me · 2016. 12. 24. · total synthesis of khusimone! oppolzer et al. j. am. chem. soc., 1982, 104,...

62
MacMillan Group Meeting 5-20-09 by Anthony Casarez H ! Me H ! Me

Upload: others

Post on 28-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • MacMillan Group Meeting!5-20-09!

    by!

    Anthony Casarez!

    H !

    Me

    H

    !Me

  • Kurt Alder!

    !" Born: Königshütte, Upper Silesia in southern Poland, on the 10th of July 1902.!

    !" Education: Began chemistry at the University of Berlin in 1922 then finished his PhD in 1926 at the University of Kiel for work supervised by Otto Diels.!

    !" Notable Award: Nobel Prize in Chemistry (1950) with Otto Diels for the 4 + 2 cycloaddition (Diels-

    Alder) discovered in 1928. !

  • A Pericyclic Reaction!

    Alder, K.; Pascher, F.; Schmitz, A. Ber. Dtsch. Chem. Ges. 1943, 76, 27.!

    !" Direct translated quote: !

    !“It is concluded that the addition occurs at the carbon atom adjacent to the double bond (ene). During the course of the reaction a hydrogen atom is detached and transposed to the region of the

    maleic acid anhydride (enophile).”!

    O

    O

    O

    !O

    O

    O

    H

    !" Dr. Alder was unaware that his discovery was mechanistically very similar to the Diels-Alder which

    would later win him the Nobel Prize.!

  • Mechanistic Comparison!

    !" Diels-Alder! !" Alder-Ene!

    HOMO

    LUMO

    O

    O

    O

    O

    O

    O

    !

    HOMO

    LUMO

    H

    O

    O

    O

    H!

    O

    O

    O

    !" Normally, both transformations occur with the HOMO of the diene/ene and the LUMO of the

    dienophile/enophile. Lewis acids also work to catalyze the Alder-ene reaction.!

  • In the Beginning!

    !" Thermal Alder-ene!

    Huntsman et al. J. Org. Chem., 1962, 27, 1983.!

    Me

    Me457 °C

    35%

    Me

    Me457 °C

    35%

    MeMe

  • In the Beginning!

    Huntsman et al. J. Org. Chem., 1962, 27, 1983.!

    Me

    490 °C

    25%

    Me Me

    Me

    400 °C

    82%

    CO2Me CO2Me

    !" Thermal Alder-ene!

  • The Metallo-Ene!

    !" Type I!

    Cl

    MeMe

    Mg, THF, 80 °C

    PhNCO, 86%

    NHPh

    O

    !" Type II!

    Felkin et al. Tetrahedron Lett., 1972, 22, 2285.!

    MgBr Me

    ether, reflux

    67%

    Oppolzer et al. J. Am. Chem. Soc., 1982, 104, 6476.!

  • The Metallo-Ene!

    !" Type I!

    Cl

    MeMe

    Mg, THF, 80 °C

    PhNCO, 86%

    NHPh

    O

    !" Type II!

    Felkin et al. Tetrahedron Lett., 1972, 22, 2285.!

    Mg

    Me

    Mg

    Me

    PhNCO

    MgBr Me

    ether, reflux

    67%

  • The Metallo-Ene: M = Mg, Li, Zn!

    Type I!

    Ring formation: 5 > 6 >> 7!

    Selectivity: syn ring juncture!

    Heterocycles: problematic!

    Type II!

    Ring formation: 6 > 5 # 7 >> 8!

    Selectivity: syn ring juncture!

    Heterocycles: when M = Zn!

    X

    Me

    XMe

    Me

    Me

    "M" "M"

  • Total Synthesis of Khusimone!

    Oppolzer et al. J. Am. Chem. Soc., 1982, 104, 6478.!

    O

    Me

    Me

    CO2Et

    LDA, THF, -78 °C

    then allyl-Br, -40 °C, 50%

    O

    CO2Et

    Me

    HOOH

    1. TsOH,

    2. NaOEt, EtOH, 74%

    97%CO2Et

    Me Me

    H

    O

    O1. LAH, ether, 92%

    2. MsCl, pyr, then LiCl (aq) 51%

    Me Me

    H

    O

    O

    Cl

    Mg0, THF, 60 °C

    then CO2, -10 °C, 82%

    OO

    H

    H Me

    Me

    CO2H

    !" Can the diastereoselectivity be accounted for?!

