math 757 homology theory · 2011-01-21 · homology theory lecture 8 - 1/18/2011 axiom a3...

36
Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Math 757 Homology theory January 21, 2011

Upload: others

Post on 23-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Math 757Homology theory

January 21, 2011

Page 2: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Axiom A3 (Excision)

Goal: Prove Axiom A3 (Excision)

Recall:

Axiom A3. Excision

For any pair (X ,A) if U ⊂ A is open with U ⊂ intA then theinclusion map

i : (X − U,A− U)→ (X ,A)

induces an isomorphism

i∗ : hn(X − U,A− U) ∼= hn(X ,A)

Need to “cut up” singular simplices intersecting U.

Page 3: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Definition 62

Let U = {Ui} be an open cover of X . The subordinate n-chains arethe free abelian group

CUn (X )

on the set

SUn (X ) ={σ : ∆n → X

∣∣σ(∆n) ⊂ Ui for some Ui ∈ U}

Proposition 63

The inclusion mapι : CU (X )→ C (X )

has a chain homotopy inverse

ρ : C (X )→ CU (X )

(That is ρ ◦ ι is chain homotopic to 1CU (X ) and ι ◦ ρ is chainhomotopic to 1C(X ))

Page 4: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Recall for v0, · · · , vn ∈ Rm (possibly not all different)

[v0, · · · , vn] : ∆n → Rm

is the function

[v0, · · · , vn](x0, · · · , xn) =n∑

i=0

xivi

Definition 64

The barycenter of λ = [v0, · · · , vn] is the point bλ ∈ Rm

bλ =1

n + 1

n∑i=0

vi .

Page 5: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Definition 65 (Diameter of a linear simplex)

The diameter of the simplex λ = [v0, · · · , vn] is

diamλ = maxx,y∈Imλ

|x − y |

where | · | is the euclidean norm on Rm.

Page 6: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Lemma 66

diam[v0, · · · , vn] = max0≤i,j≤n

|vi − vj |

Proof.

Let x , y ∈ Im[v0, · · · , vn] where x =∑n

i=0 sivi and y =∑n

j=0 tjvjThen

|x − y | =

∣∣∣∣∣∣x −n∑

j=0

tjvj

∣∣∣∣∣∣=

∣∣∣∣∣∣n∑

j=0

tj(x − vj)

∣∣∣∣∣∣ (since∑

ti = 1)

=

∣∣∣∣∣∣n∑

j=0

tj

((n∑

i=0

sivi

)− vj

)∣∣∣∣∣∣

Page 7: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Proof of Lemma 66 (continued).

=

∣∣∣∣∣∣n∑

j=0

tj

((n∑

i=0

sivi

)− vj

)∣∣∣∣∣∣=

∣∣∣∣∣∣n∑

j=0

tj

(n∑

i=0

si (vi − vj)

)∣∣∣∣∣∣ (since∑

si = 1)

=

∣∣∣∣∣∣∑

0≤i,j≤n

si tj(vi − vj)

∣∣∣∣∣∣≤

∑0≤i,j≤n

si tj |vi − vj |

≤∑

0≤i,j≤n

si tj max0≤i,j≤n

|vi − vj |

= max0≤i,j≤n

|vi − vj |

Page 8: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Definition 67

LetLSn(Rm) = {[v0, · · · , vn]|v0, · · · , vn ∈ Rm}

The linear chains of Rm are the chain complex

LCn(Rm) =

{Z[LSn(Rm)], n ≥ −10, n ≤ −2

with ∂ inherited from the inclusion LCn(Rm) ⊂ Cn(Rm).

