me 323: mechanics of materials homework set 8 solutions ......me 323: mechanics of materials...

16
ME 323: Mechanics of Materials Homework Set 8 solutions Fall 2019 Due: Wednesday, October 23 Problem 8.1 (10 points) A steel ( = 30,000 ) square beam with a side length = 2" is subject to loading as shown in Fig. 7.4. Determine the deflection curve of the beam using superposition. Use the table of beam deflections from the R. R. Craig textbook distributed via email. Compare this with the result found using second order integration in Homework 7. Fig. 8.1

Upload: others

Post on 14-Mar-2020

123 views

Category:

Documents


0 download

TRANSCRIPT

ME 323: Mechanics of Materials Homework Set 8 solutions

Fall 2019 Due: Wednesday, October 23

Problem 8.1 (10 points)

A steel (𝐸 = 30,000π‘˜π‘ π‘–) square beam with a side lengthπ‘Ž = 2" is subject to loading as shown in Fig. 7.4. Determine the deflection curve of the beam using superposition. Use the table of beam deflections from the R. R. Craig textbook distributed via email. Compare this with the result found using second order integration in Homework 7.

Fig. 8.1

Solution:

2’

6’

2’

Po = 100 lb/ft

x D

C B

A

(1)

(2)

(3)

=

_

+

𝑙0 = 2𝑓𝑑

4𝑙0 = 8ft

5𝑙0 = 10ft

The following parameters are given

𝑃0 = 100lb/ft

𝐸 = 3 Γ— 10;ksi

𝐼 =112(2)@(2)in; = 1.33in; = 6.4 βˆ— 10EFft;

Using the tables and solving for deflections for each of the sections we get the following:

(1)

The deflection for section AB is as follows 𝑣H(π‘₯) =

JKLM

N;OP(6𝑙0N βˆ’ 4𝑙0π‘₯ + π‘₯N) , 0 ≀ π‘₯ ≀ 𝑙0

The deflection for the section CD is as follows

𝑣H(π‘₯) =(JK)TUV

N;OP(4π‘₯ βˆ’ 𝑙0),𝑙0 ≀ π‘₯ ≀ 5𝑙0

(2)

The deflection for section AC is as follows

𝑣N(π‘₯) = βˆ’JKLM

N;OP(6(4𝑙0)N βˆ’ 4(4𝑙0)π‘₯ + π‘₯N)

= βˆ’ JKLM

N;OP(96𝑙0N βˆ’ 16𝑙0π‘₯ + π‘₯N) 0 ≀ π‘₯ ≀ 4𝑙0

The deflection for section CD is as follows

𝑣N(π‘₯) = βˆ’JK(;TU)V

N;OP(4π‘₯ βˆ’ 4𝑙0), 4𝑙0 ≀ π‘₯ ≀ 5𝑙0

(3)

The deflection for the entire beam AD is given by

𝑣@(π‘₯) =XYLM

ZOP(15𝑙0 βˆ’ π‘₯), 0 ≀ π‘₯ ≀ 5𝑙0

Thus, by principle of superposition we can say that the deflections will be the sum of the deflections from the sections (1), (2) and (3) for the respective ranges of lengths:

JKLM

N;OP(βˆ’90𝑙0N + 12𝑙0π‘₯) +

XYLM

ZOP(15𝑙0 βˆ’ π‘₯),0 ≀ π‘₯ ≀ 𝑙0

𝜈(π‘₯) = JKN;OP

(4𝑙0@π‘₯ βˆ’ 𝑙0; βˆ’ 96𝑙0Nπ‘₯N + 16𝑙0π‘₯@ βˆ’ π‘₯;) + XYLM

ZOP(15𝑙0 βˆ’ π‘₯), 𝑙0 ≀ π‘₯ ≀ 4𝑙0

JKTKV

N;OP(βˆ’252π‘₯ + 255𝑙0) +

XYLM

ZOP(15𝑙0 βˆ’ π‘₯), 4𝑙0 ≀ π‘₯ ≀ 5𝑙0

Using the boundary condition that, the deflection at the roller D is 0,𝜈(5𝑙0) = 0 we solve for D]

