md. abdus salam quazi m. rahman power systems grounding

32
Power Systems Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Upload: others

Post on 05-Jan-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Power Systems

Md. Abdus SalamQuazi M. Rahman

Power Systems Grounding

Page 2: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Power Systems

Page 3: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

More information about this series at http://www.springer.com/series/4622

Page 4: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Md. Abdus Salam • Quazi M. Rahman

Power Systems Grounding

123

Page 5: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Md. Abdus SalamUniversiti Teknologi BruneiBandar Seri BegawanBrunei Darussalam

Quazi M. RahmanUniversity of Western OntarioLondon, ONCanada

ISSN 1612-1287 ISSN 1860-4676 (electronic)Power SystemsISBN 978-981-10-0444-5 ISBN 978-981-10-0446-9 (eBook)DOI 10.1007/978-981-10-0446-9

Library of Congress Control Number: 2016935600

© Springer Science+Business Media Singapore 2016This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionor information storage and retrieval, electronic adaptation, computer software, or by similar ordissimilar methodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exemptfrom the relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, express or implied, with respect to the material containedherein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer NatureThe registered company is Springer Science+Business Media Singapore Pte Ltd.

Page 6: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

To all my teachers and well-wishers whohave helped me grow professionally over theyears

Md. Abdus Salam

In loving memory of my beloved motherMrs. Matiza Begum, a wonderful teacherand a mentor, whose utmost selfless love andprayers for me to Almighty Allah have put mein a position where, I’m today. I appreciatethe opportunity I’ve had as a result of thehard work and sacrifice of both of myparents

Quazi M. Rahman

Page 7: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Preface

The book Power System Grounding is intended for both lower- and upper-levelundergraduate students studying power system, design, and measurement ofgrounding system, as well as a reference for power system engineers. For reference,this book has been written in a step-by-step method. In this method, this bookcovers the fundamental knowledge of power, transformer, different types of faults,soil properties, soil resistivity, and ground resistance measurement methods. Thisbook also includes fundamental and advanced theories related to the groundingsystem.

Nowadays, the demand for smooth, safe, and reliable power supply is increasingdue to an increase in the development of residential, commercial, and industrialsectors. The safe and reliable power supply system is interrupted due to differentfaults including lightning, short circuit, and ground faults. A good groundingsystem can protect substations, and transmission and distribution networks fromthese kinds of faults. In addition, a good grounding system ensures the safety ofhumans in the areas of faulty substations in case of ground faults, and decreases theelectromagnetic interference in substations.

This book is organized into seven chapters and two appendices. Chapter 1 dealswith the fundamental knowledge of power analysis. Transformer fundamentals andpractices are discussed in Chap. 2. Chapter 3 covers the issues on the symmetricaland unsymmetrical faults. Chapter 4 includes the grounding system parametersand resistance. In this chapter, different parameters related to the grounding systemand expressions of resistance with different sizes of electrodes are discussed.Chapter 5 presents ideas on different types of soil, properties of soil, influence ofdifferent parameters on soil, current density, and Laplace and Poisson equations andtheir solutions. Chapter 6 describes different measurement methods of soil resis-tivity. The grounding resistance measurement methods are discussed in Chap. 7.

This book will offer both students and practice engineers the fundamentalconcepts in conducting practical measurements on soil resistivity and groundresistance at residential and commercial areas, substations, and transmission anddistribution networks.

vii

Page 8: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Authors would like to thank Fluke Corporation for providing high-qualityphotographs and equipments Fluke 1625, Fluke 1630, and some technical contents.

Special thanks go to our Ex-MSc Engineering student Luis Beltran, TheUniversity of Western Ontario, London, Canada who developed part of thederivation on the measurement of ground resistance.

The authors would like to express their sincere thanks to the production staff ofSpringer Publishing Company for their continuous help with the preparation of themanuscript and bringing this book to completion.

Lastly, we express our heartfelt thanks to our respective spouses and children fortheir continued patience during the preparation of the book.

viii Preface

Page 9: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Contents

1 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Instantaneous Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Average and Apparent Power . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 Power Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.5 Complex Power and Reactive Power . . . . . . . . . . . . . . . . . . . . 71.6 Complex Power Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.7 Power Factor Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.8 Three-Phase System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.9 Naming Phases and Phase Sequence. . . . . . . . . . . . . . . . . . . . . 181.10 Star Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.11 Voltage and Current Relations for Y-Connection . . . . . . . . . . . . 201.12 Delta or Mesh Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.13 Voltage and Current Relations for Delta-Connection. . . . . . . . . . 241.14 Three-Phase Power Calculation . . . . . . . . . . . . . . . . . . . . . . . . 271.15 Measurement of Three-Phase Power . . . . . . . . . . . . . . . . . . . . . 321.16 Power Factor Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 331.17 Series Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361.18 Parallel Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Transformer: Principles and Practices . . . . . . . . . . . . . . . . . . . . . . 492.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492.2 Working Principle of Transformer . . . . . . . . . . . . . . . . . . . . . . 492.3 Flux in a Transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502.4 Ideal Transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512.5 E.M.F. Equation of Transformer . . . . . . . . . . . . . . . . . . . . . . . 522.6 Turns Ratio of Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 532.7 Rules for Referring Impedance . . . . . . . . . . . . . . . . . . . . . . . . 56

