mc74lcx00

8
**************************************************** * Format this file using a monospace font. * * Courier nine point type is the original format. * **************************************************** * * Motorola Semiconductor Products Sector * Logic and Analog Technologies Group * Logic Integrated Circuits Division * * File: * SSDT release ID: * Filename: lcx00.g55j * Device: LCX00 (G55J) * Output type: non-tristating * Model parameters: SPICE Level 3 * Date: 4/5/96 * Rev: 1.0 * ---------------------------------------------------------------------------- * Dear Customer, * * Presented below are an input/output device netlist and model cards. Before * proceeding with the modeling of this device, there are several points of which * you should be aware: * First, the netlist below is not intended to represent the entire device, * and should not be used to simulate propagation delays through the device, * rather, the netlist should be used only to gauge output performance and input * loading. * Second, this netlist does not include the five volt tolerant circuitry * utilized on the outputs, as that circuitry is proprietary. For this reason, * any attempt to simulate a five volt tolerant situation on the outputs * will be non-function al. However, the information co nveyed by simulation of * the netlist will still be accurate for systems design, as deletion of the five * volt tolerant circuitry will only marginally affect the output characteristics * under normal operating conditions. * Last, please be advised that this device was designed using a Motorola * proprietary model, and that these models were not used in the actual device's * design. However, the parameters hav e been extracted directl y from th e * Motorola process used for the fabrication of these parts, and hence should * reflect its behavior reasonably well. * Should you need additional assistance or information, please contact your * Motorola applications engineer. * * ---------------------------------------------------------------------------- * Simulation notes: * * This text is not intended to be a full tutorial regarding the s imulation of * LCX parts in systems. For more detailed information, please refer to the * current revision data book. * * * 1) Data to output * A) Pulse node inAn full range, with 0V and Vcc endpoints. This node is * internal to the chip, and, as such, has a higher switching speed than * that specified for LCX inputs. It is best to use a typical internal * rise and fall times of 1ns, full range, 0V to Vcc. The output, On, * will be inverted relative to the input. * B) Force Vcc at the appropriate voltage: 2.7V, 3V, 3.3V or 3.6V * C) Force the An node to 0V or 2.7V. The state is irrelevant, but it must  * be forced to avoid simulator failures during convergence.

Upload: randall-mata-rivera

Post on 14-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

7/29/2019 MC74LCX00

http://slidepdf.com/reader/full/mc74lcx00 1/8

***************************************************** Format this file using a monospace font. ** Courier nine point type is the original format. ******************************************************* Motorola Semiconductor Products Sector* Logic and Analog Technologies Group* Logic Integrated Circuits Division** File:* SSDT release ID:* Filename: lcx00.g55j* Device: LCX00 (G55J)* Output type: non-tristating* Model parameters: SPICE Level 3* Date: 4/5/96* Rev: 1.0* ----------------------------------------------------------------------------* Dear Customer,** Presented below are an input/output device netlist and model cards. Before* proceeding with the modeling of this device, there are several points of which* you should be aware:* First, the netlist below is not intended to represent the entire device,

* and should not be used to simulate propagation delays through the device,* rather, the netlist should be used only to gauge output performance and input* loading.* Second, this netlist does not include the five volt tolerant circuitry* utilized on the outputs, as that circuitry is proprietary. For this reason,* any attempt to simulate a five volt tolerant situation on the outputs* will be non-functional. However, the information conveyed by simulation of* the netlist will still be accurate for systems design, as deletion of the five* volt tolerant circuitry will only marginally affect the output characteristics* under normal operating conditions.* Last, please be advised that this device was designed using a Motorola* proprietary model, and that these models were not used in the actual device's* design. However, the parameters have been extracted directly from the

* Motorola process used for the fabrication of these parts, and hence should* reflect its behavior reasonably well.* Should you need additional assistance or information, please contact your* Motorola applications engineer.** ----------------------------------------------------------------------------* Simulation notes:** This text is not intended to be a full tutorial regarding the simulation of* LCX parts in systems. For more detailed information, please refer to the* current revision data book.**

* 1) Data to output* A) Pulse node inAn full range, with 0V and Vcc endpoints. This node is* internal to the chip, and, as such, has a higher switching speed than* that specified for LCX inputs. It is best to use a typical internal* rise and fall times of 1ns, full range, 0V to Vcc. The output, On,* will be inverted relative to the input.* B) Force Vcc at the appropriate voltage: 2.7V, 3V, 3.3V or 3.6V* C) Force the An node to 0V or 2.7V. The state is irrelevant, but it must * be forced to avoid simulator failures during convergence.

