mathematics competition formulas

Upload: xanderyamognay

Post on 02-Jun-2018

229 views

Category:

Documents


5 download

TRANSCRIPT

  • 8/10/2019 Mathematics Competition Formulas

    1/17

    96

    ormulas & Definitionslgebraxponents

    Quadratic Formulainomial Teorem

    Difference of Squaresero, Rules ofrobability

    Appendix

    I: Formulas and Definitions

  • 8/10/2019 Mathematics Competition Formulas

    2/17

  • 8/10/2019 Mathematics Competition Formulas

    3/17

    98

    Geometrylope Formula

    Distance Formulaarabola

  • 8/10/2019 Mathematics Competition Formulas

    4/17

    rigonometryLaw of CosinesLaw of Sines

  • 8/10/2019 Mathematics Competition Formulas

    5/17

    00

    rigonometryomplex Numbersrea of riangleonicseneral Formandard Form

  • 8/10/2019 Mathematics Competition Formulas

    6/17

    MeasurementDistance

    reaWeight

    lectricityrobability

    Multiplication Principleermutations

    Measurement

  • 8/10/2019 Mathematics Competition Formulas

    7/17

    02

    Permutations of Objects not all DifferentCombinations

    Arrangements with replacementProbability, Fundamental rule ofIndependent EventsDependent EventsMutually Exclusive EventsComplimentary EventsExpected ValueBinomial Probability

    http://www.math.com/tables/

    Definitions

  • 8/10/2019 Mathematics Competition Formulas

    8/17

    ection A Algebra

    Te Elusive Formulas pages are used with permission from: www.nysml.org/Files/formulas.pdf

    The Elusive Formulas2

    2nd

    Edition: finalized August 1, 2001

    Original Edition: finalized May 23, 2001

    Section A Symbol Table for all there exists the empty set is an element of is not an element of , + the set of natural numbers

    the set of integers

    the set of rational numbers

    the set of real numbers

    the set of complex numbers

    is a subset of or and union intersection implies, iff is equivalent to

    n

    i

    i 1

    a

    a1+a2+a3+a4+a5+...+ann

    ii 1

    a a1a2a3a4a5an

    (a,b) = d d is the gcd of a and b

    [a,b] = d d is the lcm of a and b

    (a) number of factors of a(a) sum of the factors of a(a) Euler Phi Function(a) Mobius Function| a | absolute value of a

    a greatest integer functiona least integer functiona:b:c ratio of a to b to c

    a:b:c::d:e:f ratio of a to b to c=ratio of d to e to f

    pi 3.141592653589793

    e euler number 2.718281828459

    blog a c bc= a

    log a c 10c= a

    n! n(n1)(n2)(n3)(n4)321

    nPrn!r!

    = n(n1)(n2)(nr+1)

    nCrorn

    r

    n! n(n 1)(n 2)...(n r+1)

    r!(n r)! n(n 1)(n 2)...(2)(1)

    moda b c aand bleave the same remainder

    when divided by c.

    Appendix

    III: The Elusive Formulas - Part 2

  • 8/10/2019 Mathematics Competition Formulas

    9/17

    04

    ection B - Algebralgebra Arithmetic Series; Geometric Series; Rational Root Teorem

    Section B - AlgebraUsed with permission from:

    NYSME(New York State Math League) Copyright (c) 2002 Ming Jack Po & Kevin Zheng.

    Section B Algebra (a b)

    3= a

    3 b

    3iff a = 0 or b = 0 or (ab) = 0

    a3 b

    3= (a b)(a

    2 ab + b

    2)

    a3+ b

    3+ c

    3 3abc = (a + b + c)(a

    2+ b

    2+ c

    2 ab bc ca)

    a4+ b

    4+ c

    4 2a

    2b

    2 2b

    2c

    2 2c

    2a

    2= -16s(s a)(s b)(s c) when 2s = a+b+c

    an+ b

    n= (a + b)(a

    n1+ b

    n1) ab(a

    n2+ b

    n2)

    an b

    n= (a b)(a

    n1 a

    n2b + a

    n3b

    2 a

    n4b

    3+ + a

    2b

    n3 ab

    n2+ b

    n1) [ a

    n+ b

    nis only true for odd n.]