ix

Page 10: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

2.8 Equivalent Circuit of a Transformer . . . . . . . . . . . . . . . . . . . . . 582.8.1 Exact Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . 582.8.2 Approximate Equivalent Circuit . . . . . . . . . . . . . . . . . . 60

2.9 Polarity of a Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622.10 Three-Phase Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642.11 Transformer Vector Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 652.12 Voltage Regulation of a Transformer . . . . . . . . . . . . . . . . . . . . 732.13 Efficiency of a Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.14 Iron and Copper Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.15 Condition for Maximum Efficiency . . . . . . . . . . . . . . . . . . . . . 782.16 Transformer Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.16.1 Open Circuit Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . 812.16.2 Short Circuit Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.17 Autotransformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852.18 Parallel Operation of a Single-Phase Transformer. . . . . . . . . . . . 872.19 Three-Phase Transformer Connections . . . . . . . . . . . . . . . . . . . 88

2.19.1 Wye-Wye Connection. . . . . . . . . . . . . . . . . . . . . . . . . 882.19.2 Wye-Delta Connection . . . . . . . . . . . . . . . . . . . . . . . . 892.19.3 Delta-Wye Connection . . . . . . . . . . . . . . . . . . . . . . . . 902.19.4 Delta-Delta Connection . . . . . . . . . . . . . . . . . . . . . . . . 91

2.20 Instrument Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3 Symmetrical and Unsymmetrical Faults . . . . . . . . . . . . . . . . . . . . . 1013.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013.2 Symmetrical Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013.3 Unsymmetrical Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023.4 Symmetrical Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023.5 Representation of Symmetrical Components . . . . . . . . . . . . . . . 1043.6 Complex Power in Symmetrical Components . . . . . . . . . . . . . . 1093.7 Sequence Impedances of Power System Equipment . . . . . . . . . . 1113.8 Zero Sequence Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153.9 Classification of Unsymmetrical Faults . . . . . . . . . . . . . . . . . . . 1203.10 Sequence Network of an Unloaded Synchronous Generator . . . . . 1213.11 Single Line-to-Ground Fault . . . . . . . . . . . . . . . . . . . . . . . . . . 1243.12 Line-to-Line Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293.13 Double Line-to-Ground Fault. . . . . . . . . . . . . . . . . . . . . . . . . . 134Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4 Grounding System Parameters and Expression of GroundResistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1534.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1534.2 Objectives of Grounding System . . . . . . . . . . . . . . . . . . . . . . . 153

x Contents

Page 11: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

4.3 Grounding Symbols and Classification . . . . . . . . . . . . . . . . . . . 1544.4 Ungrounded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554.5 Grounded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.5.1 Solidly Grounded System . . . . . . . . . . . . . . . . . . . . . . 1624.5.2 Resistance Grounding . . . . . . . . . . . . . . . . . . . . . . . . . 1674.5.3 Reactance Grounding . . . . . . . . . . . . . . . . . . . . . . . . . 1694.5.4 Voltage Transformer Grounding. . . . . . . . . . . . . . . . . . 170

4.6 Resonant Grounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1714.7 Ground Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1754.8 Electric Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1764.9 Ground Resistance with Hemisphere. . . . . . . . . . . . . . . . . . . . . 1774.10 Ground Resistance with Sphere Electrode . . . . . . . . . . . . . . . . . 1804.11 Ground Resistance with Cylindrical Rod. . . . . . . . . . . . . . . . . . 1824.12 Ground Resistance with Circular Plate . . . . . . . . . . . . . . . . . . . 1914.13 Ground Resistance with Conductor Type Electrode . . . . . . . . . . 196Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5 Soil Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2035.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2035.2 Soil Resistance and Resistivity. . . . . . . . . . . . . . . . . . . . . . . . . 2035.3 Types of Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2055.4 Permeability and Permittivity of Soil . . . . . . . . . . . . . . . . . . . . 2075.5 Influence of Different Factors on Soil Resistivity . . . . . . . . . . . . 2085.6 Current Density of Soil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2105.7 Continuity of Earth Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 2125.8 Current Density at Soil Interface . . . . . . . . . . . . . . . . . . . . . . . 2155.9 Derivation of Poisson’s and Laplace’s Equations . . . . . . . . . . . . 2195.10 Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2225.11 Solutions of Laplace’s Equation. . . . . . . . . . . . . . . . . . . . . . . . 224