7/29/2019 MC74LCX00

http://slidepdf.com/reader/full/mc74lcx00 2/8

* D) Set the operating junction temperature.** 2) The An, port is fully represented in the netlist. To simulate bus loading* of the inputs, use the appropriate input structures, as partitioned below,* in the netlist.* 3) The DW and XQC parameters have been commented out of the models, as many* SPICE level 3 simulators will not accept these input variables.** Additional simulation notes:** The user is assigned the responsibility of placing the appropriate forces on* the desired nodes. The LAn, lvcc and lgnd lead inductances are all defaulted* to 2.5nh. These elements are placed early in the netlist, as are the* operating and nominal temperatures, for easy access and simulation control.** Please note that the lead inductance on the On pad (2.5nh, attached at node* 505), must be added by the user, as some simulators will not accept a floating * inductor lead, thus causing the simulator to halt.************************* Top Level Schematic ********************************** Please note inductances, resistances and input protection devices are not* represented in this schematic. It is intended only to give the user an

* idea of the circuit topology without direct schematic transfer.** |\* | \* An (Node 504) o-----| \o-------o AnB (Node 510) VCC (node 502)* | /* | /* |/** |\* | \* inAn (Node 506)o-----| \o-------o On (Node 505)* | /

* | /* |/*********************************************************************************** Net summary** Port Node Number Force* An 504 0V or Vcc* inAn 506 Pulse 0V to Vcc, 1ns 0 to 100%* On 505 Data output monitor* AnB 510 Output of An inverter interface to the* internal chip. Lead inductance, input

* protection devices, and pad* capacitance occur between* this port and the An input.* internal (chip) vcc (ivcc) 509 N/A (couples to global VCC via LVCC)* Global (system) VCC 502 2.7V, 3V, 3.3V or 3.6V* internal (chip) gnd (ignd) 511 N/A (couples to global GND via LGND)* Global (system) GND 0 0V** Note that you must provide forces on the following nodes for the simulation to* function properly:

7/29/2019 MC74LCX00

http://slidepdf.com/reader/full/mc74lcx00 3/8

** An 504* inAn 506* VCC 505********************************************************************************* SPICE format circuit netlist********************************************************************************** Run control

* Example forces for data in (inAn, node 506) to output (On, node 505)

Vdz0 504 0 DC 3 * AnVdz1 506 0 PULSE 0 3 0 1e-09 1e-09 5e-08 1e-07 * inAnVdz2 502 0 DC 3 * Vcc

* Temperature

.options tnom=27

.temp=27

* Transient

.tran 1e-10 1e-07 0

* Lead inductances

* Please note that the lead inductance on the On pad (node 505), must be added* by the user, as most simulators will not accept an inductor lead directly* attached to an unforced (output) port. For this situation, the user should* attach an appropriate load, representing the bus, between the added inductor* and the On output lead, node 505.

* Internal (chip) ground to global ground inductance

lgnd 511 0 2.5nH

* Internal (chip) ground to global Vcc inductance

lvcc 502 509 2.5nH

* A(n) input section

lan 504 503 2.5nHMamnjznm 503 511 511 511 NMOS AD=7150P AS=1950P W=650U

+ NRD=0.007692 NRS=0.001538 PD=1322U PS=1306U L=1UMahvpmos 503 509 509 509 PMOSHV AD=4950P AS=2700P L=1U NRD=0.005556 NRS=0.001111+ PD=922U PS=1812U W=900Uran 503 501 250can 503 511 0.882PMiz5zpmo 510 501 509 509 PMOS AD=120P AS=180P L=1U NRD=0.0125 NRS=0.0125 PD=92U+ PS=138U W=80UMiz6zpmo 510 501 509 509 PMOS AD=60P AS=60P L=1U NRD=0.05 NRS=0.05 PD=46U PS=46U

