me 1020 engineering programming with matlab chapter 8...

31
ME 1020 Engineering Programming with MATLAB Chapter 8 Homework Solutions: 8.1, 8.3, 8.8, 8.10, 8.12, 8.14, 8.16 Problem 8.1:

Upload: others

Post on 01-Sep-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

ME 1020 Engineering Programming with MATLAB

Chapter 8 Homework Solutions: 8.1, 8.3, 8.8, 8.10, 8.12, 8.14, 8.16

Problem 8.1:

Page 2: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 3: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 4: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 5: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

Problem 8.3:

Page 6: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 7: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 8: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 9: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 10: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

Problem 8.8:

Page 11: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

Problem setup:

The unknowns are 𝑇1, 𝑇2, 𝑇3, and π‘ž. Cast the equations above in terms of these unknowns.

(𝑅1)π‘ž + (1)𝑇1 + (0)𝑇2 + (0)𝑇3 = 𝑇𝑖

(𝑅2)π‘ž + (βˆ’1)𝑇1 + (1)𝑇2 + (0)𝑇3 = 0

(𝑅3)π‘ž + (0)𝑇1 + (βˆ’1)𝑇2 + (1)𝑇3 = 0

(𝑅4)π‘ž + (0)𝑇1 + (0)𝑇2 + (βˆ’1)𝑇3 = βˆ’π‘‡π‘œ

π‘₯𝑇 = [π‘ž 𝑇1 𝑇2 𝑇3]

𝐡𝑇 = [𝑇𝑖 0 0 βˆ’ π‘‡π‘œ]

𝑅1 = 0.036; 𝑅2 = 4.01; 𝑅3 = 0.408; 𝑅4 = 0.038

𝑇𝑖 = 20; π‘‡π‘œ = βˆ’10

Page 12: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 13: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

Problem 8.10:

Problem setup: Assign the directions of the heat fluxes arbitrarily, but be consistent when deriving the

equations.

R R R

R R

R R R

R R R

R R R

Ta T1 T2 T3

T4

T7

T6 T5

T8 T9 Tb

qa1

q12

q23

q45

q56

q78

q89

q9b

q14

q47

q25

q36

q58

q69

Page 14: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

Heat in = Heat out: Heat balance equations.

π‘žπ‘Ž1 = π‘ž12 + π‘ž14

π‘ž12 = π‘ž23 + π‘ž25

π‘ž23 = π‘ž36

π‘ž14 = π‘ž47 + π‘ž45

π‘ž45 + π‘ž25 = π‘ž56 + π‘ž58

π‘ž36 + π‘ž56 = π‘ž69

π‘ž47 = π‘ž78

π‘ž78 + π‘ž58 = π‘ž89

π‘ž69 + π‘ž89 = π‘ž9𝑏

Fourier’s Law of Heat Conduction: Heat transfer is proportional to the temperature difference.

π‘žπ‘Ž1 =1

𝑅(π‘‡π‘Ž βˆ’ 𝑇1)

π‘ž12 =1

𝑅(𝑇1 βˆ’ 𝑇2)

π‘ž23 =1

𝑅(𝑇2 βˆ’ 𝑇3)

π‘ž14 =1

𝑅(𝑇1 βˆ’ 𝑇4)

π‘ž45 =1

𝑅(𝑇4 βˆ’ 𝑇5)

π‘ž25 =1

𝑅(𝑇2 βˆ’ 𝑇5)

π‘ž56 =1

𝑅(𝑇5 βˆ’ 𝑇6)

π‘ž36 =1

𝑅(𝑇3 βˆ’ 𝑇6)

π‘ž47 =1

𝑅(𝑇4 βˆ’ 𝑇7)

π‘ž78 =1

𝑅(𝑇7 βˆ’ 𝑇8)

π‘ž58 =1

𝑅(𝑇5 βˆ’ 𝑇8)

Page 15: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

π‘ž89 =1

𝑅(𝑇8 βˆ’ 𝑇9)

π‘ž69 =1

𝑅(𝑇6 βˆ’ 𝑇9)

π‘ž9𝑏 =1

𝑅(𝑇9 βˆ’ 𝑇𝑏)

Substitute the π‘ž expressions into the heat balance equations. The interior temperatures are the unknowns.

