mckinsey um helium - websites.umich.edu

19
Dan McKinsey Yale University Department of Physics (with Wei Guo, Florida State University) Light WIMP Detec.on with Liquid Helium Light Dark MaEer Workshop University of Michigan April 16, 2013

Upload: others

Post on 24-Mar-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: McKinsey UM Helium - websites.umich.edu

Dan  McKinsey  

Yale  University  Department  of  Physics  

(with  Wei  Guo,  Florida  State  University)  

Light  WIMP  Detec.on  with  Liquid  Helium  

Light  Dark  MaEer  Workshop  University  of  Michigan  

April  16,  2013  

Page 2: McKinsey UM Helium - websites.umich.edu

Light  WIMP  Detector  KinemaMc  Figure  of  Merit  

It  is  more  difficult  for  heavy  targets  to  be  sensiMve  to  light  WIMPs,  since  for  typical  energy  thresholds  they  are  only  sensiMve  to  a  small  part  of  the  WIMP  velocity  distribuMon.  The  lower  limit  of  the  WIMP-­‐target  reduced  mass  at  which  a  detector  can  be  sensiMve  is  given  by  

rlimit  =  1/vesc  *  sqrt{EtMT/2}  

where  vesc    is  the  GalacMc  escape  velocity  of  544  km/s,  Et  is  the  energy  threshold,  and  MT    is  the  mass  of  the  target  nucleus.  In  the  limit  of  small  dark  maEer  mass,  the  reduced  mass  is  the  mass  of  the  dark  maEer  parMcle.    

So  for  reaching  sensiMvity  to  small  dark  maEer  masses,  the  kinemaMc  figure  of  merit  is  the  product  of  the  energy  threshold  and  the  target  mass,  which  should  be  minimized.  

D.  McKinsey            LHe  for  light  WIMPs  

Page 3: McKinsey UM Helium - websites.umich.edu

Dan  McKinsey,        SITP  seminar  

Liquified Noble Gases: Basic Properties

LHe

LNe

LAr

LKr

LXe

Liquid density(g/cc)

0.145

1.2

1.4

2.4

3.0

Boiling pointat 1 bar

(K)

4.2

27.1

87.3

120

165

Electronmobility(cm2/Vs)

low

low

400

1200

2200

Dense and homogeneousDo not attach electrons, heavier noble gases give high electron mobility

Easy to purify (especially lighter noble gases)Inert, not flammable, very good dielectrics

Bright scintillators

Scintillationwavelength

(nm)

80

78

125

150

175

Scintillation yield

(photons/MeV)

19,000

30,000

40,000

25,000

42,000

Long-lived radioactiveisotopes

none

none

39Ar, 42Ar

81Kr, 85Kr

136Xe

Triplet moleculelifetime

(µs)

13,000,000

15

1.6

0.09

0.03

Page 4: McKinsey UM Helium - websites.umich.edu

Basic  philosophy  of  liquid  helium  light  WIMP  experiment    (see  Guo  and  McKinsey,  arXiv:1302:0534)  

•  Use  mulMple  signal  channels.  There  are  many  to  choose  from  in  liquid  helium.  Signal  raMos  and  Mming  give  discriminaMon  power.  –  Prompt  scinMllaMon  light  (S1)  –  Charge  (S2)  –  Triplet  excimers  (S3)  –  Rotons  –  Phonons  

•  Time  projecMon  chamber  readout  –  Reject  surface  events  through  TPC  posiMon  reconstrucMon  –  Reject  mulMple  scaEer  events  with  readout  Mming,  posiMon  

reconstrucMon  •  Include  an  acMve  veto  surrounding  the  detector  

–  Will  help  to  understand  and  reject  gamma  and  neutron  backgrounds  –  Many  opMons  (organic  scinMllator,  LNe,  LAr,  LXe,  …)  

D.  McKinsey            LHe  for  light  WIMPs  

Page 5: McKinsey UM Helium - websites.umich.edu

D.  McKinsey            LHe  for  light  WIMPs  

Page 6: McKinsey UM Helium - websites.umich.edu

Superfluid  helium  as  a  detector  material  

•  Used to produce, store, and detect ultracold neutrons. Detection based on scintillation light (S1)"

•  Measurement of neutron lifetime: P.R. Huffman et al, Nature 403, 62-64 (2000)."

•  Search for the neutron electric dipole moment: R. Golub and S.K. Lamoreaux, Phys. Rep. 237, 1-62 (1994). "

•  Proposed for measurement of pp solar neutrino flux using roton detection (HERON): R.E. Lanou, H.J. Maris, and G.M. Seidel, Phys. Rev. Lett. 58, 2498 (1987)."