7/29/2019 MC74LCX00

http://slidepdf.com/reader/full/mc74lcx00 4/8

+ W=20UMiz2znmo 510 501 511 511 NMOS AD=120P AS=180P W=80U NRD=0.0125 NRS=0.0125 PD=92U+ PS=138U L=1U

* end A(n) input section

* Begin output O(n) section

Rmosnczg 527 526 536rnn7 539 535 536rnn9 535 533 536rnn12 532 531 536rnn13 533 523 536rnn15 529 525 536rnn16 531 524 536rnn19 521 517 536rnn20 522 514 536rnn21 518 516 536rnn22 512 543 536rnn23 513 544 536rnn24 517 541 536rnn25 538 534 536

rnn26 536 539 536rnn27 519 512 536rnn28 541 545 294rnn29 545 540 294rnn30 515 542 536rnn31 519 526 294rnn32 543 544 294rnn33 542 541 294rnn34 507 537 1E-7rnn35 537 538 536rnn36 540 543 294rnn37 514 545 536rnn38 518 519 294

rnn39 536 537 294rnn40 530 532 294rnn41 528 530 294rnn42 516 540 536rnn43 526 513 536rnn44 532 535 294rnn45 520 521 294rnn46 520 515 536rnn47 535 534 294rnn48 524 523 294rnn49 526 525 294rnn50 530 529 536rnn51 521 522 294

rnn52 528 527 536rnn53 525 524 294rnn54 522 518 294rpoly 507 508 200con 505 511 0.882PMiz22znm 507 506 511 511 NMOS AD=150P AS=225P W=100U NRD=0.01 NRS=0.01 PD=112U+ PS=168U L=1Umosnczg5 526 506 511 511 NMOS AD=75P AS=75P W=25U NRD=0.04 NRS=0.04 PD=56U PS=56U+ L=1U

7/29/2019 MC74LCX00

http://slidepdf.com/reader/full/mc74lcx00 5/8

mnn1 505 517 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U+ PS=80U L=1Umnn2 505 531 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U+ PS=80U L=1Umnn3 505 516 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U+ PS=80U L=1Umnn4 505 514 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U+ PS=80U L=1Umnn5 505 529 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U+ PS=80U L=1Umnn6 505 539 511 511 NMOS AD=46.5P AS=46.5P W=15.5U NRD=0.064516 NRS=0.064516+ PD=37U PS=37U L=1Umnn8 505 538 511 511 NMOS AD=46.5P AS=46.5P W=15.5U NRD=0.064516 NRS=0.064516+ PD=37U PS=37U L=1Umnn10 505 512 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U+ PS=80U L=1Umnn11 505 513 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U

+ PS=80U L=1Umnn14 505 533 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U+ PS=80U L=1Umnn17 505 515 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U+ PS=80U L=1Umnn18 505 527 511 511 NMOS AD=407P AS=111P W=37U NRD=0.135135 NRS=0.027027 PD=96U+ PS=80U L=1Umnjznmos 505 511 511 511 NMOS AD=7150P AS=1950P W=650U NRD=0.007692 NRS=0.001538+ PD=1322U PS=1306U L=1U

Miz20zpm 507 506 509 509 PMOS AD=150P AS=225P L=1U NRD=0.01 NRS=0.01 PD=112U+ PS=168U W=100UMiz21zpm 507 506 509 509 PMOS AD=150P AS=225P L=1U NRD=0.01 NRS=0.01 PD=112U+ PS=168U W=100UMiz50zpm 505 508 509 509 PMOS AD=2750P AS=900P L=1U NRD=0.01 NRS=0.002 PD=610U+ PS=636U W=500UMiz35zpm 505 507 509 509 PMOS AD=2750P AS=900P L=1U NRD=0.01 NRS=0.002 PD=610U+ PS=636U W=500U

.end

* End O(n) output section

********************************************************************************* SPICE 2G level 3 models begin********************************************************************************* BEST CASE*******************************************************************************