  • Transition State Analysis!

    Oppolzer et al. J. Am. Chem. Soc., 1982, 104, 6478.!

    !" Chair conformation

    experiences the least

    steric interaction!

    H

    MgCl

    Me

    Me

    OO

    H

    OO

    H

    H

    MgCl

    ClMg

    Me

    MeHH

    OO

    OO

    H

    H

    MgCl

    X

  • Total Synthesis of Khusimone!

    Oppolzer et al. J. Am. Chem. Soc., 1982, 104, 6478.!

    O

    Me

    Me

    CO2Et

    LDA, THF, -78 °C

    then allyl-Br, -40 °C, 50%

    O

    CO2Et

    Me

    HOOH

    1. TsOH,

    2. NaOEt, EtOH, 74%

    97%CO2Et

    Me Me

    H

    O

    O1. LAH, ether, 92%

    2. MsCl, pyr, then LiCl (aq) 51%

    Me Me

    H

    O

    O

    Cl

    Mg0, THF, 60 °C

    then CO2, -10 °C, 82%

    OO

    H

    H Me

    Me

    1. LAH, THF, 92%

    2. MsCl, TEA, CH2Cl2, then1 N HCl (aq)/ether, 93%

    H

    H Me

    Me

    O

    CO2HOMs

    t-BuOK, t-BuOH/PhH

    98%H Me

    Me

    O

    (+)-Khusimone9-steps, 11% overall yield

  • The Catalytic Metallo-Ene: M = Zn!

    Marek et al. J. Org. Chem., 1995, 360, 863.!

    TBAF

    KF

    Me

    OH

    Me

    OSithexMe2

    OSthexMe2

    SiMe3nBuLi, THF, -70 °C

    ZnBr2, warmed to 20 °C then HCl, 80%

    Me

    OSithexMe2

    SiMe3

    H •

    SiMe3

    ZnBr

    RO OSithexMe2

    SiMe3

    ZnBr

    !" Product can be differentially desilated.!

  • The Catalytic Metallo-Ene: M = Zn!

    Marek et al. J. Org. Chem., 1995, 360, 863.!

    TBAF

    KF

    Me

    OH

    Me

    OSithexMe2

    OSthexMe2

    SiMe3nBuLi, THF, -70 °C

    ZnBr2, warmed to 20 °C then HCl, 80%

    Me

    OSithexMe2

    SiMe3

    R

    SiMe3

    nBuLi, THF, -70 °C

    ZnBr2, warmed to 20 °C R

    SiMe3

    ZnBr

    I2

    HCl

    R

    Me

    R

    R = CH2t-Bu

    I

    R = Me

    !" Product can be differentially desilated.!

    !" Alkyl-Zn can be hydrolyzed or trapped with electrophiles.!

    !" Can also be used directly in cross-coupling reactions.!

  • Tandem Zn Promoted 1,2-Brook Rearrangement Metallo-Ene!

    Marek et al. Org. Lett., 2009, ASAP.!

    t-But-Bu

    OH

    N

    OH

    L =

    H •

    R

    ZnBr

    Me3SiO OSiMe3

    R

    ZnBr

    Me3SiO

    ZnEt

    (CH2)3CH=CH2

    R

    O

    SiMe3

    1. ZnEt2, 20 mol% L* Tol, rt, 12 h

    2. THF, 40 °C, 24 h3. HCl, TBAF

    Me

    OH

    RHR R = Ph, 92%, >99:1 dr, 81:19 erR = Hex, 91%, >99:1 dr, 77:23 er

  • Tandem Zn Promoted 1,2-Brook Rearrangement Metallo-Ene!

    Marek et al. Org. Lett., 2009, ASAP.!

    t-But-Bu

    OH

    N

    OH

    L =

    O

    SiMe3

    1. ZnEt2, 20 mol% L* Tol, rt, 12 h

    2. THF, 40 °C, 24 h3. HCl, TBAF

    Me

    OH

    RHR R = Ph, 92%, >99:1 dr, 81:19 erR = Hex, 91%, >99:1 dr, 77:23 er

    O

    SiMe3

    1. ZnEt2, 20 mol% L* Tol, rt, 12 h

    2. THF, 40 °C, 24 h3. HCl, TBAF

    OH

    RHPh

    SiMe3

    Me3Si

    79%, 77:23 er

  • The Catalytic Metallo-Ene: M = Ni!