We will define three operators:

1 A “cone λ to the point b” operator (chain homotopy)

b : LCn(Rm)→ LCn+1(Rm)

2 A “barycentrically subdivide λ” operator (chain map)

S : LCn(Rm)→ LCn(Rm)

3 A “chain homotopy from λ to its barycentric subdivision”operator (chain homotopy)

T : LCn(Rm)→ LCn+1(Rm)

Page 9: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011 Definition 68

b ∈ Rm a point. Let

b : LCn(Rm)→ LCn+1(Rm)

denote the operator

b[v0, · · · , vn] = [b, v0, · · · , vn]

Page 10: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Lemma 69

b∂ + ∂b = 1LC(Rm)

so b : LCn(Rm)→ LCn+1(Rm) is a chain homotopy between 1LC(Rm)

and 0

Proof.

b ∈ Rm a point. Then

∂b[v0, · · · , vn] = ∂[b, v0, · · · , vn]

= [v0, · · · , vn] +n∑

i=0

(−1)i+1[b, · · · , vi , · · · , vn]

= [v0, · · · , vn] +n∑

i=0

(−1)i+1b[v0, · · · , vi , · · · , vn]

= [v0, · · · , vn]− bn∑

i=0

(−1)i [v0, · · · , vi , · · · , vn]

= [v0, · · · , vn]− b∂[v0, · · · , vn]

Page 11: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Exercise 70 (HW2 - Problem 2)

Show that if M is the cone on a nonempty space X (see Hatcherpage 9) and X ⊂ M is the inclusion X = X × {1} then

Hn(M,X ) ∼= Hn−1(X ) for n ≥ 0

Exercise 71 (HW2 - Problem 3)

Let (X ,A,B) be a triple of spaces (B ⊂ A ⊂ X) show that there is along exact sequence (called the long exact sequence of the triple(X ,A,B))

· · · −→ H2(X ,B) −→ H2(X ,A) −→ H1(A,B) −→ H1(X ,B)

−→ H1(X ,A) −→ H0(A,B) −→ H0(X ,B) −→ H0(X ,A) −→ 0

Page 12: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Exercise 72 (HW2 - Problem 4)

Given (X ,A) show that if r : X → A is a retraction (see Hatcherpage 3) and i : A→ X is the inclusion map then

i∗ : Hn(A)→ Hn(X )

is an injection.

Page 13: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Definition 73

The barycentric subdivision operator is

S : LCn(Rm)→ LCn(Rm)

where S : LC−1(Rm)→ LC−1(Rm) is defined on the empty simplex by

S [∅] = [∅]

and inductively assume S : LCn−1(Rm)→ LCn−1(Rm) is defined.

For λ = [v0, · · · , vn] with barycenter bλ set

S(λ) = bλ(S∂λ)

Page 14: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Example 74

Let’s compute S [v0, v1]

S [v0, v1] = b[v0,v1]

(S∂[v0, v1]

)= b[v0,v1]

(S([v1]− [v0])

)= b[v0,v1]

(b[v1]S∂[v1]− b[v0]S∂[v0]

)= b[v0,v1]

(b[v1]S [∅]− b[v0]S [∅]

)= b[v0,v1]

(b[v1][∅]− b[v0][∅]

)= b[v0,v1]

([v1]− [v0]

)=

[v0 + v1

2, v1

]−[v0 + v1

2, v0

]

Page 15: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Lemma 75

If λ = [v0, · · · , vn] is a linear simplex and µ is a simplex of thebarycentric subdivision of λ then

diamµ ≤ n

n + 1· diamλ

Proof.

The inequality holds trivially for 0-simplices

Assume inductively that the inequality holds for n − 1 simplices.

By our inductive definition of barycentric subdivision

µ = [bλ,w0, · · · ,wn−1]

where [w0, · · · ,wn−1] is a simplex in the barycentric subdivision ofsome face [v0, · · · , vi , · · · , vn] of λ.

Page 16: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Proof of Lemma 75 (continued).

Suppose wj ,wk are maximally distant vertices of µ. Then byLemma 66

diamµ = diam[w0, · · · ,wn−1]

≤ n − 1

ndiam[v0, · · · , vi , · · · , vn]

≤ n

n + 1diam[v0, · · · , vi , · · · , vn]

≤ n

n + 1diam[v0, · · · , vn]

Otherwise bλ and wj must be maximally distant vertices of µ where

wj =1

`+ 1

∑k=0

vn(k)

is a barycenter of some `-face of [v0, · · · , vi , · · · , vn]

Page 17: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Proof of Lemma 75 (continued).

diamµ =

∣∣∣∣∣bλ − 1

`+ 1

∑k=0

vn(k)

∣∣∣∣∣=

∣∣∣∣∣ 1

`+ 1

∑k=0

bλ − vn(k)

∣∣∣∣∣≤ 1

`+ 1

∑k=0

∣∣bλ − vn(k)∣∣ (ave. of dist. to some verts)

≤ max0≤k≤n

|bλ − vk |

It remains to show that the baryenter of λ is within nn+1 diamλ of

any vertex of λ.

