me322 module 6i

Upload: axatpgme

Post on 03-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 ME322 Module 6i

    1/43

    ME322Module 6, Slide 1

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Outline

    Build dynamic models

    Study the dynamic responses of a system

    Basic properties of feedback control

    How to design control systems

    Root-locus method

    Frequency-response method

    State-space method

  • 7/28/2019 ME322 Module 6i

    2/43

    ME322Module 6, Slide 2

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Input, ROutput, Y

    +_

    KGG(s)KA

    For a basic feedback control system, the

    closed loop transfer function is:

    )(1

    )(

    )(

    )(

    sGKK

    sGKK

    sR

    sY

    GA

    GA

  • 7/28/2019 ME322 Module 6i

    3/43

    ME322Module 6, Slide 3

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    The characteristic equation is:

    Definition: The graph of all possible roots ofthe characteristic equation relative to someparticular variable is called the root locus.

    Purpose: to show graphically the generaltrend of the roots of the closed-loop systemwhen some parameters are varied.

    0)(1 sGKK GA

  • 7/28/2019 ME322 Module 6i

    4/43

    ME322Module 6, Slide 4

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Assumptions:

    The plant transfer function can be expressed

    in general terms as the ratio of twopolynomials (m

  • 7/28/2019 ME322 Module 6i

    5/43

    ME322Module 6, Slide 5

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Assumptions:

    The plant gainKGis positive. n > m.

    The root-locus parameter is defined as

    Then, the root-locus form of the

    characteristic equation is:

    KsG

    orsKG

    1)(

    0)(1

    GAKKK

  • 7/28/2019 ME322 Module 6i

    6/43

    ME322Module 6, Slide 6

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Root-locus for a DC-motor (Example)

    DC Motor transfer function:

    Characteristic equation of the closed loopsystem is [1+KG(s)]

    )1)(1()(

    21

    ss

    AsG

  • 7/28/2019 ME322 Module 6i

    7/43

    ME322Module 6, Slide 7

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Root-locus for a DC-motor (Example)

    Roots of the closed loop system

    characteristic equation is

    When K=0, open loop roots:

    21

    21

    2

    21212,1

    21

    2)1(4)()(

    0)1)(1(

    KAs

    KAss

    2

    2

    1

    1

    1;

    1

    ss

  • 7/28/2019 ME322 Module 6i

    8/43

    ME322Module 6, Slide 8

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Example

    j

    0-1/t1-1/t2= pole

    = zero

    K=0 K=0

    21

    21

    2)(

  • 7/28/2019 ME322 Module 6i

    9/43

    ME322Module 6, Slide 9

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Root-locus for a DC-motor (Example)

    Observations:

    - One root locus branch per root

    - Branches begin at open loop roots for K=0

    since the system is open loop for K=0.

  • 7/28/2019 ME322 Module 6i

    10/43

    ME322Module 6, Slide 10

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Root-locus for a DC-motor (Example)

    Observations: when K increases,

    - poles moving towards each other and intoimaginary conjugate poles at breakaway point(where roots move away from the real-axis)

    - Decreasing time constant (faster response)

    - Decreasing rise time- Decreasing damping ratio, more overshoot, less

    stable

  • 7/28/2019 ME322 Module 6i

    11/43

    ME322Module 6, Slide 11

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Phase condition

    From the root-locus form of the characteristic

    equation (assuming K is real and positive):

    we can define that the root locus of G(s) is theset of points in the s-plane where thephase of G(s) is 180.

    KsG

    1)(

  • 7/28/2019 ME322 Module 6i

    12/43

    ME322Module 6, Slide 12

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 1: Draw the pole and zero plot in the s-

    plane.

    ]16)4[(

    1)(

    2

    ss

    sG

  • 7/28/2019 ME322 Module 6i

    13/43

    ME322Module 6, Slide 13

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Pole and Zero Plot

    j

    0= pole

    = zero

    4

    4

    4

  • 7/28/2019 ME322 Module 6i

    14/43

    ME322Module 6, Slide 14

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 2: Find the real axis portion of the locus.

    The angles of complex poles cancel each other (theangles are all measured in a counterclockwisedirection from a horizontal line)

    The angle of G(s0) for the test point s0 on the real

    axis is given by the angles from poles and zeroson the real axis only.

    The angle is 180 when the test point is to the left ofan odd number of poles plus zero.