    Oppolzer et al. Tetrahedron Lett., 1988, 29, 6433.!

    36 h

    58%

    !" The same trends are observed for Pd.!

    AcO

    TsN Ni(COD)2, dppb (10 mol%) rt, 6 h, 88%

    TsN

    H

    H

    NTs

    NiIITHF

    AcO

    TsN Ni(COD)2, dppb (10 mol%)

    TsN

    H

    H

    NTs

    NiII

    THFX

  • The Catalytic Metallo-Ene: M = Pd!

    Oppolzer et al. Tetrahedron Lett., 1988, 29, 4705.!

    AcO

    E E

    AcO

    E E

    AcO

    Cl

    SN2

    !-ally-Pd

    Pd(PPh3)4, AcOH

    70 °C, 72%

    E E

    Pd(PPh3)4, AcOH

    70 °C, 80%

    E E

    H

    H

    H

    H

  • The Catalytic Metallo-Ene: M = Pd!

    Oppolzer et al. Tetrahedron Lett., 1988, 29, 4705.!

    AcO

    E E

    AcO

    E E

    AcO

    Cl

    SN2

    !-ally-Pd

    !" Also works to form cis or trans decalin systems:!

    Pd(PPh3)4, AcOH

    70 °C, 72%

    E E

    Pd(PPh3)4, AcOH

    70 °C, 80%

    E E

    H

    H

    H

    H

    H

    H

    E EH

    H

    E E

    or

  • Stereochemistry of Pd-Catalzed Metallo-Ene!

    Oppolzer, W. Pure & Appl. Chem. 1990, 62, 1941.!

    !" Terminal olefin results in loss of stereochemical integrity.!

    !" E-alkene allows for transfer of stereochemistry.!

    BocN

    OAc

    Pd(PPh3)4

    AcOH, 70 °C

    BocN

    Pd

    BocN

    Pd

    64%

    BocN

    (S)

    racemic

    BocN

    Me

    OAc

    Pd(PPh3)4

    AcOH, 70 °C

    BocN

    Me

    Pd

    BocN

    Me Pd

    H

    64%

    BocN

    Me

    H(S)(S)

    > 99% ee

  • Stereochemistry of Pd-Catalzed Metallo-Ene!

    Oppolzer, W. Pure & Appl. Chem. 1990, 62, 1941.!

    !" Alkene geometry impacts expected outcome.!

    76%

    BocN

    Me

    H(R)

    97% ee

    BocN

    OAc

    Pd(PPh3)4

    AcOH, 70 °C

    BocN

    Pd

    BocN

    Pd

    (S)

    Me

    MeMeH

    anti-!-allyl

    BocN

    Pd

    MeH

    BocN

    Me

    Pd

    syn-!-allyl

  • Doing More in One Step!

    Oppolzer et al. Tetrahedron Lett. 1989, 30, 5883.!

    TsN

    I

    Ni(COD)2/dppb (25 mol%)

    THF/MeOH 4:1CO (1 atm), rt

    TsN

    H

    NiIILn

    H

    80%

    TsN

    H H

    ONiIILn

    TsN

    H H

    O

    MeO2C

    !" CO-insertion happens at both alkyl-Ni stages!

  • Doing More in One Step!

    Oppolzer et al. Tetrahedron Lett. 1989, 30, 5883.!

    TsN

    I

    Ni(COD)2/dppb (25 mol%)

    THF/MeOH 4:1CO (1 atm), rt

    TsN

    H

    NiIILn

    TsN

    H

    ONiIILn

    87%

    TsN

    H

    O

    MeO2C

    TsN

    I

    Ni(CO)3/PPh3 (25 mol%)

    THF/MeOH 4:1CO (1 atm), rt

    TsN

    NiIILn

    TsN

    MeO2C

    69%

    !" Changing the ligand allows for control of CO-insertion.!

  • Doing More in One Step!

    Oppolzer et al. Tetrahedron Lett. 1989, 30, 5883.!

    TFAN

    AcO

    Pd(dba)2/PPh3 (10 mol%)

    AcOH, CO (1 atm)45 °C

    TFAN

    H

    PdIILn

    H

    TFAN

    H

    CO2H

    H

    H2O

    CH2N2, CH2Cl2

    TFAN

    H

    CO2Me

    H

    70%

    !" Pd-affords the trans-ring juncture.!