5.11.1 One Dimension Solution . . . . . . . . . . . . . . . . . . . . . . . 2245.11.2 Two-Dimension Solution . . . . . . . . . . . . . . . . . . . . . . 226

5.12 Solution of Laplace’s Equation in Cylindrical Coordinates . . . . . 2335.13 Spherical Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . 2355.14 Solution of Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . . . 2425.15 Numerical Solution of Laplace’s Equation. . . . . . . . . . . . . . . . . 243Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

6 Soil Resistivity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2516.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2516.2 Two-Pole Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2516.3 Four-Pole Equal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2526.4 Derivation of Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2546.5 Lee’s Partitioning Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Contents xi

Page 12: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

6.6 Sided Probe System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2636.7 Schlumberger Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2656.8 Different Terms in Grounding System. . . . . . . . . . . . . . . . . . . . 2686.9 Touch and Step Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

7 Ground Resistance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 2777.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2777.2 Types of Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2777.3 Two-Pole Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2797.4 Three-Pole Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2807.5 Fall of Potential Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2817.6 The 62 % Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2827.7 Derivation of 62 % Method. . . . . . . . . . . . . . . . . . . . . . . . . . . 2837.8 Position of Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2867.9 Clamp-on Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2887.10 Slope Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2907.11 Ammeter-Voltmeter Method . . . . . . . . . . . . . . . . . . . . . . . . . . 2927.12 Ammeter-Wattmeter Method . . . . . . . . . . . . . . . . . . . . . . . . . . 2937.13 Wheatstone Bridge Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 2937.14 Bridge Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2957.15 Potentiometer Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2967.16 Measurement of Touch and Step Potentials . . . . . . . . . . . . . . . . 2987.17 Application Example 1: Measurement of Ground

Resistance at Telephone Exchange . . . . . . . . . . . . . . . . . . . . . . 2997.18 Application Example 2: Measurement of Ground

Resistance at Residential Area . . . . . . . . . . . . . . . . . . . . . . . . . 3017.19 Ground Resistance Measuring Equipment . . . . . . . . . . . . . . . . . 302References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

xii Contents

Page 13: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Chapter 1Power Analysis

1.1 Introduction

Electrical power is the time rate of receiving or delivering electrical energy thatdepends on the voltage and current quantities. In an ac circuit, the current andvoltage quantities vary with time, and so the electrical power. Every electricaldevice such as ceiling fan, bulb, television, iron, micro-wave oven, DVD player,water-heater, refrigerator, etc. has a power rating that specifies the amount of powerthat device requires to operate. An electrical equipment with high power ratinggenerally draws large amount of current from the energy source (e.g., voltagesource) which increases the energy consumption. Nowadays, Scientists andEngineers are jointly working on the design issues of the electrical equipment toreduce the energy consumption. Since in the design stage, power analysis plays avital role, a clear understanding on power analysis fundamentals becomes a mostimportant prep work for any electrical engineer. This chapter reviews these fun-damental concepts that include instantaneous power, average power, complexpower, power factor, power factor correction and three-phase power.

1.2 Instantaneous Power

The instantaneous power (in watt) pðtÞ is defined as the product of time varyingvoltage vðtÞ and current iðtÞ, and it is written as [1],

pðtÞ ¼ vðtÞ � iðtÞ ð1:1Þ

© Springer Science+Business Media Singapore 2016Md.A. Salam and Q.M. Rahman, Power Systems Grounding,Power Systems, DOI 10.1007/978-981-10-0446-9_1

1

Page 14: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Consider that the time varying excitation voltage vðtÞ for an ac circuit isgiven by,

vðtÞ ¼ Vm sinðxtþ/Þ ð1:2Þ

where, x is the angular frequency and / is the phase angle associated to the voltagesource. In this case, the expression of the resulting current iðtÞ in an ac circuit asshown in Fig. 1.1 can be written as,

iðtÞ ¼ vðtÞZ /��� ð1:3Þ

where, Z /��� is the impedance of the circuit in polar form, in which Z is the

magnitude of the circuit impedance.Substituting Eq. (1.2) into Eq. (1.3) yields,

iðtÞ ¼ Vm sinðxtþ/ÞZ /��� ¼

Vm /���

Z /��� ¼ Vm

Z0�j ð1:4Þ

iðtÞ ¼ Im sinxt ð1:5Þ

where, the maximum current is,

Im ¼ Vm

Zð1:6Þ

Substituting Eqs. (1.2) and (1.5) into Eq. (1.1) yields,

pðtÞ ¼ Vm sinðxtþ/Þ � Im sinxt ð1:7Þ

pðtÞ ¼ VmIm2

� 2 sinðxtþ/Þ sinxt ð1:8Þ

Fig. 1.1 A simple ac circuit

2 1 Power Analysis

Page 15: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

pðtÞ ¼ VmIm2

cos/� cosð2xtþ/Þ½ � ð1:9Þ

pðtÞ ¼ VmIm2

cos/� VmIm2

cosð2xtþ/Þ ð1:10Þ

Equation (1.10) presents the resultant instantaneous power.