•  Proposed for WIMP detection with superfluid He-3 at 100 microK (MACHe3): F. Mayet et al, Phys. Lett. B 538, 257C265 (2002)"

D.  McKinsey            LHe  for  light  WIMPs  

Page 7: McKinsey UM Helium - websites.umich.edu

Superfluid  helium  for  ultracold  neutrons  

•  Superfluid  helium  used  

       to  produce  and  store            ultracold  neutrons.  

•  Ultracold  neutrons  detected              through  helium  scinMllaMon.  

•  Very  high  electric  fields          achieved,  ~  75  kV/cm,          for  neutron  edm  projects.  

D.  McKinsey            LHe  for  light  WIMPs  

Page 8: McKinsey UM Helium - websites.umich.edu

Light WIMP Detector Concept

D.  McKinsey            LHe  for  light  WIMPs  

PMT + HV

Liquid helium

WIMP

S1

Electrons

S2

PMT- HV

PMT

PMT

PMT

PMT

PMT

PMT

Ground

TPB coatedwindow

driftE!

Gas helium

(Anode)

(Cathod)(Gate grid)

Field ring

Transparent metallic electrode

Page 9: McKinsey UM Helium - websites.umich.edu

Electron  dril  speed  in  two-­‐phase  He  

D.  McKinsey            LHe  for  light  WIMPs  

dρ ⋅ -3(kg m ) mm⋅ ⋅(a)

(b)

Page 10: McKinsey UM Helium - websites.umich.edu

How  to  detect  the  charge  signal?  

Many  opMons:  •  ProporMonal  scinMllaMon  and  PMTs  (like  in  2-­‐phase  Xe,  Ar  detectors)  •  Gas  Electron  MulMpliers  (GEMs)  or  Thick  GEMS,  detect  light  

produced  in  avalanche.  •  Micromegas,  detect  avalanche  light.  

•  Thin  wires  in  liquid  helium.  This  should  generate  electroluminescence  at  fields  ~1-­‐10  MV/cm  near  wire,  and  is  known  to  happen  in  LAr  and  LXe.  

•  Roton  emission  by  driling  electrons  (should  be  very  effecMve  at  low  helium  temperature,  analogous  to  Luke  phonons  in  CDMS).      

Charge will drift at ~ 1 cm/ms velocities. Slower than LAr/LXe, but pileup manageable for low background rates.

D.  McKinsey            LHe  for  light  WIMPs  

Page 11: McKinsey UM Helium - websites.umich.edu

E-field (kV/cm)0 10 20 30 40 50

PEProm

ptN

8.5

9

9.5

10

10.5

11 0.2 K0.3 K0.4 K1.0 K1.1 K

Alpha  scinMllaMon  yield  vs.  applied    field,  T.  Ito  et  al,  1110.0570  

Beta  scinMllaMon  field  quenching:  W.  Guo  et  al,  JINST  7,  P01002  (2012)      

Helium  scinMllaMon  vs.  electric  field    

Electric field (kV/cm)1 10 210

Nor

mal

ized

ioni

zato

n cu

rren

t

-210

-110

1

Data: Gerritsen, Physica 14, 407 (1948) (Table 6, LHe 1.3 K)

Curve: Kramers, Physica 18, 665 (1952)

= 60 nm) b (Eq.(9) with

D.  McKinsey            LHe  for  light  WIMPs  

Page 12: McKinsey UM Helium - websites.umich.edu

Liquid  helium-­‐4  predicted  response    (Guo  and  McKinsey,    arXiv:1302.0534)  

Lower  electron  scinMllaMon  yield  (19  photons/keVee)  

But,  extremely  high  Leff,  good  charge/light  discriminaMon  and  low  nuclear  mass  for  excellent  predicted  light  WIMP  sensiMvity  

Measurements    in  literature!  

Calculated  nuclear    recoil  signals  

D.  McKinsey            LHe  for  light  WIMPs  

Page 13: McKinsey UM Helium - websites.umich.edu

for He decreases to about 0.4 at low energies, due to Lindhard effect, but is not equal to the Lindhard factor !