  • Models for Diastereoselectivity!

    Oppolzer et al. Tetrahedron Lett. 1990, 31, 1265.!

    NiII

    H

    H

    TsN

    L

    L

    PdII

    H

    H

    L

    LTFAN

    !" Endo! !" Exo!

    TFAN

    H

    CO2Me

    H

    TsN

    H H

    O

    MeO2C

  • The Catalytic Metallo-Ene: M = Rh!

    Oppolzer, W.; Furstner, A. Helv. Chim. Acta 1993, 76, 2329.!

    X! n! Yield (%)!

    NTs! 1! 80!

    NTFA! 1! 83!

    NCbz! 1! 63!

    C(CO2Me)2! 1! 75!

    C(SO2Ph)2! 1! 88!

    NTs! 2! 65!

    C(SO2Ph)2! 2! 55!

    X

    AcO

    RhH(PPh3)4/P[Ph(OMe)3]3 2 mol% 4 mol%

    AcOH, 80 °C

    X

    n n

  • PdII-Catalyzed Formal Alder-Ene!

    Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781.!

    EE

    E

    C6D6, 60 °C, 85%

    Pd(OAc)2(PPh3)3 (5 mol%)E

    EE

    H

    H

    !" PdII is necessary for catalysis. !

    !" Can be performed in one pot.!

    OAcE

    12 h, Then PdII, reflux 1.5 h, 68%

    Pd(PPh3)4, NaH, THF, refluxE

    EE

    H

    HE

    E

  • PdII-Catalyzed Formal Alder-Ene!

    Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781.!

    !" 1,4-Diene observed with no allylic substitution outside of pendant ring.!

    !" A trans-relationship results when allylic substitution exists inside the pendant ring.!

    C6D6, 60 °C, 68%

    Pd(OAc)2(PPh3)3 (5 mol%)E

    E

    E

    E

    MeMe

    H

    (CH2)8CH(OMe)2 C6D6, 60 °C, 71%

    Pd(OAc)2(PPh3)3 (5 mol%)E

    E

    E

    E

    (CH2)8CH(OMe)2

  • Mechanistic Proposal!

    Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781.!

    E

    E R'

    R

    PdII PdIVE

    E

    RR'

    HH

    !"H elim.

    !"H elim.

    E

    E

    R R'

    PdIV

    H

    E

    E

    R R'

    PdIV

    H

    E

    E

    R R'

    E

    E

    R R'

    red.

    elim.

    red.

    elim.

    H

    H

    PdII

    PdII

  • PdII-Catalyzed Formal Alder-Ene!

    Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781.!

    !" 1,3-Diene observed with allylic substitution outside of pendant ring.!

    C6D6, 66 °C, 64%

    Pd(OAc)2(PPh3)3 (5 mol%)

    E

    EE

    E

    C6D6, 66 °C, 71%

    Pd(OAc)2(PPh3)3 (5 mol%)

    E

    EE

    EO

    O

    O

    O

    C6D6, 66 °C, 80%

    Pd(OAc)2(PPh3)3 (5 mol%)

    E

    EE

    E R

    Me

    Me

    R

  • Mechanistic Support for Palladacycle Pathway!

    R

    E

    E

    Pd

    CO2Me

    CO2MeMeO2C

    MeO2C

    PPh3, C6H6, 60 °C

    E

    E

    E

    E

    R

    R = Me, 59%, 2 : 3R = H, 54%

    E

    E

    E

    E

    CO2Me

    CO2Me

    E

    E

    CO2Me

    CO2Me

    not

    Pd

    CO2Me

    CO2MeMeO2C

    MeO2C

    P(o-OTol)3, 60 °C

    CO2MeMeO2C

    , DCE

    Me

    Me

    Pd

    CO2Me

    CO2MeMeO2C

    MeO2C

    P(o-OTol)3, 60 °C, 83%Me

    Me

    CO2MeMeO2C

    CO2Me

    CO2Me Crossover expmt withCO2EtEtO2C

    shows only acetylene incorporation.

    , DCE

    Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1987, 109, 4753.!

  • Mechanistic Support for Palladacycle Pathway: Remote Binding!

    Trost et al J. Am. Chem. Soc. 1994, 116, 4255.!