Example 1.1 An ac series circuit is having the excitation voltage and the impedancevðtÞ ¼ 5 sinðxt � 25�ÞV and Z ¼ 2 15�j X, respectively. Determine the instanta-neous power.

Solution

The value of the series current is,

I ¼ 5 � 25���

2 15�j ¼ 2:5 �40��� A

iðtÞ ¼ 2:5 sinðxt � 40�ÞA

The instantaneous power can be determined as,

pðtÞ ¼ 5� 2:52

� 2 sinðxt � 25�Þ sinðxt � 40�Þ

pðtÞ ¼ 5� 2:52

½cos 15� � cosð2xt � 65�Þ�pðtÞ ¼ 6:04� 6:25 cosð2xt � 65�ÞW

Practice problem 1.1The impedance and the current in an ac circuit are given by Z ¼ 2:5 30�j X andiðtÞ ¼ 3 sinð314t � 15�ÞA, respectively. Calculate the instantaneous power.

1.3 Average and Apparent Power

Energy consumption of any electrical equipment depends on the power rating of theequipment and the duration of its operation, and this brings in the idea of averagepower. The average power (in watt) is defined as the average of the instantaneouspower over one periodic cycle, and is given by [2, 3],

P ¼ 1T

ZT

0

pðtÞdt ð1:11Þ

1.2 Instantaneous Power 3

Page 16: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Substituting Eq. (1.10) into Eq. (1.11) yields,

P ¼ VmIm2T

ZT

0

½cos/� cosð2xtþ/Þ� dt ð1:12Þ

P ¼ VmIm2T

cos/ ½T � � VmIm2T

ZT

0

cosð2xtþ/Þ dt ð1:13Þ

P ¼ VmIm2

cos/� VmIm2T

ZT

0

cosð2xtþ/Þ dt ð1:14Þ

The second term of Eq. (1.14) is a cosine wave, and the average value of thecosine wave over one cycle is zero. Therefore, the final expression of the averagepower becomes,

P ¼ VmIm2

cos/ ð1:15Þ

Sometimes, average power is referred to as the true or real power expressed inwatts which is the actual power dissipated by the load.

Equation (1.15) can be rearranged as,

P ¼ Vmffiffiffi2

p Imffiffiffi2

p cos/ ð1:16Þ

P ¼ VrmsIrms cos/ ð1:17Þ

where, Vrms and Irms are the root-mean-square (rms) values of the voltage andcurrent components, respectively. The product VrmsIrms is known as the apparentpower expressed as volt-ampere (VA).

The phase angle between voltage and current quantities associated to a resistivecircuit is zero since they are in phase with each other. From Eq. (1.17), the averagepower associated to a resistive circuit component can be written as,

PR ¼ VmIm2

cos 0� ð1:19Þ

PR ¼ VmIm2

ð1:20Þ

4 1 Power Analysis

Page 17: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Applying Ohm’s law to Eq. (1.20) yields,

PR ¼ VmIm2

¼ 12I2mR ¼ V2

m

2Rð1:21Þ

The voltage and current quantities associated to either an inductive or a capacitivecircuit element are always 90 degree out of phase with each other, and this results ina zero average power (PL or PC) as shown in the following expression,

PL ¼ PC ¼ VmIm2

cos 90� ¼ 0 ð1:22Þ

Example 1.2 Figure 1.2 shows an electric circuit with different elements. Determinethe total average power supplied by the source and absorbed by each elements ofthe circuit.

Solution

The equivalent impedance of the circuit is,

Zt ¼ 2þ 3� ð4þ j6Þ7þ j6

¼ 4:31 8:48�j X

The value of the source current is,

I ¼ 15 45�j4:31 8:48�j ¼ 3:48 36:52�j A

The current through the 4X resistor is,

I1 ¼ 3:48 36:52�j � 37þ j6

¼ 1:13 �4:08�j A

The current through the 3X resistor is,

I2 ¼ 3:48 36:52�j � ð4þ j6Þ7þ j6

¼ 2:72 52:23�j A

Fig. 1.2 An electrical circuit

1.3 Average and Apparent Power 5

Page 18: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

The average power absorbed by the 3X resistor is,

P1 ¼ 12� 2:722 � 3 ¼ 11:1W

The average power absorbed by the 4X resistor is,

P2 ¼ 12� 1:132 � 4 ¼ 2:55W

The average power absorbed by the 2X resistor is,

P3 ¼ 12� 3:482 � 2 ¼ 12:11W

The average power supplied by the source is,

P4 ¼ 12� 15� 3:48� cosð45� � 36:52�Þ ¼ 25:81W

The total average power absorbed by the elements is,

P5 ¼ 11:1þ 2:55þ 12:11 ¼ 25:76W

Practice problem 1.2Find the average power for each element of the circuit shown in Fig. 1.3.