    (a b)n

    = nC0an

    nC1an1

    b + nC2an2

    b2

    nC3an3

    b3

    + nC4an4

    b4

    nCn-2a2

    bn2

    + nCn-1abn1

    + nCnbn

    a(a+1)(a+2)(a+3) = (a2+3a+1)

    2 1

    Arithmetic Series: If a1, a2, a3, ..., anare in arithmetic serieswith common difference d:

    nth

    term in terms of mth

    term an= am+ (n m)d

    Sum of an arithmetic series up to term n n 1 n 1

    i

    i 1

    n a a n 2a (n 1)da

    2 2

    Geometric Series: If a1, a2, a3, ..., anare in geometric serieswith common ratio r:

    nth

    term of a geometric seriesn 1

    n 1a a r

    Sum of a non-constant (r 1) geometric

    series up to term n

    nn1

    ii 1

    a (1 r )a

    1 r

    Sum of an infinite geometric series1

    i

    i 1

    aa

    1 r

    iff |r| < 1

    n

    i 1

    n(n 1)i

    2

    n2

    i 1

    n(n 1)(2n 1)i

    6

    2 2n3

    i 1

    n (n 1)i

    4

    3 2n4

    i 1

    n n 1 6n 9n n 1i

    30

    If P(x) = anxn+ an-1x

    n1+ an-2x

    n2+ an-3x

    n3+ ... + a1x + a0= 0, ia is a constant, then

    Sum of roots taken one at a time

    (the sum of the roots)ir =

    n 1

    n

    -a

    a

    Sum of roots taken two at a time i ji j

    r r

    = n 2n

    a

    a

    Sum of roots taken p at a time i j ki j ... k

    r r ...r

    =n pp

    n

    a(-1)

    a

    Rational Root Theorem

    If P(x) = anxn+ an-1x

    n-1+ an-2x

    n-2+ an-3x

    n-3+ ... + a1x + a0is a polynomial with integer coefficients and

    c is a rational root of the equation P(x)= 0 (where (b, c) =1), then b | a0and c | an.

    If P(x) is a polynomial with real coefficients and P(a + bi) = 0, then P(a bi) = 0.

    If P(x) is a polynomial with rational coefficients and P(a + b c ) = 0, then P(a b c ) = 0.

  • 8/10/2019 Mathematics Competition Formulas

    10/17

    Section C - Number TeoryDivisibility; Modulo Congruence: Fibonacci Sequence; Farey Series; Number Teory Functions

    Section C - Number TheoryUsed with permission from:

    www.nysml.org/Files/Formulas.pdf

    Section C Number Theory Number Theory mainly concerns and , all variables exist in unless stated otherwise

    Divisibility:a,b , a0: a | b k such that ak = b1|a, a|0, a|(a) a|ba|bc a|b b|c a|ca|1a=1 a|b a|c a|(bc) a|bc (a,b) =1 a|c

    a|bb|a a=b a|b c|d ab|cd a|c b|c (a,b)=1 ab|c

    Modulo Congruence: a,b,m , m0: a b (mod m) m | (a-b)Suppose that ab (mod m), cd (mod m), and p is prime; then:

    agcg (mod m) ab cd (mod m) (g,p)=1 gp-1 1 (mod p)agcg (mod m) ab cd (mod m) (p-1)! -1 (mod p)

    (g,m)=1 g(m) 1 (mod m) hfhg (mod m) (m,h)=1 fg (mod m)

    Fibonacci Sequence

    Sequence of integers beginning with two 1s and each subsequent term is the sum of the previous 2 terms. 1,1,2,3,5,8,13,21,34,55,89,144, ... F(1)=F(2)=1, for n3, F(n)=F(n-1)+F(n-2)

