me601_asst5.pdf

1
ME 601 Homework Assignment 5 – Due Date: 26 th August 2015 1. For a linear isotropic material prove that a) !! = (3 + 2) !! and b) !" = ! !! !" ! !!!!! !! !" , Where = !" !!! (!!!!) . 2. A rectangular steel plate of thickness 4mm as shown in fig is subjected to uniform biaxial stress field assuming all fields are uniform, determine the changes in the dimensions of the plate under this loading.(E=207GPa) 3. An elastic layer is sandwiched between two perfectly rigid plates, to which it is bonded. The layer is compressed between the plates, the compressive stress being ! . Supposing that attachment to plates prevents lateral strains ! & ! completely, find the apparent Young’s modulus (i.e. ! / ! ) in terms of E & . 4. (a) From generalized Hooke’s law for linear isotropic elastic solids 2 ij kk ij ij e e σ λ δ μ = + , show that, 1 ( ) 2 3 2 ij ij kk ij e λ σ σδ μ λ μ = + (b) Show that Hooke’s law for an isotropic material may be expressed in terms of spherical and deviatoric tensors by the two relations ˆ ˆ 3 , 3 ij ij ij ij ke ke σ σ = = % % 5. (a) If the elastic constants E, k, and m are required to be positive, show that Poisson’s ratio must satisfy the inequality 1 0.5 υ < < . For most real materials it has been found that 0 0.5 υ < < .Show that this more restrictive inequality in this problem implies that 0 λ > . (b) Under the condition that E is positive and bounded, determine the elastic moduli, , and k λ μ for the special cases of Poisson’s ratio: 0,1/4,1/2 υ = 6. Show for an isotropic elastic medium that (a) 1 2( ) 1 3 2 λ μ υ λ μ + = + + , (b) 1 2 υ λ υ λ μ = + , (c) 2 3 1 2 1 K μυ υ υ υ = + 7. For the general threedimensional thermoelastic problem with no body forces, explicitly develop the BeltramiMichell compatibility equations, , , , , 1 1 ( ) 0 1 1 1 ij kk kk ij ij ij kk E T T α υ σ σ δ υ υ υ + + + + = + +

Upload: praveen-choudhary

Post on 10-Apr-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ME601_Asst5.pdf

ME  601  -­‐  Homework  Assignment  5  –  Due  Date:  26th  August  2015  

1. For  a  linear  isotropic  material  prove  that  a) 𝜎!! = (3𝜆 + 2𝜇)𝜀!!  and  

b) 𝜀!" =!!!

𝜎!" −!

!!!!!𝜎!!𝛿!" ,  Where  𝜆 = !"

!!! (!!!!)    .  

2. A  rectangular  steel  plate  of  thickness  4mm  as  shown  in  fig  is  subjected  to  uniform  biaxial  stress  field  assuming  all  fields  are  uniform,  determine  the  changes  in  the  dimensions  of  the  plate  under  this  loading.(E=207GPa)  

 3. An  elastic  layer  is  sandwiched  between  two  perfectly  rigid  plates,  to  which  it  is  bonded.  

The  layer  is  compressed  between  the  plates,  the  compressive  stress  being𝜎!.  Supposing  that  attachment  to  plates  prevents  lateral  strains  𝜀!  &  𝜀!  completely,  find  the  apparent  Young’s  modulus  (i.e.  𝜎!/𝜀!  )  in  terms  of  E  &  𝜗.  

4. (a)  From  generalized  Hooke’s  law  for  linear  isotropic  elastic  solids 2ij kk ij ije eσ λ δ µ= + ,  

show  that,        1 ( )2 3 2ij ij kk ije λ

σ σ δµ λ µ

= −+  

(b)  Show  that  Hooke’s  law  for  an  isotropic  material  may  be  expressed  in  terms  of  spherical  and    deviatoric  tensors  by  the  two  relations   ˆ ˆ3 , 3ij ij ij ijke keσ σ= =% %  

5. (a)  If  the  elastic  constants  E,  k,  and  m  are  required  to  be  positive,  show  that  Poisson’s  ratio  must  satisfy  the  inequality 1 0.5υ− < < .  For  most  real  materials  it  has  been  found  that  0 0.5υ< < .Show  that  this  more  restrictive  inequality  in  this  problem  implies  that

0λ > .  (b)  Under  the  condition  that  E  is  positive  and  bounded,  determine  the  elastic  moduli,  , and kλ µ for  the  special  cases  of  Poisson’s  ratio:   0,1/ 4,1/ 2υ =  

6. Show  for  an  isotropic  elastic  medium  that  

 (a)   1 2( )1 3 2

λ µυ λ µ

+=

+ +,  (b)  

1 2υ λυ λ µ=

− +,  (c)   2 3

1 2 1Kµυ υ

υ υ=

− +  

7. For  the  general  three-­‐dimensional  thermo-­‐elastic  problem  with  no  body  forces,  explicitly    develop  the  Beltrami-­‐Michell  compatibility  equations,  

, , , ,1 1( ) 01 1 1ij kk kk ij ij ij kk

E T Tα υσ σ δ

υ υ υ+

+ + + =+ + −