1.4 Power Factor

Assuming that the phase angles associated to the voltage and current componentsare hv and hi respectively, the average power given in Eq. (1.17) can be written as,

P ¼ VrmsIrms cos hv � hið Þ ð1:23Þ

Fig. 1.3 A series ac circuit

6 1 Power Analysis

Page 19: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

From Eq. (1.23) the power factor (pf) can be introduced as,

pf ¼ PVrmsIrms

¼ cos hv � hið Þ ¼ cos/ ð1:24Þ

So, the power factor (pf) is defined as the ratio of the average power to theapparent power associated to a circuit element. Also, based on the mathematicalexpression in equation (1.50) the power factor can be defined as the cosine of theangle / which is the resultant phase difference between the voltage-phase (hv) andthe current phase (hi) associated to a circuit component. The angle / is oftenreferred to as power factor angle.

The power factor in a circuit element is considered as lagging when the currentlags the voltage, whereas, it is considered as leading when the current leads thevoltage. In general, industrial loads are inductive and so they have a lagging powerfactors. A capacitive load has a leading power factor. Every industry alwaysmaintains a required power factor by using a power factor improvement unit. It iseconomically viable for an industry to have a unity power factor or a power factoras close to unity. Few disadvantages of having a load wih low power factor are(i) the kVA rating of the electrical machines is increased, (ii) larger conductor sizeis required to transmit or distribute electric power at constant voltage, (iii) copperlosses are increased, and (iv) voltage regulation is smaller.

1.5 Complex Power and Reactive Power

The product of the rms voltage-phasor and the conjugate of the rms current-phasorassociated to an electrical component is known as the complex power (involt-ampere or VA), and it is denoted by S. Mathematically, it can be written as,

S ¼ VrmsI�rms ð1:25Þ

Considering that the phase angles associated to the voltage and current com-ponents are hv and hi respectively, Eq. (1.25) can be written as,

S ¼ Vrms\hvIrms\� hi ¼ VrmsIrms\hv � hi ð1:26Þ

and this becomes,

S ¼ VrmsIrms cos hv � hið Þþ jVrmsIrms sin hv � hið Þ ¼ Pþ jQ ð1:27Þ

where,

P ¼ Re Sð Þ ¼ VrmsIrms cos hv � hið Þ ð1:28Þ

Q ¼ Im Sð Þ ¼ VrmsIrms sin hv � hið Þ ð1:29Þ

1.4 Power Factor 7

Page 20: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

As shown in Eq. (1.27), the real part of the complex power is the real or averagepower (introduced in the previous section) while the imaginary part of the complexpower is known as the reactive power. The reactive power is expressed asvolt-ampere-reactive (VAR).

Now, let’s discuss the concept of complex power and reactive power with the aidof the above equations, and circuit diagram shown in Fig. 1.4. The impedance ofthis circuit is given by,

Z ¼ Rþ jX ð1:30Þ

where, R is the resistive component and X is the reactive component of the circuit.The rms value of the current is,

Irms ¼ Vrms

Zð1:31Þ

Substituting Eq. (1.31) into Eq. (1.25) yields,

S ¼ VrmsV�

rms

Z� ¼ V2rms

Z� ð1:32Þ

Again, with the aid of Eq. (1.25), Eq. (1.31) can be rearranged as,

S ¼ IrmsZI�rms ¼ I2rmsZ� ð1:33Þ

Substituting Eq. (1.30) into Eq. (1.28) yields,

S ¼ I2rmsðRþ jXÞ ¼ I2rmsRþ jI2rmsX ¼ Pþ jQ ð1:34Þ

where, P is the real power and Q is the reactive power, and these quantities areexpressed as,

P ¼ ReðSÞ ¼ I2rmsR ð1:35Þ

Q ¼ ImðSÞ ¼ I2rmsX ð1:36Þ

Fig. 1.4 A circuit withimpedance

8 1 Power Analysis

Page 21: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

In this case, by comparing Eqs. (1.29) and (1.36), we can conclude that thereactive power is the energy that is traded between the source and the reactive partof the load. It is worth noting that the magnitude of the complex power is theapparent power which has been introduced in the previous section.