.MODEL NMOS NMOS LEVEL=3+ NSS = 0.0 VTO = 0.7 TOX = 135E-10

7/29/2019 MC74LCX00

http://slidepdf.com/reader/full/mc74lcx00 6/8

+ XJ = 6.0E-8 LD = 2.0E-7 RSH = 534+ NSUB = 6.048E+16 NFS = 4.9E11 UO = 520+ VMAX = 1.7E5 DELTA = 0.87 THETA = 0.126+ ETA = 0.008 KAPPA = 0.289+ CGSO = 5.571E-10 CGDO = 5.571E-10+ CJ = 3.79E-4 CJSW = 3.35E-10 PB = 0.75+ MJ = 0.4 MJSW = 0.31 TPG = 1*+ DW = -0.2E-6*+ XQC = 1

.MODEL NMOSLV NMOS LEVEL=3+ NSS = 0.0 VTO = 0.196 TOX = 135E-10+ XJ = 6.0E-8 LD = 2.0E-7 RSH = 534+ NSUB = 6.048E+16 NFS = 4.9E11 UO = 520+ VMAX = 1.7E5 DELTA = 0.87 THETA = 0.126+ ETA = 0.008 KAPPA = 0.289+ CGSO = 5.571E-10 CGDO = 5.571E-10+ CJ = 3.79E-4 CJSW = 3.35E-10 PB = 0.75+ MJ = 0.4 MJSW = 0.31 TPG = 1*+ DW = -0.2E-6*+ XQC = 1

.MODEL PMOS PMOS LEVEL=3+ NSS = 0.0 VTO = -0.87 TOX = 135E-10

+ XJ = 9.7E-8 LD = 2.0E-7 RSH = 1454+ NSUB = 2.648E+16 NFS = 6.5E11 UO = 160+ VMAX = 5.0E7 DELTA = 0.47 THETA = 0.149+ ETA = 0.021 KAPPA = 0.1+ CGSO = 4.696E-10 CGDO = 4.696E-10+ CJ = 4.45E-4 CJSW = 2.58E-10 PB = 0.75+ MJ = 0.42 MJSW = 0.33 TPG = -1*+ DW = -0.2E-6*+ XQC = 1

.MODEL PMOSHV PMOS LEVEL=3+ NSS = 0.0 VTO = -1.425 TOX = 135E-10+ XJ = 9.7E-8 LD = 2.0E-7 RSH = 1454

+ NSUB = 2.648E+16 NFS = 6.5E11 UO = 160+ VMAX = 5.0E7 DELTA = 0.47 THETA = 0.149+ ETA = 0.021 KAPPA = 0.1+ CGSO = 4.696E-10 CGDO = 4.696E-10+ CJ = 4.45E-4 CJSW = 2.58E-10 PB = 0.75+ MJ = 0.42 MJSW = 0.33 TPG = -1*+ DW = -0.2E-6*+ XQC = 1

******************************************************************************** TYPICAL CASE*******************************************************************************

.MODEL NMOS NMOS LEVEL=3+ NSS = 0.0 VTO = 0.804 TOX = 150E-10+ XJ = 6.0E-8 LD = 1.21E-7 RSH = 534+ NSUB = 7.56E+16 NFS = 4.9E11 UO = 520+ VMAX = 1.7E5 DELTA = 0.87 THETA = 0.126+ ETA = 0.008 KAPPA = 0.289+ CGSO = 5.571E-10 CGDO = 5.571E-10+ CJ = 3.39E-4 CJSW = 3.35E-10 PB = 0.75+ MJ = 0.4 MJSW = 0.31 TPG = 1*+ DW = -2.11E-8

7/29/2019 MC74LCX00

http://slidepdf.com/reader/full/mc74lcx00 7/8

*+ XQC = 1

.MODEL NMOSLV NMOS LEVEL=3+ NSS = 0.0 VTO = 0.3 TOX = 150E-10+ XJ = 6.0E-8 LD = 1.21E-7 RSH = 534+ NSUB = 7.56E+16 NFS = 4.9E11 UO = 520+ VMAX = 1.7E5 DELTA = 0.87 THETA = 0.126+ ETA = 0.008 KAPPA = 0.289+ CGSO = 5.571E-10 CGDO = 5.571E-10+ CJ = 3.39E-4 CJSW = 3.35E-10 PB = 0.75+ MJ = 0.4 MJSW = 0.31 TPG = 1*+ DW = -2.11E-8*+ XQC = 1