    Let= Golden Ratio = 5 12 , then F(n) =

    -nn -

    5

    F(n)F(n+3) F(n+1)F(n+2) = (-1)n

    Farey Series [Fn]

    Ascending sequence of irreducible fractions between 0 and 1 inclusive whose denominator is n F3= 0 1 1 2 11 3 2 3 1, , , , ; F7=

    0 3 3 5 3 5 61 1 1 1 2 1 2 1 4 2 4 11 7 6 5 4 7 3 5 7 2 7 5 3 7 4 5 6 7 1, , , , , , , , , , , , , , , , , ,

    if a , cd

    , and ef

    are successive terms inFn, then bcad = decf = 1 andc a ed b f

    Number Theory FunctionsThe following number theory functions have the property that if (a,b)=1, then f(ab)=f(a)f(b)

    Tau Function: Number of factors of n: (n) = m

    i

    i 1

    1

    Sigma Function: Sum of factors of n: (n) = im

    j

    i

    j 0i 1

    p

    =

    i1mi

    i 1 i

    p 1

    p 1

    Euler Phi Function: Number of integers between 0 and n that are relatively prime to n

    (n) = i im

    1

    i i

    i 1

    p p

    =m

    i 1 i

    1n 1

    p

    Mobius Function: (n) =

    0 if n is divisible by any square 1

    otherwise:

    1 if n is has an even number of prime factors

    1 if n is has an odd number of prime factors

  • 8/10/2019 Mathematics Competition Formulas

    11/17

    06

    ection C - Number TeoryDivisibility Rulesection D - Logarithmsection E - Analytic Geometry

    Section D - LogarithmsSection E - Analytic GeometryUsed with permission from: www.nysml.org/Files/Formulas.pdf

    Copyright (c) 2002 Ming Jack Po & Kevin Zheng.

    Divisibility Rules

    Given integer k expressed in base n 2, k = 2 30 1 2 3a a n a n a n ... = iii 0

    a n

    , 0 ia < n

    Note: im m 1 0 in

    i 0

    a a ...a a n

    , secondary subscript omission implies base10: im m 1 0 ii 0

    a a ...a 10 a

    Divisor (d) Criterion

    3, 9 If 0 1 2 3 4a a a a a ... is divisible by 3 or 9

    11 If 0 1 2 3 4a a a a a ... is divisible by 11

    7, 13 If 2 1 0 5 4 3 8 7 6 11 10 9a a a a a a a a a a a a ... is divisible by 7 or 13

    2m

    , 5m If m 1 m 2 m 3 0a a a ...a is divisible by 2

    mor 5

    m

    Basic/Specific

    7Truncate rightmost digit and subtract twice the value of said digit from the remaininginteger. Repeat this process until divisibility test becomes trivial.

    d | nm If m 1 m 2 m 3 m 4 0

    na a a a ...a

    is divisible by d

    factor of

    nm

    1If m 1 m 2 1 0 2m 1 2m 2 m 1 m 3m 1 3m 2 2m 1 2m

    n n na a ...a a a a ...a a a a ...a a ... is divisible

    factor ofnm

    + 1 If m 1 m 2 1 0 2m 1 2m 2 m 1 m 3m 1 3m 2 2m 1 2mn n na a ...a a a a ...a a a a ...a a ... is divisibled = xy,

    (x,y)=1( x | k and y | k ) d | k

    General

    d | kn1Truncate rightmost digit and add k times the value of said digit from the remaining

    integer. Repeat this process until divisibility test becomes trivial.