𝑃0𝑙0@

24𝐸𝐼(βˆ’252(5𝑙0) + 255𝑙0) +

25𝐷_𝑙0N(15𝑙0 βˆ’ 5𝑙0)6𝐸𝐼

= 0

𝑃0𝑙`@

24(βˆ’1005𝑙0) +

250𝐷_𝑙0@

6= 0

βˆ’1005𝑃 𝑙0; + 1000𝐷_𝑙0@ = 0

π‘«π’š = 𝟏.πŸŽπŸŽπŸ“π‘·π’π’π’ = πŸπŸŽπŸπ’π’ƒ

The final deflection can be described by the following equations:

JKLM

N;OP(βˆ’90𝑙0N + 12𝑙0π‘₯) +

XYLM

ZOP(15𝑙0 βˆ’ π‘₯),0 ≀ π‘₯ ≀ 𝑙0

𝜈(π‘₯) = JKN;OP

(4𝑙0@π‘₯ βˆ’ 𝑙0; βˆ’ 96𝑙0Nπ‘₯N + 16𝑙0π‘₯@ βˆ’ π‘₯;) + XYLM

ZOP(15𝑙0 βˆ’ π‘₯),𝑙0 ≀ π‘₯ ≀ 4𝑙0

JKTKV

N;OP(βˆ’252π‘₯ + 255𝑙0) +

XYLM

ZOP(15𝑙0 βˆ’ π‘₯), 4𝑙0 ≀ π‘₯ ≀ 5𝑙0

4.17π‘₯N(24π‘₯ βˆ’ 360) + 33.5π‘₯N(30 βˆ’ π‘₯), 0 ≀ π‘₯ ≀ 2ft

EI𝜈(π‘₯) = 4.17(βˆ’16 + 32π‘₯ βˆ’ 384π‘₯N + 32π‘₯@ βˆ’ π‘₯;) + 33.5π‘₯N(30 βˆ’ π‘₯), 2ft ≀ π‘₯ ≀8ft

33.34(βˆ’252π‘₯ + 510) + 33.5π‘₯N(30 βˆ’ π‘₯) β€Š, 8ft ≀ π‘₯ ≀ 10ft

βˆ’495.12π‘₯N + 66.52π‘₯@,0 ≀ π‘₯ ≀ 2ft

EI𝜈(π‘₯) = βˆ’4.17π‘₯; + 99.84π‘₯@ βˆ’ 595.13π‘₯N + 133.34π‘₯ βˆ’ 66.67,2ft ≀ π‘₯ ≀ 8ft

βˆ’8401.68π‘₯ + 17003.4 + 1005π‘₯N βˆ’ 33.5π‘₯@ β€Š ,8ft ≀ π‘₯ ≀ 10ft

EI𝜈H(π‘₯) = βˆ’495. 12π‘₯N + 66.52π‘₯@ , 0 ≀ π‘₯ ≀ 2ft

EI𝜈N(π‘₯) = βˆ’4.17π‘₯; + 99.84π‘₯@ βˆ’ 595.13π‘₯N + 133.34π‘₯ βˆ’ 66.67 ,2ft ≀ π‘₯ ≀ 8ft

EI𝜈@(π‘₯) = βˆ’8401.68π‘₯ + 17003.4 + 1005π‘₯N βˆ’ 33.5π‘₯@ ,8ft ≀ π‘₯ ≀ 10ft

From HW problem 7.4 we have the following deflection equations:

EI𝜈H(π‘₯) =𝑀oπ‘₯N

2+𝑉oπ‘₯@

6 ,0 ≀ π‘₯ ≀ 2ft

EI𝑣N(π‘₯) =qrLM

N+ srLV

Zβˆ’ NF

Z(π‘₯ βˆ’ 2); + 𝐢@π‘₯ + 𝐢; ,2ft ≀ π‘₯ ≀ 8ft

EI𝑣@(π‘₯) =qrLM

N+ srLV

Zβˆ’ 100π‘₯@ + 1500π‘₯N + 𝐢Fπ‘₯ + 𝐢Z ,8ft ≀ π‘₯ ≀ 10ft

Where,

𝑀o = βˆ’990lb. ft

𝑉o = 399lb

𝐢@ = 0

𝐢; = 0

𝐢F = βˆ’8400

𝐢Z = 17000

𝑉X = 201lb

The reaction force at D, 𝑉Xis exactly equal to the reaction force calculated from the superposition method, π‘«π’š = 𝑽𝑫 = 𝟐𝟎𝟏π₯𝐛