.MODEL PMOS PMOS LEVEL=3+ NSS = 0.0 VTO = -1.00 TOX = 150E-10+ XJ = 9.7E-8 LD = 1.02E-7 RSH = 1454+ NSUB = 3.31E+16 NFS = 6.5E11 UO = 160+ VMAX = 5.0E7 DELTA = 0.47 THETA = 0.149+ ETA = 0.021 KAPPA = 0.1+ CGSO = 4.696E-10 CGDO = 4.696E-10+ CJ = 4.45E-4 CJSW = 2.58E-10 PB = 0.75+ MJ = 0.42 MJSW = 0.33 TPG = -1*+ DW = 6.25E-9

*+ XQC = 1

.MODEL PMOSHV PMOS LEVEL=3+ NSS = 0.0 VTO = -1.555 TOX = 150E-10+ XJ = 9.7E-8 LD = 1.02E-7 RSH = 1454+ NSUB = 3.31E+16 NFS = 6.5E11 UO = 160+ VMAX = 5.0E7 DELTA = 0.47 THETA = 0.149+ ETA = 0.021 KAPPA = 0.1+ CGSO = 4.696E-10 CGDO = 4.696E-10+ CJ = 4.45E-4 CJSW = 2.58E-10 PB = 0.75+ MJ = 0.42 MJSW = 0.33 TPG = -1*+ DW = 6.25E-9*+ XQC = 1

******************************************************************************** WORST CASE*******************************************************************************

.MODEL NMOS NMOS LEVEL=3+ NSS = 0.0 VTO = 0.96 TOX = 165E-10+ XJ = 6.0E-8 LD = 0.05E-6 RSH = 534+ NSUB = 9.072E+16 NFS = 4.9E11 UO = 520+ VMAX = 1.7E5 DELTA = 0.87 THETA = 0.126+ ETA = 0.008 KAPPA = 0.289+ CGSO = 5.571E-10 CGDO = 5.571E-10+ CJ = 3.79E-4 CJSW = 3.35E-10 PB = 0.75

+ MJ = 0.4 MJSW = 0.31 TPG = 1*+ DW = 0.1E-6*+ XQC = 1

.MODEL NMOSLV NMOS LEVEL=3+ NSS = 0.0 VTO = 0.456 TOX = 165E-10+ XJ = 6.0E-8 LD = 0.05E-6 RSH = 534+ NSUB = 9.072E+16 NFS = 4.9E11 UO = 520+ VMAX = 1.7E5 DELTA = 0.87 THETA = 0.126+ ETA = 0.008 KAPPA = 0.289

7/29/2019 MC74LCX00

http://slidepdf.com/reader/full/mc74lcx00 8/8

+ CGSO = 5.571E-10 CGDO = 5.571E-10+ CJ = 3.79E-4 CJSW = 3.35E-10 PB = 0.75+ MJ = 0.4 MJSW = 0.31 TPG = 1*+ DW = 0.1E-6*+ XQC = 1

.MODEL PMOS PMOS LEVEL=3+ NSS = 0.0 VTO = -1.13 TOX = 165E-10+ XJ = 9.7E-8 LD = 0.05E-6 RSH = 1454+ NSUB = 3.972E+16 NFS = 6.5E11 UO = 160+ VMAX = 5.0E7 DELTA = 0.47 THETA = 0.149+ ETA = 0.021 KAPPA = 0.1+ CGSO = 4.696E-10 CGDO = 4.696E-10+ CJ = 4.45E-4 CJSW = 2.58E-10 PB = 0.75+ MJ = 0.42 MJSW = 0.33 TPG = -1*+ DW = 0.1E-6*+ XQC = 1

.MODEL PMOSHV PMOS LEVEL=3+ NSS = 0.0 VTO = -1.685 TOX = 165E-10+ XJ = 9.7E-8 LD = 0.05E-6 RSH = 1454+ NSUB = 3.972E+16 NFS = 6.5E11 UO = 160+ VMAX = 5.0E7 DELTA = 0.47 THETA = 0.149+ ETA = 0.021 KAPPA = 0.1

+ CGSO = 4.696E-10 CGDO = 4.696E-10+ CJ = 4.45E-4 CJSW = 2.58E-10 PB = 0.75+ MJ = 0.42 MJSW = 0.33 TPG = -1*+ DW = 0.1E-6*+ XQC = 1

********************************************************************************* SPICE Level 3 models end********************************************************************************