    Section D LogarithmsFor b an integer 1 ,

    cblog a c b a blog b 1 blog 1 0

    clog a c log a alog ba b abclog log a log b log c

    a b alog b log c log c a blog b log a 1 log b log aa b

    Section E Analytic GeometryDistance between line ax + by + c = 0 and

    point (x0, y0) in 2D plane:

    Distance between the plane ax + by + cz + d = 0

    and point (x0, y0, z0) in 3D space:

    0 0

    2 2

    | x a y b c |

    a b

    0 0 0

    2 2 2

    | x a y b z c d |

    a b c

    Section F Inequalities

    +: the set of all positive real numbers;

    : the set of all negative real numbers

    a2+ b

    22ab; a

    2+ b

    2+ c

    2ab + bc + ca; 3(a

    2+ b

    2+ c

    2+ d

    2) 2(ab + bc + cd + da + ac + bd)

    The quadratic-arithmetic-geometric-harmonic mean inequality: for ai> 0

    1 2 3 n

    2 2 2 2

    1 2 3 n 1 2 3 nn1 2 3 n1 1 1 1

    a a a a

    a a a ... a a a a ... ana a a ...a

    ... n n

    , with equalities holding

    iff a1= a2= a3= a4= = an.

    If constant k>1 and large x: 1 a, c+a>b

    Basic Angle Identities A+B+C = 180, {a,b,c}(0,)Law of Cosines a

    2+ b

    2= c

    2+ 2ab cos C

    Law of Tangents tan(A)tan(B)tan(C) = tan(A)+tan(B)+tan(C)

    Assorted Identities

    a b b c c ar r r r r r = s2

    D2= R

    2 2Rr 4mc

    2= 2a

    2+ 2b

    2+ c

    2a b cr r r r = 4R

    r =A B2 2

    C2

    c sin sin

    cos c

    K

    r s c

    r

    2

    =

    (s a)(s b)(s c)

    s

    a b c

    1 1 1 1

    r r r r

    C2

    s a s bsin

    ab

    C2

    rtan

    s c

    C2

    s a s btan

    s s c

    C2

    s s ccos

    ab

    tc= 2 a b s s c

    a b

    tc=

    C2

    2abcos

    a ba b cm m m3 1

    4 a b c

    A B2

    A B2

    tana b

    a b tan

  • 8/10/2019 Mathematics Competition Formulas

    15/17

    10

    ection I - Euclidean G. II (Quadril.)General Quadrilateral Diagonals; General Quadrilateral Midpoints; Circumscribed Quadrilateral; Cyclic Quadrilateral; Parallelogram; Rectangle

    Section I - Euclidean G. II (Quadrilateral)Used with permission from: www.nysml.org/Files/Formulas.pdf

    Copyright (c) 2002 Ming Jack Po & Kevin Zheng.

    Section I Euclidean Geometry II (The Quadrilateral)General Quadrilateral Diagonals

    E and F are midpoints of AC and BD

    KGAB KGCD= KGBC KGDA

    K = 12

    AC BD sin AGB 2 2 2 2 2 2 2

    AB BC CD DA AC BD 4EF

    General Quadrilateral Midpoints

    IfAH DG CF BE

    HD GC FB EA = n

    Then:2

    EFGH

    2

    ABCD

    K n 1

    K (n 1)

    Circumscribed Quadrilateral

    AB CD BC AD = s; KABCD= rs

    If QuadABCDis also cyclic, then

    K = AB CD BC AD

    Cyclic Quadrilateral

    A + C = B + D = 180

    KABCD= s AB s BC s CD s DA

    BC AD AB CD BD AC

    AC BC CD DA AB BD AB BC CD DA Parallelogram

    2 2 2 2

    2(BC BA ) BD AC

    Rectangle

    For all point P:2 2 2 2

    PA PC PB PD

    Three Pole Problem

    if a || b || c, then1 1 1

    a b c

    Quadrilateral with Diagonals

    AC BD K = 12AC BD

    2 2 2 2

    AB CD BC DA

    Ptolemys Theorem:

    In any QuadABCD, BD AC BC AD AB CD , with equality holding iff QuadABCDis cyclic.