Now, let’s look at the variation of the complex power in terms of the charac-teristics of the circuit components. In case of resistive circuit component, theexpression of complex power becomes,

SR ¼ PR þ jQR ¼ I2rmsR ð1:37Þ

Here, the real power and the reactive power quantities are,

PR ¼ I2rmsR ð1:38Þ

Q ¼ 0 ð1:39Þ

The complex power for an inductive component is,

SL ¼ PL þ jQL ¼ jI2rmsXL ð1:40Þ

Here, the real power and the reactive power quantities are,

PL ¼ 0 ð1:41Þ

QL ¼ I2rmsXL ð1:42Þ

Similarly, the complex power for a capacitive component is,

SC ¼ PC þ jQC ¼ �jI2rmsXC ð1:43Þ

Here, the real power and the reactive power quantities are,

PC ¼ 0 ð1:44Þ

QC ¼ I2rmsXC ð1:45Þ

Now we can introduce another useful power-analysis quantity by dividingEq. (1.29) by Eq. (1.28) yields,

QP¼ tan hv � hið Þ ¼ tan h ð1:46Þ

The relationship between the power factor angle to P and Q is known as powertriangle. Similarly, we can find the relationship between different components in animpedance which is called impedance triangle. Figure 1.5 shows the power and

1.5 Complex Power and Reactive Power 9

Page 22: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

impedance triangles for lagging power factor. The following points are noted fordifferent power factors.

Q ¼ 0 for resistive loads i.e., unity power factor,Q[ 0 for inductive loads i.e., lagging power factor,Q\0 for capacitive loads i.e., leading power factor.

Example 1.3 Determine the source current, apparent power, real power and reactivepower of the circuit shown in Fig. 1.6.

Solution

The rms value of the voltage is,

Vrms ¼ 5�ffiffiffi2

p35�j ¼ 7:07 35�j V

The value of the inductive reactance is,

XL ¼ 2� 4 ¼ 8X

The value of the circuit impedance is,

Z ¼ 5þ j8 ¼ 9:43 58�j X

The value of the source current is,

Irms ¼ 7:07 35�j9:43 58�j ¼ 0:75 �23�j A

Fig. 1.5 Power andimpedance triangles forlagging power factor

Fig. 1.6 Circuit withresistance and inductance

10 1 Power Analysis

Page 23: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

The value of the complex power is,

S ¼ VrmsI�rms ¼ 7:07 35�j � 0:75 23�j ¼ 2:81þ j4:5 W

The value of the apparent power is,

PA ¼ Sj j ¼ 5:305 VA

The value of the real power is,

P ¼ ReðSÞ ¼ 2:81W

The value of the reactive power is,

Q ¼ ImðSÞ ¼ 4:5 VAR

Practice problem 1.3The excitation voltage, resistor and inductance of a series circuit are vðtÞ ¼6

ffiffiffi2

psinð15tþ 45�ÞV, 6X and 1.5 H, respectively. Find the source current,

apparent power, real power and reactive power.

1.6 Complex Power Balance

Two loads connected in parallel with a voltage source is shown in Fig. 1.7.According to the conservation of energy, the total real power supplied by the sourceis equal to the sum of the real powers absorbed by the load. Similarly, the totalcomplex power supplied by the source is equal to the sum of the complex powersdelivered to each load. Here, the source current can be expressed as,

I ¼ I1 þ I2 ð1:47Þ

Considering that V and I are the rms quantities, the complex power can bewritten as,

S ¼ VI� ð1:48Þ

Fig. 1.7 Parallel loads

1.5 Complex Power and Reactive Power 11

Page 24: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Substituting Eq. (1.41) into Eq. (1.42) yields,

S ¼ V½I1 þ I2�� ¼ VI�1 þVI�2 ð1:49Þ

Example 1.4 An ac circuit is shown in Fig. 1.8. Find the source current, powerabsorbed by each load and the total complex power. Assume that the source voltageis given in rms value.

Solution

The current in the first and second branches are determined as,

I1 ¼ 254

¼ 6:25A

I2 ¼ 253þ j4

¼ 5 �53:13�j A

Then, the value of the source current is calculated as,

I ¼ 6:25þ 5 �53:13�j ¼ 10:08 �23:39�j A

The value of the complex power for the first branch is,

S1 ¼ VI�1 ¼ 25� 6:25 ¼ 156:25Wþ j0VAR

The value of the complex power for the second branch is,

S2 ¼ VI �2 ¼ 25� 5 53:13�j ¼ 75Wþ j100VAR

The value of the total complex power is,

S ¼ S1 þ S2 ¼ 231 Wþ j100VAR

Which can also be evaluated as,

S ¼ VI� ¼ 25� 10:07 23:38�j ¼ 231Wþ j100VAR

Fig. 1.8 A series-parallel accircuit

12 1 Power Analysis

Page 25: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Practice problem 1.4Determine the source current, the power absorbed by each load and the totalcomplex power of an electrical circuit shown in Fig. 1.9.