Let bi = 1n (v0 + · · ·+ vi + · · ·+ vn) be the barycenter of

[v0, · · · , vi , · · · , vn]

Then bλ = 1n+1 (nbi + vi ) = n

n+1bi + 1n+1vi is a point on the segment

[vi , bi ] distance nn+1 |vi − bi | from vi .

Page 18: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Lemma 76

S : LC (Rm)→ LC (Rm)

is a chain map.

Proof.

We must show ∂S = S∂.

Let λ = [v0, · · · , vn] then

∂Sλ = ∂bλ(S∂λ)

= (1LC(Rm) − bλ∂)(S∂λ) (Lemma 69)

= S∂λ− bλ∂S∂λ

= S∂λ− bλS∂∂λ (by induction)

= S∂λ

Page 19: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Definition 77

LetT : LCn(Rm)→ LCn+1(Rm)

T : LC−1(Rm)→ LC−1(Rm) is defined on the empty simplex by

T [∅] = 0 ∈ LC0(Rm)

and inductively assume T : LCn−1(Rm)→ LCn(Rm) is defined.

For λ = [v0, · · · , vn] with barycenter bλ set

T (λ) = bλ(λ− T∂λ)

Page 20: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Example 78

Let’s compute T [v0, v1]

T [v0, v1] = b[v0,v1][v0, v1]− b[v0,v1]T∂[v0, v1]

=[v0+v1

2 , v0, v1]− b[v0,v1]T ([v1]− [v0])

=[v0+v1

2 , v0, v1]− b[v0,v1](T [v1]− T [v0])

=[v0+v1

2 , v0, v1]− b[v0,v1]

(b[v1]([v1]− T∂[v1])

− b[v0]([v0]− T∂[v0]))

=[v0+v1

2 , v0, v1]− b[v0,v1]

(b[v1][v1]− b[v1]T [∅]

− b[v0][v0]− b[v0]T [∅])

=[v0+v1

2 , v0, v1]− b[v0,v1]

([v1, v1]− b[v1]0

− [v0, v0]− b[v0]0)

=[v0+v1

2 , v0, v1]− b[v0,v1][v1, v1] + b[v0,v1][v0, v0]

=[v0+v1

2 , v0, v1]−[v0+v1

2 , v1, v1]

+[v0+v1

2 , v0, v0]

Page 21: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Lemma 79

T : LC (Rm)→ LC (Rm)

is a chain homotopy between 1LC(Rm) and S.

Proof.

We must show ∂T + T∂ = 1LC(Rm) − S .

∂Tλ = ∂bλ(λ− T∂λ)

= (1− bλ∂)(λ− T∂λ)

= λ− T∂λ− bλ∂λ+ bλ∂T∂λ

= λ− T∂λ− bλ(1− ∂T )∂λ

= λ− T∂λ− bλ(T∂ + S)∂λ (induction)

= λ− T∂λ− bλT∂∂λ− bλS∂λ

= λ− T∂λ− bλS∂λ

= λ− T∂λ− Sλ (definition of S)

= (1LC(Rm) − T∂ − S)λ

Page 22: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

We may now define S and T for singular simplices.

Let {e0, e1, · · · , en} ⊂ Rn be the standard basis.

Note that[e0, · · · , en] : ∆n → ∆n

is the identity map

Definition 80 (Barycentric subdivision of singular simplices)

Let σ : ∆n → X be a singular simplex.

The barycentric subdivision of σ is

Sσ = σ] (S [e0, · · · , en]) .

Extend linearly to get

S : Cn(X )→ Cn(X )

Page 23: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Lemma 81

S : Cn(X )→ Cn(X ) is a chain map

Proof.

We must show ∂S − S∂ = 0. Let σ : ∆n → X be a singular simplex.