    Cat!n = 1!

    A:B!Yield!

    n = 2!

    A:B!Yield!

    Pd(OAc)2! 21:1! 76! 1.1:1! 75!

    Pd(OAc)2[P(o-Tol)3]2! >20:1! nd! 1:1.6! 74!

    Pd(OAc)2(PPh3)2! 2.7:1! nd! 1:4.6! 81!

    Pd(OAc)2(PPh3)3! 1:2.3! 24!

    E

    E

    E

    ECat

    n

    n

    BA

    E

    E

    n

    PdIV

    HaHb

    Hb

    PPh3

  • PdII-Catalyzed Formal Alder-Ene!

    !" No reaction observed w/o AcOH!

    Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

    AcOH (5 mol%), rt, TOTP (5 mol%)

    Pd2dba3CHCl3 (2.5 mol%), C6D6

    Me

    MeTBSO

    Me

    TBSO

    Me

    TBSO

    88%, 7.5 : 1

  • PdII-Catalyzed Formal Alder-Ene!

    !" No reaction observed w/o AcOH!

    Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

    AcOH (5 mol%), rt, TOTP (5 mol%)

    Pd2dba3CHCl3 (2.5 mol%), C6D6

    Me

    MeTBSO

    Me

    TBSO

    Me

    TBSO

    88%, 7.5 : 1

    AcOH (5 mol%), rt, TOTP (5 mol%)

    Pd2dba3CHCl3 (2.5 mol%), C6D6

    R

    R

    E

    E

    E

    E

    95% 75%

    c-Hex

    E

    E

    86%

    E

    E

    OMeMeO

    E

    E

    OAcAcO

    !" Sensitive functional groups also tolerated!

  • Mechanistic Proposal!

    Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

    E

    E

    R'R

    PdIIH

    OAc

    E

    E R'

    R

    E

    E

    R'R

    PdIIOAc

    E

    E

    R R'

    PdII

    H

    H

    E

    E

    R R'

    Pd0 + AcOH

    H-PdII-OAc

    Predominent Product

  • Mechanistic Proposal!

    E

    E

    R'R

    PdIIH

    OAc

    E

    E R'

    R

    E

    E

    R'R

    PdIIOAc

    E

    E

    R R'

    PdII

    H

    H

    E

    E

    R R'

    Pd0 + AcOH

    H-PdII-OAc

    Predominent Product

    Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

  • Mechanistic Proposal!

    E

    E

    R'R

    PdIIH

    OAc

    E

    E R'

    R

    E

    E

    R'R

    PdIIOAc

    E

    E

    R R'

    PdII

    H

    H

    E

    E

    R R'

    Pd0 + AcOH

    H-PdII-OAc

    Predominent Product

    Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

  • Mechanistic Proposal!

    E

    E

    R'R

    PdIIH

    OAc

    E

    E R'

    R

    E

    E

    R'R

    PdIIOAc

    E

    E

    R R'

    PdII

    H

    H

    E

    E

    R R'

    Pd0 + AcOH

    H-PdII-OAc

    Predominent Product

    Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

  • Mechanistic Proposal!

    E

    E

    R'R

    PdIIH

    OAc

    E

    E R'

    R

    E

    E

    R'R

    PdIIOAc

    E

    E

    R R'

    PdII

    H

    H

    E

    E

    R R'

    Pd0 + AcOH

    H-PdII-OAc

    Predominent Product

    Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

  • Mechanistic Support for Hydro-Palladation Pathway!

    Trost et al J. Am. Chem. Soc. 1987, 109, 3161.!

    E

    E

    R R'

    PdII

    H

    H

    AcOH (1 eq), rt, TOTP (5 mol%), PMHS

    Pd2dba3CHCl3 (2.5 mol%), C6H6

    R

    R

    E

    E

    E

    E

    96% 75%

    c-Hex

    E

    E

    E

    E

    OAcAcO

    AcOH (5 mol%), rt, AsPh3 (5 mol%)

    OPd2dba3CHCl3 (2.5 mol%), CH2Cl2O

    Ph

    Ph

    Ph

    20%

    Ph

  • Mechanistic Support for Hydro-Palladation Pathway!

    Trost et al J. Am. Chem. Soc. 1987, 109, 3161.!

