    347

    500

    2865

    717

    843

    1243

    587

    15 6050 41

    1126

    2016

    9199

    162

    437

    215

    683

    249 6

    measurements done with full trigger efficiency

    raw energy spectrum using 1500 m array

    θ < 600 events

    J = fresJraw = fresN

    ε ΔE

    ε = (60400±1800) km2sr yr

    215030 events with E > 1018.4 eV

    6

  • (E/eV)10

    log1810 1910 2010

    ener

    gy re

    solu

    tion

    [%]

    5

    10

    15

    20

    25 resolutionSDE resolutionFDE

    ESD resolution knowing the EFD one

    7 FD/ESDE0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

    events

    0

    5

    10

    15

    20

    25

    30

    35

    E ≈10 EeV

    FD/ESDE0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

    events

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200E ≈1 EeV

    ingredients to calculate fres from hybrid data

    also ESD bias and trigger efficiency at lower energies

  • fres calculated using a forward-folding technique •  new function: sequence of 4 power-laws with 3 inflection points •  previous function: slow transition between ankle and suppression •  fres small at all energies

    previous function discarded with a significance of 3.2σ

    unfolded spectrum

    8

  • E [eV]1710 1810 1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E)

    3710

    3810

    (E/eV)10

    log17 18 19 20

    < 60 degreesθSD 1500m > 60 degreesθSD 1500m

    energy spectra full trigger efficiency exposure (30% more) 17447 km2 sr yr above 1018.6 eV 24209 events similar data-driven approach but completely different reconstruction technique energy resolution 22% - 10%

    9

  • E [eV]1710 1810 1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E)

    3710

    3810

    (E/eV)10

    log17 18 19 20

    < 60 degreesθSD 1500m > 60 degreesθSD 1500m

    hybrid

    energy spectra

    10

    13655 events above 1018 eV full time-dependent simulation of FD events exposure [km2 sr yr] 1 EeV 265 km2 sr yr 10 EeV 2248 km2 sr yr energy resolution ≈ 7.4%

  • E [eV]1710 1810 1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E)

    3710

    3810

    (E/eV)10

    log17 18 19 20

    < 60 degreesθSD 1500m > 60 degreesθSD 1500m

    hybridSD 750m

    energy spectra

    11

    full trigger efficiency exposure 105 km2 sr yr 569285 events above 1017 eV data-driven approach similar to the ones of the 1500m array

    A. Coleman #225

  • E [eV]1710 1810 1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E)

    3710

    3810

    (E/eV)10

    log17 18 19 20

    < 60 degreesθSD 1500m

    SD 750mCherenkov

    > 60 degreesθSD 1500m hybrid

    energy spectra

    12

    69793 events above 1016.5 eV energy deposited from a profile constrained geometry fit and invisible energy correction inferred from muon data exposure from full time-dependent simulation of FD events

    V. Novotny #374

  • E [eV]1710 1810 1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E)

    3710

    3810

    (E/eV)10

    log17 18 19 20

    < 60 degreesθSD 1500m

    SD 750mCherenkov

    > 60 degreesθSD 1500m hybrid

    energy spectra

    13

    fluxes in good agreement among them once rescaled by normalization factors that are consistent with the systematic uncertainties

    0% +5% -9% -1% -1%

  • E [eV]1710 1810 1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E)

    3710

    3810

    (E/eV)10

    log17 18 19 20

    Auger combined(preliminary)

    combined spectrum

    γ0 = 2.92 ± 0.05 γ3 = 3.2 ± 0.1

    E [eV]1710 1810 1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E)

    3710

    3810

    (E/eV)10

    log17 18 19 20

    Auger combined(preliminary)

    ‘previous’ function discarded at the 4σ level

    errors = stat.+syst

    E01 = 0.15 ± 0.02 E12 = 6.2 ± 0.9 E23 = 12 ± 2 E34 = 50 ± 7 (energies in EeV units)

    14

  • E [eV]1710 1810 1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E)

    3710

    3810

    (E/eV)10

    log17 18 19 20

    Auger combined(preliminary)

    OUTLOOK

    15

    •  improved 1500 m array θ < 600 spectrum (no use of simulations) •  independent measurements with 1500 m array θ > 600 and hybrid events •  lower the threshold down to 1016.5 eV with the 750 m and Cherenkov events

    Ø  combined spectrum with a common energy scale: -  second knee and ankle -  an indication of a further

    inflection point at E ~ 10 EeV -  abrupt suppression at the

    highest energies

  • THANKS

    16

  • E [eV]1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E) 3710

    3810

    ICRC 20190 < 60θ1500m ICRC 20170 < 60θ1500m

    E [eV]1910 2010

    ICRC

    2017

    /JIC

    RC20

    19J

    0.6

    0.8

    1

    1.2

    1.4

    17

    1500 m array θ < 600 spectrum: ICRC2019 vs ICRC2017

  • E [eV]1710 1810 1910 2010

    ]2 e

    V-1

    sr-1

    yr

    -2 [k

    m3

    E×J(

    E)

    3710

    3810

    (E/eV)10

    log17 18 19 20

    Auger combined(preliminary)

    18

    γ

    J ~ E−γ

    A. Castellina highlight