  • 8/10/2019 Mathematics Competition Formulas

    16/17

    ction J - Euclidean G. III (Circle)ction K - rigonometrythagorean: Odd-Even Functions; Summation of Angles, Multiple Angles

    ection J - Euclidean G. III (Circle)ection K - Trigonometrysed with permission from:

    www.nysml.org/Files/Formulas.pdf Copyright (c) 2002 Ming Jack Po & Kevin Zheng.

    Section J Euclidean Geometry III (The Circle)

    Circles

    12AEC BED AC BD Power of the point: AE BE CE DE

    Circles 2

    AB AG ; 12DAF DF CE 2

    AB AD AC AF AE

    Section K Trigonometry

    sin= cb

    ; cos = ab

    ; tan = ca sin= AB; cos = OA ; tan = BC

    15 18 30 36 45 54 60 75

    sin6 2

    4

    5 1

    4

    12

    4

    552 22

    5 1

    4

    32

    6 2

    4

    cos6 2

    4

    4

    552 32

    5 1

    4

    22

    4

    552 12

    6 2

    4

    tan 2 3

    552

    215

    3

    3

    15

    552

    1

    552

    215

    3 2 3

    Pythagorean Odd-Even Functions Summation of Angles

    sin2+ cos

    2= 1 sin(-) = -sin() sin ( ) = sin()cos() cos()sin()

    1 + tan2= sec

    2 cos(-) = cos() cos ( ) = cos()cos() sin()sin()

    1 + cot2= csc

    2 tan(-) = -tan() tan ( ) =

    tan tan

    1 tan tan

    sin 2= 2 sincos sin 3= 3sin 4sin3 sin 4= 4sincos(cos

    3sin)

    cos 2= cos sin cos 3= 4cos3 3cos cos 4= sin

    4+ cos

    4 6cos

    2sin

    2

    Multiple

    Angles

    tan 2=2

    2tan

    1 tan

    tan 3=

    3

    2

    tan 3tan

    3tan 1

    tan 4=

    24 2

    4 tan 1 tan

    tan 6 tan 1

  • 8/10/2019 Mathematics Competition Formulas

    17/17

    12

    rigonometryum to Product; Product to Sum; Square Identities; Cube Identities;

    Used with permission from

    www nysml org/ Copyright (c) 2002 Ming Jack Po & Kevin Zheng

    Sum to Product Product to Sum

    sin sin = 2sin cos2 2

    sin sin = 1

    2[cos() cos(+)]

    cos+ cos = 2cos cos2 2

    cos cos = 12

    [cos() + cos(+)]

    cos cos = 2sin sin2 2

    sin cos = 12

    [sin() + sin(+)]

    tan tan = sin

    cos cos

    tan tan =

    cos cos

    cos cos

    Square Identities Cube Identities Angle Identities tan (/2) Identities

    sin2= 1

    2(1-cos2) sin

    3=

    3sin sin 3

    4

    2

    1 cossin

    2

    sin= 22

    2

    2tan

    1 tan

    cos2= 1

    2(1+cos2) cos

    3=

    3cos cos3

    4

    2

    1 coscos

    2

    cos=

    2

    2

    2

    2

    1 tan

    1 tan

    tan2= 1 cos 21 cos 2

    tan3= 3sin sin 33cos cos3

    2

    1 costan1 cos

    Authors:Ming Jack Po (Johns Hopkins University)

    Kevin Zheng (Carnegie Mellon University)

    Proof Readers:Jan Siwanowicz (City College of New York)

    Jeff Amlin (Harvard University)

    Kamaldeep Gandhi (Brooklyn Polytechnic University)

    Joel Lewis (Harvard University)Seth Kleinerman (Harvard University)

    Programs Used:Math Type 4, 5

    CadKey 5

    Geometers Sketchpad 3, 4

    Microsoft Word XPMathematica 4.1

    References:IMSA Noah Sheets

    Bronx Science High School Formula Sheets, Math Bulletin