The final deflection of the beam from HW 7.4 is given by:

EI𝜈H(π‘₯) = βˆ’495π‘₯N + 66.5π‘₯@ , 0 ≀ π‘₯ ≀ 2ft

EI𝜈N(π‘₯) = βˆ’4.17π‘₯; + 99.84π‘₯@ βˆ’ 595π‘₯N + 133.34π‘₯ βˆ’ 66.67,2ft ≀ π‘₯ ≀ 8ft

EI𝜈@(π‘₯) = βˆ’8400π‘₯ + 17000 + 1005π‘₯N βˆ’ 33.5π‘₯@ , 8ft ≀ π‘₯ ≀ 10ft

We can see from the numerical values that the deflection of the three sections of the beams calculated using method of superposition match very closely with the deflections calculated from the method of integration.

Further, if we compare and plot we get the following results.

Problem 8.2 (10 points)

The solid circular rod shown below has an axial force P0 acting at H and an axial force F0 acting at C. All components of the rod are made of steel (E = 200 GPa). Using P0 = 2 kN, F0 = 5 kN, d = 10 mm, and L = 200 mm, determine:

1) The strain energy stored in the rod. 2) The magnitude and direction of the horizontal displacement at H using Castigliano’s

theorem. 3) The magnitude and direction of the horizontal displacement at C using Castigliano’s

theorem.

Fig. 8.2

Solution:

Given:

𝐸 = 200,000MPa

𝑃0 = 2000N, 𝐹0 = 5000N

𝑑 = 10 = 1 Γ— 10ENm

𝐿 = 200mm = 0.2m

𝐴H =πœ‹π‘‘N

4= 7.85 Γ— 10EFmN

𝐴N = πœ‹π‘‘N = 3.14 Γ— 10E;mN

𝐴@ =9πœ‹π‘‘N

4= 7.065 Γ— 10E;mN

Equilibrium in the shafts gives us following equations:

𝐹H = 𝑃0

𝐹H = 𝐹N = 𝑃0

𝐹@ = 𝑃0 βˆ’ 𝐹0

To find the strain energy we use the following formulation:

π‘ˆ =12οΏ½

𝐹N

𝐸𝐴𝑑π‘₯

οΏ½

`

Strain energy in shaft 1:

π‘ˆH = �𝑃0N

2𝐸𝐴H𝑑π‘₯

;οΏ½

NοΏ½=𝑃0N2𝐿2𝐸𝐴H

= 50.9N.mm

Strain energy in shaft 2:

π‘ˆN = �𝑃0N

2𝐸𝐴N𝑑π‘₯

NοΏ½

οΏ½=

𝑃0N𝐿2𝐸𝐴N

= 6.4N.mm

Strain energy in shaft 3:

π‘ˆ@ = οΏ½(𝑃0 βˆ’ 𝐹0)N

2𝐸𝐴@𝑑π‘₯

οΏ½

`=(𝑃0 βˆ’ 𝐹 )N𝐿2𝐸𝐴@

= 6.4N.mm

Total strain energy can then be calculated to be,

π‘ˆοΏ½0οΏ½οΏ½T = π‘ˆH + π‘ˆN + π‘ˆ@ = 63.7N.mm = 0.0637J

To find the displacement at point H we take the partial derivative with respect to the applied force ( 𝑃0 ) at that point and get:

𝑒� =π›Ώπ‘ˆοΏ½0οΏ½οΏ½T𝛿𝑃0

𝑒� =𝛿𝛿𝑃0

�𝑃0N2𝐿2𝐸𝐴H

+𝑃0N𝐿2𝐸𝐴N

+(𝑃0 βˆ’ 𝐹 )N𝐿2𝐸𝐴@

οΏ½

𝑒� =2𝑃0𝐿𝐸𝐴H

+𝑃0𝐿𝐸𝐴N

+(𝑃0 βˆ’ 𝐹0)𝐿𝐸𝐴@

𝑒� = 0.053π‘šπ‘š to the left

To find the displacement at point C we take the partial derivative with respect to the applied force at that point ( 𝐹0) and get:

𝑒� =οΏ½οΏ½οΏ½KοΏ½οΏ½οΏ½οΏ½οΏ½K

𝑒� =𝛿𝛿𝐹0

οΏ½(𝑃0 βˆ’ 𝐹0)N𝐿2𝐸𝐴@

οΏ½

𝑒� = βˆ’(𝑃0 βˆ’ 𝐹0)𝐿𝐸𝐴@

𝑒� = 0.00424π‘šπ‘š to the right

Problem 8.3 (10 points)

The beam shown below has elastic modulus E, second area moment I, and cross-sectional area A. It is loaded by a point force P at H. Neglect the shear strain energy due to bending. Using Castigliano’s theorem, determine:

1) The magnitude and direction of the vertical displacement at D. 2) The magnitude and direction of the in-plane rotation angle at D. 3) The magnitude and direction of the horizontal displacement at H.

Express all answers in terms of P, E, I, A, and a.

Fig. 8.3

Solution:

In order to find the displacement at D, we apply a dummy moment 𝑀�and a dummy force 𝑃� at point D

βˆ‘π‘€οΏ½ = 𝐢_π‘Ž βˆ’ 𝑃�(2π‘Ž) βˆ’ π‘ƒπ‘Ž + 𝑀�

𝐢_ = 2𝑃� + 𝑃 βˆ’1π‘Žπ‘€οΏ½

Making a cut through section DH,

βˆ‘π‘€οΏ½οΏ½οΏ½ = 0

𝑃𝑦 +𝑀H = 0

π‘΄πŸ(π’š) = π‘·π’š

Making a cut through section CD,

π‘­πŸ = βˆ’π‘·

βˆ‘π‘€οΏ½οΏ½οΏ½ = 0

π‘΄πŸ(π’™πŸ) = βˆ’π‘·π’…π’™πŸ +𝑴𝒅 βˆ’ 𝑷𝒂

Making a cut through section BC,

βˆ‘π‘€οΏ½οΏ½οΏ½ = 0

βˆ’π‘€@(π‘₯@) + 𝐢_π‘₯@ βˆ’ 𝑃�(π‘₯@ + π‘Ž) + 𝑀� βˆ’ π‘ƒπ‘Ž = 0

𝑀@(π‘₯@) = Β‘2𝑃� βˆ’1π‘Žπ‘€JΒ’ + 𝑃£π‘₯@ βˆ’ 𝑃�π‘₯@ βˆ’ π‘ƒοΏ½π‘Ž + 𝑀� βˆ’ π‘ƒπ‘Ž

π‘΄πŸ‘(π’™πŸ‘) = 𝑷𝒅(π’™πŸ‘ βˆ’ 𝒂) +𝑴𝒅 Β₯𝟏 βˆ’π’™πŸ‘π’‚Β¦ + 𝑷(π’™πŸ‘ βˆ’ 𝒂)

π‘­πŸ‘ = βˆ’π‘·

π‘ˆ = �𝑀HN

2𝐸𝐼𝑑𝑦

οΏ½

`+ οΏ½

𝑀NN

2𝐸𝐼𝑑π‘₯N

οΏ½

`+οΏ½

𝐹NN

2𝐸𝐴𝑑π‘₯N

οΏ½

`+ οΏ½

𝑀@N

2𝐸𝐼𝑑π‘₯@

οΏ½

`+οΏ½

𝐹@N

2𝐸𝐴𝑑π‘₯@

οΏ½

`

𝛿𝑀H

𝛿𝑃�= 0,

𝛿𝑀N

𝛿𝑃�= 0,

𝛿𝐹N𝛿𝑃�

= 0,𝛿𝑀@

𝛿𝑃�= π‘₯@ βˆ’ π‘Ž,

𝛿𝐹@𝛿𝑃�

= 0

𝛿𝑀H

𝛿𝑀�= 0,

𝛿𝑀N

𝛿𝑀�= 1,

𝛿𝐹N𝛿𝑀�

= 0,𝛿𝑀@

𝛿𝑀�= 1 βˆ’