(3)𝑇1 + (βˆ’1)𝑇2 + (0)𝑇3 + (βˆ’1)𝑇4 + (0)𝑇5 + (0)𝑇6 + (0)𝑇7 + (0)𝑇8 + (0)𝑇9 = π‘‡π‘Ž

(βˆ’1)𝑇1 + (3)𝑇2 + (βˆ’1)𝑇3 + (0)𝑇4 + (βˆ’1)𝑇5 + (0)𝑇6 + (0)𝑇7 + (0)𝑇8 + (0)𝑇9 = 0

(0)𝑇1 + (βˆ’1)𝑇2 + (2)𝑇3 + (0)𝑇4 + (0)𝑇5 + (βˆ’1)𝑇6 + (0)𝑇7 + (0)𝑇8 + (0)𝑇9 = 0

(βˆ’1)𝑇1 + (0)𝑇2 + (0)𝑇3 + (3)𝑇4 + (βˆ’1)𝑇5 + (0)𝑇6 + (βˆ’1)𝑇7 + (0)𝑇8 + (0)𝑇9 = 0

(0)𝑇1 + (βˆ’1)𝑇2 + (0)𝑇3 + (βˆ’1)𝑇4 + (4)𝑇5 + (βˆ’1)𝑇6 + (0)𝑇7 + (βˆ’1)𝑇8 + (0)𝑇9 = 0

(0)𝑇1 + (0)𝑇2 + (βˆ’1)𝑇3 + (0)𝑇4 + (βˆ’1)𝑇5 + (3)𝑇6 + (0)𝑇7 + (0)𝑇8 + (βˆ’1)𝑇9 = 0

(0)𝑇1 + (0)𝑇2 + (0)𝑇3 + (βˆ’1)𝑇4 + (0)𝑇5 + (0)𝑇6 + (2)𝑇7 + (βˆ’1)𝑇8 + (0)𝑇9 = 0

(0)𝑇1 + (0)𝑇2 + (0)𝑇3 + (0)𝑇4 + (βˆ’1)𝑇5 + (0)𝑇6 + (βˆ’1)𝑇7 + (3)𝑇8 + (βˆ’1)𝑇9 = 0

(0)𝑇1 + (0)𝑇2 + (0)𝑇3 + (0)𝑇4 + (0)𝑇5 + (βˆ’1)𝑇6 + (0)𝑇7 + (βˆ’1)𝑇8 + (3)𝑇9 = 𝑇𝑏

π‘₯𝑇 = [𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9]

π‘‡π‘Ž = 150; 𝑇𝑏 = 20

Page 16: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 17: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 18: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 19: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 20: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

Problem 8.12:

Problem setup:

Reactor A:

(6 hr

ton) (π‘₯

ton

wk) + (2

hr

ton) (𝑦

ton

wk) + (10

hr

ton) (𝑧

ton

wk) = 35

hr

wk

Reactor B:

(3 hr

ton) (π‘₯

ton

wk) + (5

hr

ton) (𝑦

ton

wk) + (2

hr

ton) (𝑧

ton

wk) = 40

hr

wk

6π‘₯ + 2𝑦 + 10𝑧 = 35

3π‘₯ + 5𝑦 + 2𝑧 = 40

Page 21: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 22: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 23: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

Discussion of results:

The row-reduced echelon form is:

(1)π‘₯ + (0)𝑦 + 1.9176𝑧 = 3.9583

(0)π‘₯ + (1)𝑦 βˆ’ 0.7500𝑧 = 5.6250

These equations can be reduced:

π‘₯ = βˆ’1.9176𝑧 + 3.9583

𝑦 = 0.7500𝑧 + 5.6250

For this problem, we must have π‘₯ β‰₯ 0, 𝑦 β‰₯ 0, and 𝑧 β‰₯ 0.

for 𝑧 β‰₯ 0, π‘₯ ≀ 3.9583

for 𝑧 β‰₯ 0, 𝑦 β‰₯ 5.6250

for π‘₯ β‰₯ 0, βˆ’ 1.9176𝑧 + 3.9583 β‰₯ 0 or 𝑧 ≀ 2.0648

for 𝑦 β‰₯ 0, 0.7500𝑧 + 5.6250 β‰₯ 0 or 𝑧 β‰₯ βˆ’7.5 (not a valid solution)

Ranges of variables:

0 ≀ π‘₯ ≀ 3.9583

𝑦 β‰₯ 5.6250

0 ≀ 𝑧 ≀ 2.0648

Part c): Profit analysis:

𝑃 = 200π‘₯ + 300𝑦 + 100𝑧

𝑃 = 200(βˆ’1.9176𝑧 + 3.9583) + 300(0.7500𝑧 + 5.6250) + 100𝑧

𝑃 = 2479 βˆ’ 58.52𝑧

For maximum profit, set 𝑧 = 0. This gives 𝑃 = 2479.