∂Sσ = ∂σ]S [e0, · · · , en]

= σ]S∂[e0, · · · , en] (σ] and S chain maps)

= σ]Sn∑

i=0

(−1)i [e0, · · · , ei , · · · , en]

=n∑

i=0

(−1)iσ]S [e0, · · · , ei , · · · , en]

Page 24: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Proof of Lemma 81 (continued).

=n∑

i=0

(−1)iσ]S [e0, · · · , ei , · · · , en]

=n∑

i=0

(−1)iσ]S([e0, · · · , ei , · · · , en] ◦ [e0, · · · , en−1])

=n∑

i=0

(−1)iσ][e0, · · · , ei , · · · , en]]S [e0, · · · , en−1]

=n∑

i=0

(−1)iS(σ ◦ [e0, · · · , ei , · · · , en])

= Sn∑

i=0

(−1)i (σ ◦ [e0, · · · , ei , · · · , en])

= S∂σ

Page 25: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011 Definition 82 (Barycentric subdivision of singular simplices)

Let σ : ∆n → X be a singular simplex.

Tσ = σ]T [e0, · · · , en].

Extend linearly to get

T : Cn(X )→ Cn+1(X )

Page 26: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Lemma 83

T : Cn(X )→ Cn+1(X )

is a chain homotopy between S and 1C(X )

Proof.

∂Tσ = ∂σ]T [e0, · · · , en]

= σ]∂T [e0, · · · , en]

= σ](1− S − T∂)[e0, · · · , en]

= σ][e0, · · · , en]− σ]S [e0, · · · , en]− σ]T∂[e0, · · · , en]

= σ − Sσ − σ]Tn∑

i=0

(−1)i [e0, · · · , ei , · · · , en]

= σ − Sσ −n∑

i=0

(−1)iσ]T [e0, · · · , ei , · · · , en]

Page 27: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Proof of Lemma 83 (continued).

= σ − Sσ −n∑

i=0

(−1)iσ]T [e0, · · · , ei , · · · , en]

= σ − Sσ −n∑

i=0

(−1)iσ]T ([e0, · · · , ei , · · · , en] ◦ [e0, · · · , en−1])

= σ − Sσ −n∑

i=0

(−1)iσ][e0, · · · , ei , · · · , en]]T [e0, · · · , en−1]

= σ − Sσ −n∑

i=0

(−1)iT (σ ◦ [e0, · · · , ei , · · · , en])

= σ − Sσ − Tn∑

i=0

(−1)i (σ ◦ [e0, · · · , ei , · · · , en])

= σ − Sσ − T∂σ

= (1− S − T∂)σ

Page 28: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

A singular simplex may need to be subdivided many times before itbecomes a subordinate chain so we give a chain homotopy between1C(X ) and Sm

Definition 84

Let Dm : Cn(X )→ Cn+1(X ) be the operator

Dm =m−1∑i=0

TS i

Page 29: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Lemma 85

Dm is a chain homotopy between 1C(X ) and Sm

Proof.

∂Dm + Dm∂ =m−1∑i=0

∂TS i + TS i∂

=m−1∑i=0

∂TS i + T∂S i

=m−1∑i=0

(∂T + T∂)S i

=m−1∑i=0

(1− S)S i

=m−1∑i=0

S i − S i+1

= 1C(X ) − Sm

Page 30: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

• Let U = {Ui} be an open cover of X

• Given a singular simplex σ : ∆n → X

• Get an open cover σ−1(Ui ) of ∆n

• This open cover of ∆n has a Lebesgue number εσ > 0

• There is some m s.t.(

nn+1

)m< εσ

• Smσ ∈ CU (X )

• Define mσ to be minimum such m

Definition 86

Let D : Cn(X )→ Cn+1(X ) be given by

Dσ = Dmσσ

Page 31: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Definition 87

Let ρ : Cn(X )→ Cn(X ) be given by

ρσ = Smσσ + Dmσ∂σ − D(∂σ)

• Claim: ρσ ∈ CU (X )

• By definition of mσ we have Smσσ ∈ CU (X )