1.7 Power Factor Correction

In the industry, inductive loads draw a lagging current which in turn increases theamount of reactive power. In this case, the kVA rating of the transformer and thesize of the conductor should be increased to carry out the additional reactive power.Generally, capacitors are connected in parallel with the load to improve the lowpower factor by increasing the power factor value. Capacitor draws leading current,and partially or completely neutralizes the lagging reactive power of the load.Consider a single-phase inductive load as shown in Fig. 1.10. This load draws alagging current I1 at a power factor of cos/1 from the source.

A capacitor is connected in parallel with the load to improve the power factor asshown in Fig. 1.11. The capacitor will draw current that leads the source voltage by90�. The line current is the vector sum of the currents I1 and I2 as shown inFig. 1.12. Figure 1.13 shows a power triangle to find the exact value of thecapacitor. As shown in equation (na5), the reactive power of the original inductiveload can be written as,

Q1 ¼ P tan/1 ð1:50Þ

The main objective of this analysis is to improve the power factor from cos/1 tocos/2 (/2\/1) without changing the real power. In this case, the expression ofnew reactive power will be,

Fig. 1.9 A parallel ac circuit

Fig. 1.10 A single-phaseinductive load

1.6 Complex Power Balance 13

Page 26: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Q2 ¼ P tan/2 ð1:51Þ

The reduction in reactive power due to parallel capacitor is,

QC ¼ Q1 � Q2 ð1:52Þ

Substituting Eqs. (1.50) and (1.51) into Eq. (1.52) yields,

QC ¼ Pðtan/1 � tan/2Þ ð1:53Þ

The reactive power due to capacitance is,

QC ¼ V2rms

XC¼ xCV2

rms ð1:54Þ

Fig. 1.11 Capacitor with aparallel inductive load

Fig. 1.12 Vector diagram forpower factor correction

Fig. 1.13 Power trianglewith power factor correction

14 1 Power Analysis

Page 27: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Substituting Eq. (1.54) into Eq. (1.53) yields,

QC ¼ xCV2rms ¼ Pðtan/1 � tan/2Þ ð1:55Þ

C ¼ Pðtan/1 � tan/2ÞxV2

rmsð1:56Þ

Equation (1.56) provides the value of the parallel capacitor.

Example 1.5 A 110V(rms), 50Hz power line is connected with 5 kW, 0.85 powerfactor lagging load. A capacitor is connected across the load to raise the powerfactor to 0.95. Find the value of the capacitance.

Solution

The value of the initial power factor is,

cos/1 ¼ 0:85

/1 ¼ 31:79�

The value of the final power factor is,

cos/2 ¼ 0:95

/2 ¼ 18:19�

The value of the parallel capacitor can be determined as,

C ¼ 5� 1000ðtan 31:79� � tan 18:19�Þ2p� 50� 1102

¼ 383 lF

Practice problem 1.5A 6 kW load with a lagging power factor of 0.8 is connected to a 125 V(rms), 60Hzpower line. A capacitor is connected across the load to improve the power factor to0.95 lagging. Calculate the value of the capacitance.

Example 1.6 A load of 25 kW, 0.85 power factor lagging is connected across theline as shown in Fig. 1.14. Calculate the value of the capacitance when it isconnected across the load to raise the power factor to 0.95. Also, Find the power

Fig. 1.14 Load with a line

1.7 Power Factor Correction 15

Page 28: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

losses in the line before and after the capacitor is connected. Consider that theterminal voltage across the load is constant.

Solution

The initial power factor is,

cos/1 ¼ 0:85

/1 ¼ 31:78�

The final power factor is,

cos/2 ¼ 0:95

/2 ¼ 18:19�

The value of the power of the load is,

P ¼ 25� 0:85 ¼ 21:25 kW

The value of the capacitor is,

C ¼ 21:25� 1000ðtan 31:78� � tan 18:19�Þ2p� 50� 2202

¼ 406:62 lF

Before adding capacitor:

The value of the line current is,

I1 ¼ 212500:85� 220

¼ 113:64A

The power loss in the line is,

P1 ¼ 113:642 � 0:04 ¼ 516:53W

After adding capacitor:

The value of the apparent power is,

S ¼ 212500:95

¼ 22368:42VA

The value of the line current is,

I2 ¼ 22368:42220

¼ 101:67A

16 1 Power Analysis

Page 29: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

The power loss in the line is,

P2 ¼ 101:672 � 0:04 ¼ 413:51W

Practice problem 1.6A 15 kVA load with 0.95 lagging power factor is connected across the line asshown in Fig. 1.15. Find the value of the capacitance when it is connected acrossthe load to raise the power factor to 0.95. Also, determine the power losses in theline before and after the capacitor is connected. Assume that the terminal voltageacross the load is constant.