π‘₯ = 3.9583

𝑦 = 5.6250

Part d): Profit analysis:

𝑃 = 200π‘₯ + 500𝑦 + 100𝑧

𝑃 = 200(βˆ’1.9176𝑧 + 3.9583) + 500(0.7500𝑧 + 5.6250) + 100𝑧

𝑃 = 3604 + 91.48𝑧

Page 24: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

For maximum profit, set 𝑧 to its maximum value: 𝑧 = 2.0648. This gives

𝑃 = 3604 + 91.48(2.0648) = 3793

π‘₯ = βˆ’1.9176(2.0648) + 3.9583 = 0

𝑦 = 0.7500(2.0648) + 5.6250 = 7.1736

Page 25: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

Problem 8.14:

Page 26: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 27: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

Problem 8.16:

Problem setup:

Part a):

𝑦 = π‘Žπ‘₯2 + 𝑏π‘₯ + 𝑐

Point 1: (π‘₯, 𝑦) = (1,4): 4 = π‘Ž(1)2 + 𝑏(1) + 𝑐; (1)π‘Ž + (1)𝑏 + (1)𝑐 = 4

Point 2: (π‘₯, 𝑦) = (4,73): 73 = π‘Ž(4)2 + 𝑏(4) + 𝑐; (16)π‘Ž + (4)𝑏 + (1)𝑐 = 73

Point 3: (π‘₯, 𝑦) = (5,120): 120 = π‘Ž(5)2 + 𝑏(5) + 𝑐; (25)π‘Ž + (5)𝑏 + (1)𝑐 = 120

π‘₯𝑇 = [π‘Ž 𝑏 𝑐]

Part b):

𝑦 = π‘Žπ‘₯3 + 𝑏π‘₯2 + 𝑐π‘₯ + 𝑑

Point 1: (π‘₯, 𝑦) = (1,4): 4 = π‘Ž(1)3 + 𝑏(1)2 + 𝑐(1) + 𝑑; (1)π‘Ž + (1)𝑏 + (1)𝑐 + (1)𝑑 = 4

Point 2: (π‘₯, 𝑦) = (4,73): 73 = π‘Ž(4)3 + 𝑏(4)2 + 𝑐(4) + 𝑑; (64)π‘Ž + (16)𝑏 + (4)𝑐 + (1)𝑑 = 73

Point 3: (π‘₯, 𝑦) = (5,120): 120 = π‘Ž(5)3 + 𝑏(5)2 + 𝑐(5) + 𝑑; (125)π‘Ž + (25)𝑏 + (5)𝑐 + (1)𝑑 = 120

π‘₯𝑇 = [π‘Ž 𝑏 𝑐]

Page 28: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 29: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14
Page 30: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

The exact solution (in terms of d) is:

(1)π‘Ž + (0)𝑏 + (0)𝑐 + (0.05)𝑑 = 0.25

(0)π‘Ž + (1)𝑏 + (0)𝑐 + (0.05)𝑑 = 3.5

(0)π‘Ž + (0)𝑏 + (1)𝑐 + (1.45)𝑑 = 0.25

π‘Ž + 0.05𝑑 = 0.25 or π‘Ž = βˆ’0.05𝑑 + 0.25

𝑏 + 0.05𝑑 = 3.5 or 𝑏 = βˆ’0.05𝑑 + 3.5

𝑐 + 1.45𝑑 = 0.25 or 𝑐 = βˆ’1.45𝑑 + 0.25

𝑦 = (βˆ’0.05𝑑 + 0.25)π‘₯3 + (βˆ’0.05𝑑 + 3.5)π‘₯2 + (βˆ’1.45𝑑 + 0.25)π‘₯ + 𝑑

Page 31: ME 1020 Engineering Programming with MATLAB Chapter 8 ...cecs.wright.edu/people/faculty/sthomas/matlabhomeworksolutions08.pdfHeat in = Heat out: Heat balance equations. π‘ž 1=π‘ž12+π‘ž14

The least squares solution is (inexact solution):

𝑦 = (0.2414)π‘₯3 + (3.5862)π‘₯2 + (0)π‘₯ + 0.1724