  • 7/28/2019 ME322 Module 6i

    15/43

    ME322Module 6, Slide 15

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Pole and Zero Plot

    j

    0= pole

    = zero

    4

    4

    4

  • 7/28/2019 ME322 Module 6i

    16/43

    ME322Module 6, Slide 16

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 3: For large K, the branches of the root

    locus go to either zeros or infinity. Drawthe asymptotes for large values of K.

    At point

    draw radial lines at the (n-m) distinct anglesmn

    zps

    ii

    0

    mnlmn

    ll

    ,....,2,1,

    )1(360180

  • 7/28/2019 ME322 Module 6i

    17/43

    ME322Module 6, Slide 17

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 3: Draw the asymptotes for large values

    of K.

    At point

    draw radial lines at the (n-m) distinct angles

    67.203

    )044(0

    mn

    zps

    ii

    ;300;180;60

    ,....,2,1,)1(360180

    321

    mnlmn

    ll

  • 7/28/2019 ME322 Module 6i

    18/43

    ME322Module 6, Slide 18

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Pole and Zero Plot

    j

    0= pole

    = zero

    4

    4

    4

  • 7/28/2019 ME322 Module 6i

    19/43

    ME322Module 6, Slide 19

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 4: Compute the departure angles from the poles

    (q is the order of the multiple poles):

    where i is the sum of the angles to the remainingpoles and i is the sum of the angles to all thezeros. lare positive or negative integers.

    lq iidep 360180

  • 7/28/2019 ME322 Module 6i

    20/43

    ME322Module 6, Slide 20

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 4: Compute the arrival angles at zeros (q is the

    order of the multiple zeros):

    where i is the sum of the angles to all the poles

    and i is the sum of the angles to all theremaining zeros. lare positive or negativeintegers.

    lq iiarr 360180

  • 7/28/2019 ME322 Module 6i

    21/43

    ME322Module 6, Slide 21

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design MethodGuidelines for sketching a Root Locus:

    Step 4: take the pole #2 at4 +4j, the angles to theremaining poles are 90 and 135, respectively.

    Set l= - 1, we obtain:

    Based on the complex conjugate symmetry, thedeparture angle at pole4-4j is 45. Thedeparture angle for the pole in the origin is 180.

    (No zero here, hence no arrival angle calculation)

    45180225

    )1(*360180)13590(0

    360180_2

    liidep

  • 7/28/2019 ME322 Module 6i

    22/43

    ME322Module 6, Slide 22

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Pole and Zero Plot

    Test point S0 is close to

    the pole.

    j

    0= pole

    s0

    4

    4

    4

    1

    2

    3

    = zero

  • 7/28/2019 ME322 Module 6i

    23/43

    ME322Module 6, Slide 23

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Pole and Zero Plot

    j

    0= pole

    = zero

    4

    4

    4

  • 7/28/2019 ME322 Module 6i

    24/43

    ME322Module 6, Slide 24

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 5: estimate the cross-over points on the

    imaginary axis.The characteristic equation is:

    0328

    0]16)4[(

    1

    23

    2

    Ksss

    ss

    K

  • 7/28/2019 ME322 Module 6i

    25/43

    ME322Module 6, Slide 25

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design MethodGuidelines for sketching a Root Locus:

    Step 5: estimate the cross-over points on theimaginary axis.

    Build Routh array:

    Cross-over at K=2560:

    08

    256:

    8:

    321:

    0

    1

    2

    3

    Ks

    Ks

    Ks

    s

  • 7/28/2019 ME322 Module 6i

    26/43

    ME322Module 6, Slide 26

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 5: estimate the cross-over points on theimaginary axis.

    Asymptote cross-over points based on

    trigonometric relationships:

    (2.67*tan60)j=4.62j. Conjugate: -4.62j

    66.5

    0256)(32)(8)(

    0

    0

    2

    0

    3

    0

    jjj

  • 7/28/2019 ME322 Module 6i

    27/43

    ME322Module 6, Slide 27

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Pole and Zero Plot

    j

    0= pole

    = zero

    4

    4

    4

  • 7/28/2019 ME322 Module 6i

    28/43

    ME322Module 6, Slide 28

    Northern Illinois UniversitySummer 2005

    Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 6: estimate the locations of multiple

    closed-loop roots, and find the arrival anddeparture angles at these locations.