    E

    E

    R R'

    PdII

    H

    H

    AcOH (1 eq), rt, TOTP (5 mol%), PMHS

    Pd2dba3CHCl3 (2.5 mol%), C6H6

    R

    R

    E

    E

    E

    E

    96% 75%

    c-Hex

    E

    E

    E

    E

    OAcAcO

    rt, AsPh3 (5 mol%)

    OPdOAc2(AsPh3)2 (5 mol%), CH2Cl2O

    Ph

    Ph

    Ph

    96%

    Ph

  • Mechanistic Support for Hydro-Palladation Pathway!

    Trost et al J. Am. Chem. Soc. 1987, 109, 3161.!

    E

    E

    PdIIOAc

    E

    E

    R R'

    PdII

    H

    H

    AcOH (1 eq), rt, TOTP (5 mol%), DSiEt3

    Pd2dba3CHCl3 (2.5 mol%), C6H6

    R

    E

    E

    E

    E D

    AcOD (1 eq), rt, TOTP (5 mol%), PMHS

    Pd2dba3CHCl3 (2.5 mol%), C6H6

    R

    E

    E

    E

    E

    D

  • A Much Cheaper Alternative: Fe!

    Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

    XCH2R

    2

    R3

    Fe0 Li O

    O

    Toluene, 90 °C

    (5 mol%) 1

    XR1

    R1

    H

    R3

    R2

    Me

    H

    EE

    97%, 6:1 trans/cis

    Me

    H

    EE

    93%, 5.8:1 trans/cis5 mol% 2

    TsN

    n-Pr

    H

    90%, 7.9:1 trans/cis

    EE

    80%

    TsN

    79%

    Me

    H

    EE

    97%, 6.3:1 trans/cis5 mol% 2

    p-OMe-Ph

    nn

    On-Pr

    H

    82%, 20:1 trans/cis20 mol% 2

    Ph

    EE

    79%, 15 mol% 1

  • A Much Cheaper Alternative: Fe!

    Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

    Fe0 Li N

    N

    Toluene, 90 °C

    X

    H

    H

    R

    m

    n

    XH

    R

    m n

    H

    H

    p-OMe-Ph

    EE

    50%, 10 mol% 2

    (5 mol%) 2

    H

    HPh

    EE

    93%

    TsN

    H

    HPh

    60%, 10 mol% 2

    Ph

    E EH

    H

    68% 2.5:1 cis/trans10 mol% 2

    Ph

    EEH

    H

    63

    Ph

    EEH

    H

    95%

    Me

    EEH

    H

    93%

    EEH

    H

    93%

  • Divergent Pathways to Observed Sterochemistry!

    Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

    !" Pseudo-axial approach affords cis-diastereomer!

    !" Pseudo-equatorial approach affords trans-diastereomer!

    trans!

    cis!

    H

    Fe

    E

    E

    R H

    HR

    EE

    E E

    R

    H

    Fe

    H

    R

    E

    E

    R

    EEH

    H

    R

    E E H

    HFe

    E

    E

    Fe

    H

    H

    R

    R

    E

    E

  • Expectation of D-Labeling Study!

    Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

    Ph

    E E

    D

    syn to D

    anti to D

    Ph

    E E

    HFe

    D

    Ph

    EE

    DFe

    Ph

    EE

    D

    Ph

    E E

    DFe

    H Ph

    E E

    DFe

    H

    Ph

    EE

    HFeD

    FePh

    DH

    EE

    H

    Ph

    EE

    DFeH

    H

    Ph

    EE

    HD

    Ph

    EE

    DH

    Ph

    E E

    HFe

    D

    H

  • Expectation of D-Labeling Study!

    Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

    Scrambling!

    Ph

    E E

    D

    syn to D

    anti to D

    Ph

    E E

    HFe

    D

    Ph

    EE

    DFe

    Ph

    EE

    D

    Ph

    E E

    DFe

    H Ph

    E E

    DFe

    H

    Ph

    EE

    HFeD

    FePh

    DH

    EE

    H

    Ph

    EE

    DFeH

    H

    Ph

    EE

    HD

    Ph

    EE

    DH

    Ph

    E E

    HFe

    D

    H

  • Expectation of D-Labeling Study!

    Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

    Scrambling!

    D-Transfer!

