math14 lesson 16

Upload: robelle-ann-mica-zara

Post on 03-Apr-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/28/2019 Math14 Lesson 16

    1/37

    ANALYTIC GEOMETRY

    Math 14

    Plane and Analytic Geometry

  • 7/28/2019 Math14 Lesson 16

    2/37

    SPACE COORDINATES

    andSURFACES

  • 7/28/2019 Math14 Lesson 16

    3/37

    OBJECTIVES:

    At the end of the lesson, the student is expected to be

    able to:

    define space coordinates.

    plot points of space coordinates.

    write and sketch the graphs of space coordinate

    equations.

    know the different kinds planes and surfaces.

  • 7/28/2019 Math14 Lesson 16

    4/37

    Let OX, OY, and OZ be three mutually perpendicular

    lines. These lines constitute the x-axis, the y-axis, and the

    z-axis of a three-dimensional rectangular coordinatesystem. The axes, in pairs, determine three mutually

    perpendicular planes called coordinate planes. The planes

    are designated as the XOY-plane, the XOZ-plane, and the

    YOZ-plane or, more simply, the xy-plane, the xz-plane, andthe yz-plane. The coordinate planes divide space into eight

    regions called octants. The distance of P from the yz-plane

    is called the x-coordinate, the distance from the xz-plane

    the y-coordinate, and the distance from the xy-plane the

    z-coordinate. The coordinates of a point are written in the

    form (x, y, z), in this order, x first, y second, and z third.

  • 7/28/2019 Math14 Lesson 16

    5/37

    z

    x y

    o

    xy-plane

    yz-planexz-plane

  • 7/28/2019 Math14 Lesson 16

    6/37

    Example:

    Plot the given points in a three-dimensional

    coordinate system.

    1. (3, 0, 0)

    2. (0, 3, 0)

    3. (0, 0, 3)

    4. (1.5,-1, 2)

    5. (0, 2, -2)

    6. (2, 2.5, 3)

  • 7/28/2019 Math14 Lesson 16

    7/37

    (0, 0, 3)

    (0, 3, 0)

    (3, 0, 0)

    (2, 2.5, 3)(1.5,-1, 2)

    (0, 2, -2)

    z

    x

    yo

    -z

    -x

    -y

  • 7/28/2019 Math14 Lesson 16

    8/37

    THEOREMS:

    Let P1(x1, y1, z1) and P2(x2, y2, z2) be the coordinates of

    two points in a three-dimensional coordinate system. Thenthe distance d between P1 and P2 is given by

    The coordinates P(x, y, z) of the midpoint of the line

    segment joining P1(x1, y1, z1) and P2(x2, y2, z2) are given by

    the equations

    This theorem may be generalized by letting P(x, y, z) beany division point of the line through P1 and P2. If the ratio

    ofP1P to P1P2 is a number r, then

    212

    2

    12

    2

    12zzyyxxd

    212121

    2

    zzz

    2

    yyy

    2

    xxx

    121121121zzrzzyyryyxxrxx

  • 7/28/2019 Math14 Lesson 16

    9/37

    EXAMPLES:

    1. Find the distance between the points P1(-4, 4, 1) and

    P2(-3, 5,-4).2. Find the coordinates of the midpoint of the line

    segment that joins A(3,-2, 4) and B(-6, 5, 8).

    3. Find the coordinates of the point P(x, y, z), which is

    one-third of the way from A(1, 3, 5) to B(5, 7, 9).

    4. Given: A(1, 4, 7) and B(5,-1, 11), find the point P so

    that the ratio of AP to PB is equal to 4 to 7.

  • 7/28/2019 Math14 Lesson 16

    10/37

    SURFACES

    A. PLANE: Ax + By + Cz + D = 0

    a) x = k, plane parallel to yz-plane

    b) y = k, plane parallel to xz-plane

    c) z = k, plane parallel to xy-plane

    d) Ax + By + D = 0, plane parallel to z-axise) By + Cz + D = 0, plane parallel to x-axis

    f) Ax + Cz + D = 0, plane parallel to y-axis

    g) Ax + By + Cz = 0, plane

  • 7/28/2019 Math14 Lesson 16

    11/37

    EXAMPLE:

    1. x = 3 2. y = 3

    y

    x

    z

    y

    x

    z

  • 7/28/2019 Math14 Lesson 16

    12/37

    3. z = 3

    y

    x

    z

    y

    x

    z

    (0, 4, 0)