    We can find K at breakaway point by taking a

    derivative:

    0)(1

    )(

    ;0)1

    (

    2

    0

    ds

    dba

    ds

    dab

    bb

    a

    ds

    d

    Gds

    dss

  • 7/28/2019 ME322 Module 6i

    29/43

    ME322Module 6, Slide 29 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 6:

    Rule of thumb: Two locus segments comingtoward each other will break away with a+/- 90 change of direction. 3 locussegments will approach at 120 wrt each

    other and depart with a 60 changerelative to the arrival angles.

  • 7/28/2019 ME322 Module 6i

    30/43

    ME322Module 6, Slide 30 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Guidelines for sketching a Root Locus:

    Step 7: complete the sketch. The root locus

    branches start at poles and end at zeros orinfinity.

  • 7/28/2019 ME322 Module 6i

    31/43

    ME322Module 6, Slide 31 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Pole and Zero Plot

    j

    0

    = pole

    = zero

    4

    4

    4

  • 7/28/2019 ME322 Module 6i

    32/43

    ME322Module 6, Slide 32 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Applications of the Guidelines

    Consider the root locus of the characteristic

    equation 1+KG(s)=o, where

    Construct the root locus for various values ofP.

    )(

    1)(

    2 pss

    ssG

  • 7/28/2019 ME322 Module 6i

    33/43

    ME322Module 6, Slide 33 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Applications of the Guidelines

    Case 1: Large values of P.

    2

    1)(

    s

    ssG

  • 7/28/2019 ME322 Module 6i

    34/43

    ME322Module 6, Slide 34 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Step 1: mark poles & zeros

    j

    0

    = pole

    = zero

    1

  • 7/28/2019 ME322 Module 6i

    35/43

    ME322Module 6, Slide 35 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Step 2: draw locus on real axis to the left of an

    odd number of poles plus zeros:j

    0

    = pole

    = zero

    1

  • 7/28/2019 ME322 Module 6i

    36/43

    ME322Module 6, Slide 36 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Step 3: Find the number of asymptotes and draw

    them

    number of asymptotes = n-m=2 - 1=1

    does not matter for there is only one asymptote.

    (its the root locus on the real axis)

    180

    12

    )11(360180

    ,....,2,1,)1(360180

    1

    mnlmn

    ll

  • 7/28/2019 ME322 Module 6i

    37/43

    ME322Module 6, Slide 37 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Step 4: Calculate departure and arrival angles

    j

    0

    = pole

    = zero

    1

  • 7/28/2019 ME322 Module 6i

    38/43

    ME322Module 6, Slide 38 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Step 4: Calculate departure and arrival angles

    Draw a small circle around the

    double poles.

    180360180)180180(

    360180

    ;90;90;360180)00(2

    360180

    _2_1

    l

    lq

    l

    lq

    arr

    iiarr

    depdepdep

    iidep

  • 7/28/2019 ME322 Module 6i

    39/43

    ME322Module 6, Slide 39 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Step 4: Calculate departure and arrival angles

    j

    0

    = pole

    = zero

    1

  • 7/28/2019 ME322 Module 6i

    40/43

    ME322Module 6, Slide 40 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design MethodStep 5: Cross-over on the imaginary axis

    The characteristic equation is

    Build Routh array:

    For K>0, all roots are in LHP and do not crossimaginary axis.

    02 KKss

    0:

    0:

    1:

    0

    1

    2

    Ks

    Ks

    Ks

  • 7/28/2019 ME322 Module 6i

    41/43

    ME322Module 6, Slide 41 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design MethodStep 6: estimate the locations of multiple roots, and find the

    arrival and departure angles at these locations.

    2;0

    ;0)2(;01*2*)1(

    1;1)(

    2;)(

    0)(1

    2

    2

    2

    ss

    sssssds

    dbssb

    sds

    dassa

    ds

    dba

    ds

    dab

    b

  • 7/28/2019 ME322 Module 6i

    42/43

    ME322Module 6, Slide 42 Northern Illinois UniversitySummer 2005 Peter A. LinCopyright 2001-2005

    Root-locus Design Method

    Step 7: Sketch the locus

    j

    0

    = pole

    = zero

    1

  • 7/28/2019 ME322 Module 6i

    43/43

    Basic Properties of Feedback

    Homework Assignment

    Draw the root locus for the following:

    1).

    2).

    )5)(1(

    4)(

    ss

    sG

    2

    )3(

    )( s

    s

    sG