    Ph

    E E

    D

    syn to D

    anti to D

    Ph

    E E

    HFe

    D

    Ph

    EE

    DFe

    Ph

    EE

    D

    Ph

    E E

    DFe

    H Ph

    E E

    DFe

    H

    Ph

    EE

    HFeD

    FePh

    DH

    EE

    H

    Ph

    EE

    DFeH

    H

    Ph

    EE

    HD

    Ph

    EE

    DH

    Ph

    E E

    HFe

    D

    H

    !" If the metallacycle is the pathway for the

    trans-ring juncture then deuterium should

    be transferred.!

  • Expectation of D-Labeling Study!

    Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

    E E

    Ph

    D

    H

    Fe

    H

    D

    EE

    Ph

    Ph

    EE

    HFe

    D

    Ph

    EE

    H

    D

    !" If the metallacycle is the pathway for the cis-ring juncture then hydrogen should be transferred.!

  • The Dramatic Conclusion!

    Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

    !" Deuterium labeling study supports a metallacyle intermediate.!

    Ph

    E E

    D

    Fe0 Li N

    N

    Toluene, 90 °C, 90%

    (10 mol%) 2

    HPh

    EE

    DH

    E E

    R

    D

    H

    Fe0 Li N

    N

    Toluene, 90 °C, 82%

    (10 mol%) 2

    R

    EE

    H

    D

  • Intermolecular Rh-Catalyzed Alder-Ene!

    Brummond et al J. Am. Chem. Soc. 2002, 124, 15186.!

    !" First report of high yield and selectivity to form cross-conjugated trienes.!

    TsN

    R2

    Rh(CO)2Cl2 (2 mol%)

    Toluene, rt

    TsN

    R2

    TsN

    C5H11

    90%, 6:1 E/Z

    TsN

    93%

    R1

    R1

    TsN

    85%, 5:1 E/Z

    C5H11

    TMS

  • Intermolecular Rh-Catalyzed Alder-Ene!

    Brummond et al J. Am. Chem. Soc. 2002, 124, 15186.!

    !" Will This work with ene-allenes?!

    Rh(CO)2Cl2 (5 mol%)

    Toluene, rt

    TsN

    C6H13

    TsNMe

    C5H11

    TsN

    C7H15

    or

    TsNRhIII

    C6H13

  • Intermolecular Rh-Catalyzed Cycloisomerization!

    Brummond, K. M.; Chen, H.; Mitasev, B.; Casarez, A. D. Org. Lett. 2004, 6, 2161.!

    !" Tetrahydroazepines are formed instead.!

    Rh(CO)2Cl2 (5 mol%)

    Toluene, rt

    TsN

    C6H13

    TsN

    C6H13

    !" Product possessed interesting unsaturation for further functionalization.!

  • Intermolecular Rh-Catalyzed Cycloisomerization!

    !" Selected azepine products!

    Brummond, K. M.; Chen, H.; Mitasev, B.; Casarez, A. D. Org. Lett. 2004, 6, 2161.!Brummond, K. M.; Casarez, A. D. unpublished work.!

    TsN

    R3

    R1

    Rh(CO)2Cl2 (5-10 mol%)TsN

    R3

    R1

    TsN

    t-Bu

    Me

    Solvent, reflux

    95%, DCE

    TsN

    t-Bu

    SiMe2Bn

    97%, DCE

    TsN

    t-Bu

    Ph

    95%, 1,4-Dioxane

    TsN

    Si(i-Pr)3

    73%, 5.8:1 E/Z, 1,4-Dioxane

    TsN

    Me

    85%, 1,4-Dioxane

    Me TsN

    t-Bu

    86%, 1,4-Dioxane

    Me

    R2

    R2

    TsN

    t-Bu

    78%, 1,4-Dioxane

    TsN

    Si(i-Pr)3

    69%, 1,4-Dioxane

    Me

  • Two Plausible Mechanisms!

    Me

    N•

    t-Bu

    MeD

    D

    Ts

    N •t-Bu

    D

    Ts

    Rh-D

    MeN

    t-Bu

    MeD

    Rh-D

    Ts

    Rh(I) TsN

    t-Bu

    D

    D

    Me

    N

    Rh

    Ts

    H

    H t-Bu

    D

    D

    N

    t-Bu

    MeD

    Rh-D

    Ts

    path A

    path B

    89%

    Brummond, K. M.; Chen, H.; Mitasev, B.; Casarez, A. D. Org. Lett. 2004, 6, 2161.!