Predicted  nuclear  recoil  discriminaMon  and  signal  strengths  in  liquid  helium  

D.  McKinsey            LHe  for  light  WIMPs  0 10 20 30

10-6

10-5

10-4

10-3

10-2

10-1

20% S1, 10 kV/cm 20% S1, 20 kV/cm 20% S1, 40 kV/cm 80% S1, 20 kV/cm 80% S1, 40 kV/cm

Reje

ctio

n po

wer

Energy (keVr)

Page 14: McKinsey UM Helium - websites.umich.edu

Concept  for  a  Light  WIMP  Detector  at  ~  100  mK  

D.  McKinsey            LHe  for  light  WIMPs  

+ HV

Liquid helium (100 mK)

WIMP

S1

Electrons

S2

+ HV

Bolometerarray

driftE!Field rings Roton beam

Thin wire

- HV

driftE!

Page 15: McKinsey UM Helium - websites.umich.edu

WIMP Mass [GeV/c2]

&URVVïVHFWLRQ�>FP

2 @��QRUPDOLVHG�WR�QXFOHRQ�

100 101 10210�

10�

10�

10�

10�

10�

20 kV/cm, 80% S1, 2.8 keV

20 kV/cm, 20% S1, 4.4 keV

40 kV/cm, 20% S1, 4.2 keV

40 kV/cm, 80% S1, 2.6 keV

10 kV/cm, 20% S1, 4.8 keV

Projected  SensiMvity  for  Liquid  Helium  (with  only  charge  and  S1  readout)  

D.  McKinsey            LHe  for  light  WIMPs  

Page 16: McKinsey UM Helium - websites.umich.edu

D.  McKinsey            LHe  for  light  WIMPs  

Page 17: McKinsey UM Helium - websites.umich.edu

How  to  detect  S3  (helium  molecules)?  

•  Laser-­‐induced  fluorescence  (though  will  require  lots  of  laser  power  and  be  slow)  

•  Dril  molecules  with  heat  flux,  then  quench  on  low  work  funcMon  metal  surface  to  produce  charge,  which  is  then  detected  the  same  way  as  S2  (though  heat  flux  dril  will  require  lots  of  cooling  power).  

•  Detect  with  bolometer  array  immersed  in  superfluid,  and  let  the  molecules  travel  ballisMcally  to  be  detected  (v  ~  few  m/s)  

–  ~  few  eV  resoluMon  possible  

–  Each  molecule  has  ~  18  eV  of  internal  energy,  which  will  mostly  be  released  as  heat.  

–  Note  that  the  same  bolometer  array  could  also  detect  S1  and  S2!  

Again, many options:

D.  McKinsey            LHe  for  light  WIMPs  

Page 18: McKinsey UM Helium - websites.umich.edu

Helium  for  MeV  dark  maEer?  (i.e.  how  one  might  reach  extremely  low  energy  thresholds)  

•  Single  electron  detecMon  –  Single  electrons  should  be  detectable,  via  electroluminescence  or  

roton  emission.  –  What  is  the  single  electron  rate  in  a  LHe  TPC,  and  how  does  it  compare  

to  XENON10  ~23  electrons/kg  day?  Does  the  rate  drop  significantly  with  temperature?  

–  Noble  gases  have  less  electron  signal  than  semiconductors,  but  this  business  is  mostly  about  backgrounds.  

•  Prompt  phonon  and  roton  detecMon  –  Can  look  at  very  low  energies,  using  electron  signal  as  a  veto.  An  

electron  can  be  made  to  produce  tens  of  keV  of  heat  by  dragging  it  through  the  superfluid,  pulling  any  ionizing  event  well  above  the  energy  region  of  interest.  

–  Will  roton/phonon  raMo  give  discriminaMon  power?  How  might  one  tell  rotons  and  phonons  apart?  Bolometer  pulse  shape?          

Dan  McKinsey,        CPAD  workshop  11  January  2013  

Page 19: McKinsey UM Helium - websites.umich.edu

Summary  

•  The  search  for  light  WIMPs  is  well  moMvated,  but  is  technically  challenging,  demanding  sophisMcated  technologies  with  light  target  nuclei,  low  energy  thresholds,  and  low  backgrounds.  

•  Superfluid  helium  should  have  many  of  the  advantages  of  other  noble  liquid  targets,  including  scalability,  posiMon  reconstrucMon  and  discriminaMon,  but  is  also  predicted  to  have  high  nuclear  recoil  light  yield.  

•  RelaMvely  straightorward  implementaMon  likely  achievable  using  PMT  readout  a  la  two-­‐phase  Xe  and  Ar,  but  improved  performance  and  lower  energy  threshold  may  be  possible  with  roton/phonon  readout.  

•  Technical  overlap  with  other  noble  gas  detectors,  bolometric  detectors  

•  R&D  needed!    

Dan  McKinsey,        CPAD  workshop  11  January  2013