π‘₯@π‘Ž,

𝛿𝐹@𝛿𝑀�

= 0

𝛿𝑀H

𝛿𝑃= 𝑦,

𝛿𝑀N

𝛿𝑃= βˆ’π‘Ž,

𝛿𝐹N𝛿𝑃

= βˆ’1,𝛿𝑀@

𝛿𝑃= π‘₯@ βˆ’ π‘Ž,

𝛿𝐹@𝛿𝑀�

= βˆ’1

π›Ώπ‘ˆπ›Ώπ‘ƒοΏ½

= 𝑒X = 0 +�𝑀N

𝐸𝐼(βˆ’π‘₯N)𝑑π‘₯N

οΏ½

`+ 0 +οΏ½

𝑀@

𝐸𝐼(π‘₯@ βˆ’ π‘Ž)𝑑π‘₯@

οΏ½

`+ 0

𝑒X =1𝐸𝐼� π‘ƒπ‘Žπ‘₯N𝑑π‘₯NοΏ½

`+1𝐸𝐼� 𝑃(π‘₯@ βˆ’ π‘Ž)N𝑑π‘₯@οΏ½

`

𝑒X =π‘ƒπ‘Ž@

2𝐸𝐼+𝑃𝐸𝐼� π‘₯@N βˆ’ 2π‘₯@π‘Ž + π‘ŽN𝑑π‘₯@οΏ½

`

𝑒X =π‘ƒπ‘Ž@

2𝐸𝐼+𝑃𝐸𝐼‘13π‘Ž@ βˆ’ π‘Ž@ + π‘Ž@Β£

𝑒X =5π‘ƒπ‘Ž@

6𝐸𝐼(π‘‘π‘œπ‘€π‘›π‘€π‘Žπ‘Ÿπ‘‘)

π›Ώπ‘ˆπ›Ώπ‘€οΏ½

= πœƒX = 0 +�𝑀N

𝐸𝐼(1)𝑑π‘₯N

οΏ½

`+ 0 + οΏ½

𝑀@

𝐸𝐼Β₯1 βˆ’

π‘₯@π‘ŽΒ¦ 𝑑π‘₯@

οΏ½

`+ 0

πœƒX =1𝐸𝐼� βˆ’π‘ƒπ‘Žπ‘‘π‘₯NοΏ½

`+1𝐸𝐼� 𝑃(π‘₯@ βˆ’ π‘Ž) Β₯1 βˆ’

π‘₯@π‘ŽΒ¦ 𝑑π‘₯@

οΏ½

`

πœƒX =βˆ’π‘ƒπ‘ŽN

𝐸𝐼+𝑃𝐸𝐼� π‘₯@ βˆ’

1π‘Žπ‘₯@N βˆ’ π‘Ž + π‘₯@𝑑π‘₯@

οΏ½

`

πœƒX =βˆ’π‘ƒπ‘ŽN

𝐸𝐼+π‘ƒπΈπΌΒ‘π‘ŽN βˆ’

13π‘Žπ‘Ž@ βˆ’ π‘ŽNΒ£

πœƒX = βˆ’4π‘ƒπ‘ŽN

3𝐸𝐼(πΆπ‘Š, π‘ π‘–π‘›π‘π‘’π‘€οΏ½π‘–π‘ πΆπΆπ‘Šπ‘Žπ‘›π‘‘πœƒX < 0)