  • Intermolecular Ru-Catalyzed Alder-Ene!

    Trost, B. M.; Toste, F. D. Tetrahedron Lett. 1999, 40, 7739.!Trost et al J. Am. Chem. Soc. 2002, 124, 10396.!

    RuCp(MeCN)3PF6 (10 mol%)

    DMF, 84%

    MeO2C

    7 Ph

    NHBoc

    MeO2CPh

    NHBoc

    7

    !" Selectivity for the branched diene can be high depending on substrate!

    !" Selectivity for the branched diene can be high depending on substrate!

    OTroc

    RuCp(MeCN)3PF6 (5 mol%)

    Actone, 85%

    OTBS

    Me

    MeO

    OTroc

    Callipeltoside ATBSO

    OMe

    Me 22 longest linear46 overall steps

  • The Catalytic Cycle!

    Trost et al J. Am. Chem. Soc. 2002, 124, 10396.!

    RuI

    NNN

    TBSO

    OMe

    Me

    OTroc

    RuI

    OTroc

    TBSO

    MeO

    Me

    S

    RuIII OTroc

    TBSO

    OMe

    Me

    H

    RuIII

    TBSO

    OMe

    Me

    OTroc

    H

    S

    OTBS

    Me

    MeO

    OTroc

    H

    S

  • The Catalytic Cycle!

    Trost et al J. Am. Chem. Soc. 2002, 124, 10396.!

    RuI

    NNN

    TBSO

    OMe

    Me

    OTroc

    RuI

    OTroc

    TBSO

    MeO

    Me

    S

    RuIII OTroc

    TBSO

    OMe

    Me

    H

    RuIII

    TBSO

    OMe

    Me

    OTroc

    H

    S

    OTBS

    Me

    MeO

    OTroc

    H

    S

  • Intermolecular Co-Catalyzed Alder-Ene!

    Hilt, G.; Treutwein, J. Angew. Chem. Int. Ed. 2007, 46, 8500.!

    Etn-Pr

    Ph

    89%, 8:1 E/Z

    MeSiMe3

    EtO2C

    99%, 99:1 E/Z

    Me

    EtO2C

    95%, 8:1 E/Z

    OMe

    OMe

    n-Pr

    99%, 99:1 E/Z

    OMe

    MeO

    EtOTMS

    Ph

    95%, E only

    Et

    Ph

    80%, 4:1 E/Z

    B(pin)

    Co(dppp)Br2 (10 mol%)R2 R

    2

    R1

    R3Zn, ZnI2 (20 mol%), CH2Cl2

    R1

    R3

  • Intermolecular Co-Catalyzed Alder-Ene!

    Hilt, G.; Treutwein, J. Angew. Chem. Int. Ed. 2007, 46, 8500.!

    Etn-Pr

    Ph

    89%, 8:1 E/Z

    MeSiMe3

    EtO2C

    99%, 99:1 E/Z

    Me

    EtO2C

    95%, 8:1 E/Z

    OMe

    OMe

    n-Pr

    99%, 99:1 E/Z

    OMe

    MeO

    EtOTMS

    Ph

    95%, E only

    Et

    Ph

    80%, 4:1 E/Z

    B(pin)

    Co(dppp)Br2 (10 mol%)R2 R

    2

    R1

    R3Zn, ZnI2 (20 mol%), CH2Cl2

    R1

    R3

  • Other Ene Reactions!

    !" The Carbonyl-ene!

    Okachi, T.; Onaka, M. J. Am. Chem. Soc. 2004, 126, 2306.!

    !" The Imino-ene!

    Nakagawa et al. Org. Lett., 2000, 2, 159.!

    Ph

    Me O

    HH

    NaY zeolite, cyclohexane

    Ph OH20 °C, 94%

    Ph

    Me NTol

    PhH

    Yb(OTf)3, TMSCl (5 mol% ea)

    Ph NHTolCH2Cl2, rt, 94%

    Ph

  • Other Ene Reactions!

    !" The Acetal-ene!

    Ghosez et al., Synthesis, 2004, 1375.!

    !" The Arynyl-ene!

    Ph OMe

    OMe FeCl3, CH2Cl2, rt, 95%

    Ph

    OMe

    SiMe3

    KF, 18 crown 6

    n-Burt, 69%

    • n-PrOTf

    n-PrHSiMe3

    OTf

    F-