    (6, 0, 0)

    4. 2x + 3y = 12

  • 7/28/2019 Math14 Lesson 16

    13/37

    5. 2x + 3z = 12

    y

    x

    z

    y

    x

    z

    6. 2y + 3z = 12

    (0, 0, 4)

    (6, 0, 0)

    (0, 6, 0)

    (0, 0, 4)

  • 7/28/2019 Math14 Lesson 16

    14/37

    6. 2x + 3y + 4z = 12

    y

    x

    z

    (0, 4, 0)

    (0, 0, 3)

    (6, 0, 0)

  • 7/28/2019 Math14 Lesson 16

    15/37

    B. CYLINDERS and SPHERE:

    1. x2 + y2 = 4

    y

    x

    z

    (-2, 0, 0)

    (0, 2, 0)

    (2, 0, 0)

    (0,-2, 0)

    CIRCULAR CYLINDER

  • 7/28/2019 Math14 Lesson 16

    16/37

    2. 4x2 + y2 = 4

    y

    x

    z

    (-1, 0, 0)

    (0, 2, 0)

    (1, 0, 0)

    (0,-2, 0)

    ELLIPTICAL CYLINDER

  • 7/28/2019 Math14 Lesson 16

    17/37

    3. x2 = y

    y

    x

    z

  • 7/28/2019 Math14 Lesson 16

    18/37

    4. y2 = x

    y

    x

    z

  • 7/28/2019 Math14 Lesson 16

    19/37

    5. z2 = y

    y

    x

    z

  • 7/28/2019 Math14 Lesson 16

    20/37

    5. z2 = y 1

    y

    x

    z

    V(0, 1, 0)

  • 7/28/2019 Math14 Lesson 16

    21/37

    SPHERE: (x h)2 + (y k)2 + (z l)2 = r2

    Ax2 + Ay2 + Az2 + Gx + Hy + Iz = J

    r = 0 (point)

    r = - (no locus)

    r = + (sphere)

    y

    x

    z

  • 7/28/2019 Math14 Lesson 16

    22/37

    EXAMPLE:

    Describe the locus of x2 + y2 + z2 + 2x 4y 8z + 5 = 0.

    Sketch the graph.

    SOLUTION:

    x2 + 2x + 1 + y2 4y + 4 + z2 8z + 16 = 5 + 1 + 4 + 16

    (x + 1)2 + (y 2)2 + (z 4)2 = 16

    C(1, 2, 4) and r = 4

  • 7/28/2019 Math14 Lesson 16

    23/37

    y

    x

    z

    y

    x

    z

    (-1, 6, 4)

    (-5, 2, 4)

    (-1, 2, 0)

    (3, 2, 4)

    (-1,- 2, 4)

    (-1, 2, 8)

    C(-1, 2, 4)

  • 7/28/2019 Math14 Lesson 16

    24/37

    QUADRIC SURFACESSecond-Degree Equation in x, y, z

    Form: Ax2+By2+Cz2+Dxy+Exz+Fyz+Gx+Hy+Iz+J=0

    The graph of such equation is called quadric surface or

    simply quadric.

    Six Common Types of Quadric Surfaces:

    1. Ellipsoid

    2. Hyperboloid of One Sheet

    3. Hyperboloid of Two Sheets

    4. Elliptic Paraboloid

    5. Hyperbolic Paraboloid

    6. Elliptic Cone

  • 7/28/2019 Math14 Lesson 16

    25/37

    QUADRIC SURFACES

    ELLIPSOID

    1

    c

    z

    b

    y

    a

    x2

    2

    2

    2

    2

    2

    x

    y

  • 7/28/2019 Math14 Lesson 16

    26/37

    QUADRIC SURFACES

    HYPERBOLOID OF ONE SHEET

    1

    c

    z

    b

    y

    a

    x2

    2

    2

    2

    2

    2

  • 7/28/2019 Math14 Lesson 16

    27/37

    QUADRIC SURFACES

    HYPERBOLOID OF TWO SHEETS

    1

    b

    y

    a

    x

    c

    z2

    2

    2

    2

    2

    2

  • 7/28/2019 Math14 Lesson 16

    28/37

    QUADRIC SURFACES

    ELLIPTIC PARABOLOID

    2

    2

    2

    2

    b

    y

    a

    xz

  • 7/28/2019 Math14 Lesson 16

    29/37

    QUADRIC SURFACES

    HYPERBOLIC PARABOLOID

    2

    2

    2

    2

    a

    x

    b

    yz

    x

    y

    z

  • 7/28/2019 Math14 Lesson 16

    30/37

    QUADRIC SURFACES

    ELLIPTIC CONE

    2

    2

    2

    22

    b

    y

    a

    xz

    EXAMPLES: Sketch the quadric surface

  • 7/28/2019 Math14 Lesson 16

    31/37

    EXAMPLES: Sketch the quadric surface.1. 36x2+9y2+4z2=36

    Solution:

    19

    z

    4

    y

    1

    x

    36136z4y9x36

    222

    222

    x y z

    x 1 0 0

    y 0 2 0

    z 0 0 3

    :Intercepts.I

    (ellipse)

    14

    y

    1

    x:0zlet

    plane-xyi)

    :Traces.II

    22

    (ellipse)

    19

    z

    4

    y:0xlet

    plane-yziii)

    22

    (ellipse)

    19

    z

    1

    x:0ylet

    plane-xzii)22

  • 7/28/2019 Math14 Lesson 16

    32/37

    y

    x

    z

    (-1,0,0)

    (1,0,0)

    (0,-2,0) (0,2,0)

    (0,0,-3)

    (0,0,3)

    14

    y

    1

    x22

    19

    z

    4

    y 22

    19

    z

    1

    x22

    2 16x2+36y2 9z2=144 plane-yzii)

  • 7/28/2019 Math14 Lesson 16

    33/37

    2. 16x2+36y2-9z2=144:Solution

    116

    z

    4

    y

    9

    x

    144

    1144z9y36x16

    222

    222

    :Intercepts.I

    x y z

    x 3 0 0

    y 0 2 0

    z 0 0 4i

    (ellipse)

    14

    y

    9

    x:0zlet

    plane-xyi)

    :Traces.II

    22

    )(hyperbola

    116

    z

    4

    y:0xlet

    planeyzii)

    22

    )(hyperbola

    116

    z

    9

    x:0ylet

    plane-xziii)

    22

    (ellipse)

    18

    y

    18

    x

    2

    12

    4

    y

    9

    x

    114

    y

    9

    x

    116

    )4(

    4

    y

    9

    x

    4zlet

    :plane-xytoparallelSectionsIII.

    2222

    22222

    z ( 4 2 0 4)22

  • 7/28/2019 Math14 Lesson 16

    34/37

    y

    x

    z

    y

    y

    x

    x

    (-4.2,0,-4)

    (3,0,0)

    (0,2,0)(0,-2,0)

    (-3,0,0)

    (0,2.8,-4)

    (4.2,0,4)

    (0,2.8,4)(0,-2.8,4)

    (-4.2,0,4)

    (0,-2.8,-4)

    (4.2,0,-4)

    z=4

    z=-4

    18

    y

    18

    x22

    14

    y

    9

    x22

    116

    z

    9

    x22

    116

    z

    4

    y22

    3 4z2 4x2 y2=4 plane-yzii)

  • 7/28/2019 Math14 Lesson 16

    35/37

    3. 4z -4x -y =4:Solution

    14

    y

    1

    x

    1

    z

    4

    14yx4z4

    222

    222

    :Intercepts.I

    x y z

    x i 0 0

    y 0 2i 0

    z 0 0 1

    trace)(no

    14

    y

    1

    x:0zlet

    plane-xyi)

    :Traces.II

    22

    )(hyperbola

    14

    y

    1

    z:0xlet

    py)

    22

    )(hyperbola

    11

    x

    1

    z:0ylet

    plane-xziii)

    22

    (ellipse)

    132

    y

    8

    x

    8

    18

    4

    yx

    14

    y

    1

    x914

    y

    1

    x

    1

    3)(

    3zlet

    :plane-xytoparallelSectionsIII.

    2222

    22222

    z22

  • 7/28/2019 Math14 Lesson 16

    36/37

    y

    x

    z

    y

    y

    x

    x

    (-2.8,0,-3)

    (0,0,-1)

    (0,0,1)

    (0,-5.7,-3)

    (0,5.7,3)

    (0,5.7,-3)

    (2.8,0,3)

    (-2.8,0,3)

    (0,-5.7,3)

    (2.8,0,-3)

    z=3

    z=-3

    132

    y

    8

    x22

    14

    y

    1

    z22

    1xz22

  • 7/28/2019 Math14 Lesson 16

    37/37

    REFERENCES

    Analytic Geometry