π›Ώπ‘ˆπ›Ώπ‘ƒ

= 𝑒� =1𝐸𝐼� 𝑃𝑦N𝑑𝑦�

`+1𝐸𝐼� π‘ƒπ‘ŽN𝑑π‘₯NοΏ½

`+1𝐸𝐴

οΏ½ 𝑃𝑑π‘₯NοΏ½

`+1𝐸𝐼� 𝑃(π‘₯@ βˆ’ π‘Ž)N𝑑π‘₯@οΏ½

`+1𝐸𝐴

οΏ½ 𝑃𝑑π‘₯@οΏ½

`

𝑒� =π‘ƒπ‘Ž@

3𝐸𝐼+π‘ƒπ‘Ž@

𝐸𝐼+π‘ƒπ‘ŽπΈπ΄

+𝑃𝐸𝐼� π‘₯@N βˆ’ 2π‘₯@π‘Ž + π‘ŽN𝑑π‘₯@οΏ½

`+π‘ƒπ‘ŽπΈπ΄

𝑒� =π‘ƒπ‘Ž@

3𝐸𝐼+π‘ƒπ‘Ž@

𝐸𝐼+π‘ƒπ‘ŽπΈπ΄

+π‘ƒπ‘Ž@

3𝐸𝐼+π‘ƒπ‘ŽπΈπ΄

𝑒� =5π‘ƒπ‘Ž@

3𝐸𝐼+2π‘ƒπ‘ŽπΈπ΄

(π‘‘π‘œπ‘‘β„Žπ‘’π‘™π‘’π‘“π‘‘)

Problem 8.4 (10 points)

Beam BCD is loaded with a distributed load w0 between B and C and a point force P at D. The beam has elastic modulus E and has a square cross section with side length b = L / 10. Neglect the shear strain energy due to bending.

Using Castigliano’s theorem, determine the reactions at the wall at B and the roller at C. Express your answer in terms of w0, P, L, and E.

Fig. 8.4

Solution:

Equilibrium:

βˆ‘π‘€o = 𝑀o βˆ’12𝑀0𝐿(𝐿) + 𝐡_𝐿 βˆ’

32𝑃𝐿

𝑀o βˆ’12𝑀0𝐿N + 𝐡_𝐿 βˆ’

32𝑃𝐿 = 0

βˆ‘πΉ_ = 𝐴_ + 𝐡_ βˆ’ 𝑃 βˆ’ 𝑀0𝐿 = 0

Making a cut at section BC we get:

βˆ‘π‘€οΏ½οΏ½οΏ½ = 0

βˆ’π‘€H βˆ’ 𝑃π‘₯H = 0

𝑀H = βˆ’π‘ƒπ‘₯H,𝛿𝑀H

𝛿�Y= 0

Making a cut at section AB we get:

βˆ‘π‘€οΏ½οΏ½οΏ½ = 0

βˆ’π‘€N βˆ’HN𝑀0π‘₯NN + 𝐡_π‘₯N βˆ’ 𝑃 Β₯π‘₯N +

�N¦ = 0

𝑀N(π‘₯) =HN𝑀0π‘₯NN + 𝐡_π‘₯N βˆ’ 𝑃 Β₯π‘₯N +

�N¦,

𝛿𝑀N

𝛿𝐡_= π‘₯N

Total strain energy = π‘ˆ = ∫ qΒ³M

NOP

Β΄M` 𝑑π‘₯H + ∫

qMM

NOPοΏ½` 𝑑π‘₯N

π›Ώπ‘ˆπ›Ώπ΅_

= 0 + �𝑀N

𝐸𝐼𝛿𝑀N

𝛿𝐡_𝑑π‘₯N

οΏ½

`= 0

1𝐸𝐼� (βˆ’

12𝑀0π‘₯N@ + 𝐡_π‘₯NN βˆ’ 𝑃π‘₯NN βˆ’

12𝑃𝐿π‘₯N)𝑑π‘₯N

οΏ½

`= 0

βˆ’18𝑀0𝐿 +

13𝐡_ βˆ’

13𝑃 βˆ’

14𝑃 = 0

13𝐡_ =

18𝑀0𝐿 +

712𝑃

𝐡_ =38𝑀0𝐿 +

74𝑃

𝐴_ = 𝑃 +𝑀0𝐿 βˆ’ 𝐡_ = 𝑃 + 𝑀0𝐿 βˆ’38𝑀0𝐿 βˆ’

74𝑃

𝐴_ = βˆ’34𝑃 +

58𝑀0𝐿

𝑀o =12𝑀0𝐿N βˆ’ 𝐡_𝐿 +

32𝑃𝐿 =

12𝑀0𝐿N βˆ’

38𝑀0𝐿N βˆ’

74𝑃𝐿 +

32𝑃𝐿

𝑀o =18𝑀0𝐿N βˆ’

14𝑃𝐿