1.8 Three-Phase System

AC generator generates three-phase sinusoidal voltages with constant magnitudebut are displaced in phase by 120�. These voltages are called balanced voltages. In athree-phase generator, three identical coils a, b and c are displaced by 120� fromeach other. If the generator is turned by a prime mover then voltages Van, Vbn andVcn are generated. The balanced three-phase voltages and their waveforms areshown in Figs. 1.16 and 1.17, respectively. The expression of generated voltagescan be represented as,

Van ¼ VP sinxt ¼ VP 0�j ð1:57Þ

Vbn ¼ VP sinðxt � 120�Þ ¼ VP �120�j ð1:58Þ

Fig. 1.15 Load with atransmission line

Fig. 1.16 A balancedthree-phase system

1.7 Power Factor Correction 17

Page 30: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

Vcn ¼ VP sinðxt � 240�Þ ¼ VP �240�j ð1:59Þ

Here, VP is the maximum voltage.The magnitudes of phase voltages are the same, and these components can be

expressed as,

Vanj j ¼ Vbnj j ¼ Vcnj j ð1:60Þ

1.9 Naming Phases and Phase Sequence

The three-phase systems are denoted either by 1, 2, 3 or a, b, c. Sometimes, threephases are represented by three natural colours namely Red, Yellow and Blue, i.e.,R Y B. If the generated voltages reach to their maximum or peak values in thesequential order of abc, then the generator is said to have a positive phase sequenceas shown in Fig. 1.18a. If the generated voltages phase order is acb, then the

Fig. 1.17 Three-phase voltage waveforms

(a) (b)

Fig. 1.18 a Positive sequence, b Negative sequence

18 1 Power Analysis

Page 31: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

generator is said to have a negative phase sequence which is shown in Fig. 1.18b.Here, the voltage, Van is considered as the reference and the direction of rotation isconsidered as counterclockwise.

In the positive phase sequence, the passing sequence of voltages is given byVan � Vbn � Vcn. In the negative phase sequence, the passing sequence of voltagesis Van � Vcn � Vbn.

1.10 Star Connection

The star-connection is often known as wye-connection. A generator is said to be awye-connected generator when three connected coils form a connection as shown inFig. 1.19. In this connection, one terminal of each coil is connected to a commonpoint or neutral point n and the other three terminals represent the three-phasesupply. The voltage between any line and the neutral point is called the phasevoltage and are represented by Van, Vbn and Vcn for phases a, b and c, respectively.The voltage between any two lines is called the line voltage. Line voltages betweenthe lines a and b, b and c, c and a represented by Vab, Vbc and Vca, respectively.

Usually, the line voltage and the phase voltage are represented by VL and VP,respectively. In the Y-connection, the points to remember are (i) line voltage isequal to

ffiffiffi3

ptimes the phase voltage, (ii) line current is equal to the phase current

and (iii) current (In) in the neutral wire is equal to the phasor sum of the three linecurrents. The neutral current is zero i.e., In ¼ 0 for a balanced load.

(a) (b) (c)

Fig. 1.19 Different types of three-phase wye connection. a Generator. b Load. c Load

1.9 Naming Phases and Phase Sequence 19

Page 32: Md. Abdus Salam Quazi M. Rahman Power Systems Grounding

1.11 Voltage and Current Relations for Y-Connection

Figure 1.20 shows a three-phase, Y-connected generator. Here Van, Vbn and Vcn arethe phase voltages and Vab, Vbc and Vca are the line voltages, respectively. Thephase voltages for abc phase sequence are,

Van ¼ Vp 0�j ð1:61Þ

Vbn ¼ Vp � 120�j ð1:62Þ

Vcn ¼ Vp 120�j ð1:63Þ

Apply KVL between lines a and b to the circuit in Fig. 1.21 and the equation is,

Van � Vbn � Vab ¼ 0 ð1:64Þ

Vab ¼ Van � Vbn ð1:65Þ

Substituting Eqs. (1.61) and (1.62) into Eq. (1.65) yields,

Vab ¼ VP 0�j � VP �120�j ð1:66Þ

Vab ¼ffiffiffi3

pVP 30�j ð1:67Þ

Similarly, the other line voltages can be derived from the appropriate loops ofthe circuit as shown in Fig. 1.20. The expressions of other line voltages are,

Fig. 1.21 Two lines ofwye-connection

Fig. 1.20 Wye-connectedgenerator

20 1 Power Analysis