• Note that m∂ iσ ≤ mσ so

Dmσ∂iσ − D(∂ iσ) =

mσ−1∑k=0

TSk∂ iσ −m∂iσ−1∑k=0

TSk∂ iσ

=mσ−1∑k=m∂iσ

TSk∂ iσ

By definition of m∂ iσ we have Sk∂ iσ ∈ CU (X ) for k ≥ m∂ iσ

• The claim follows

• We may view ρ as a homomorphism ρ : Cn(X )→ CUn (X )

Page 32: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

ρσ = Smσσ + Dmσ∂σ − D(∂σ)

• By Lemma 85∂Dmσ = 1− Smσ − Dmσ∂

so∂Dσ = σ − Smσσ − Dmσ∂σ

Adding D∂σ to both sides

∂Dσ + D∂σ = σ − Smσσ − Dmσ∂σ + D∂σ

= σ − ρσ

• Claim: ρ : Cn(X )→ CUn (X ) is a chain map

∂ρσ = ∂(1− ∂D − D∂)σ

= ∂σ − ∂D∂σ

ρ∂σ = (1− ∂D − D∂)∂σ

= ∂σ − ∂D∂σ• The claim follows and D is a chain homotopty between ρ and 1

Page 33: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Five Lemma

A5α5−−−−→ A4

α4−−−−→ A3α3−−−−→ A2

α2−−−−→ A1yγ5 yγ4 yγ3 yγ2 yγ1B5

β5−−−−→ B4β4−−−−→ B3

β3−−−−→ B2β2−−−−→ B1

If

1 If the diagram commutes (e.g. γ4 ◦ α5 = β5 ◦ γ5)

2 and rows are exact

3 If γ2, γ4 are surjective and γ1 is injective then γ3 is surjective.

4 If γ2, γ4 are injective and γ5 is surjective then γ3 is injective.

In the special case that γ1, γ2, γ4, γ5 are isomorphisms it follows thatγ3 is an isomorphism.

Exercise 88 (HW3 - Problem 1)

Prove the Five Lemma

Page 34: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Theorem 89 (Excision for Singular Simplicial Homology)

For any pair (X ,A) if U ⊂ A is open with U ⊂ intA then theinclusion map

i : (X − U,A− U)→ (X ,A)

induces an isomorphism

i∗ : Hn(X − U,A− U) ∼= Hn(X ,A)

Proof of Excision.

• Let UX = {X − U, intA}• Let UA = {A− U, intA}

We clearly have an injection of chain maps

CUA(A) ↪→ CUX (X )

Or equivalently an exact sequence

0 −→ CUA(A) ↪→ CUX (X ) −→ CUX (X )/CUA(A) −→ 0

Page 35: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Proof of Excision (continued).

We have the commuting diagram of chain complexes

0 −−−−−→ CUA (A) −−−−−→ CUX (X ) −−−−−→ CUX (X )/CUA (A) −−−−−→ 0y y y0 −−−−−→ C(A) −−−−−→ C(X ) −−−−−→ C(X ,A) −−−−−→ 0

Which yeilds commuting diagram of long exact homology sequences

Hn(CUA (A)) −−−−−−−→ Hn(C

UX (X )) −−−−−−−→ Hn(CUX (X )/CUA (A)) −−−−−−−→ Hn−1(C

UA (A)) −−−−−−−→ Hn−1(CUX (X ))y y y y y

Hn(A) −−−−−−−→ Hn(X ) −−−−−−−→ Hn(X, A) −−−−−−−→ Hn−1(A) −−−−−−−→ Hn−1(X )

By the Five Lemma

Hn(CUX (X )/CUA(A)) ∼= Hn(X ,A)

Page 36: Math 757 Homology theory · 2011-01-21 · Homology theory Lecture 8 - 1/18/2011 Axiom A3 (Excision) Lecture 9 - 1/19/2011 Exercise 70 (HW2 - Problem 2) Show that if M is the cone

Homology theory

Lecture 8 -1/18/2011

Axiom A3(Excision)

Lecture 9 -1/19/2011

Proof of Excision (continued).

CUX (X ) = C (X − U) + C (intA)

CUA(X ) = C (A− U) + C (intA)

so by the First Isomorphism Theorem from group theory

CUX (X )/CUA(A) ∼= C (X − U)/C (A− U)

= C (X − U,A− U)