math 375 numerical analysisbanach.millersville.edu/~bob/math375/neville/main.pdf · neville’s...

37
Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring 2019

Upload: nguyenbao

Post on 07-Jun-2019

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Neville’s MethodMATH 375 Numerical Analysis

J. Robert Buchanan

Department of Mathematics

Spring 2019

Page 2: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Motivation

I We have learned how to approximate a function usingLagrange polynomials and how to estimate the error insuch an approximation.

I Today we will learn how to interpolate between data valuesfound in a table without knowing the function thatgenerated the values.

I We will see that we can perform the interpolation withoutexplicitly writing out the interpolating polynomial.

Page 3: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Interpolation from Data

Suppose we had only the following table of data for f (x):

x f (x)10.1 0.1753722.2 0.3778432.0 0.5299241.6 0.6639350.5 0.63608

Approximate f (27.5) using polynomial interpolation.

Linear approximation:

P1(27.5) =(27.5− 32.0)(22.2− 32.0)

f (22.2)+(27.5− 22.2)(32.0− 22.2)

f (32.0) ≈ 0.46009

Page 4: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Interpolation from Data

Suppose we had only the following table of data for f (x):

x f (x)10.1 0.1753722.2 0.3778432.0 0.5299241.6 0.6639350.5 0.63608

Approximate f (27.5) using polynomial interpolation.Linear approximation:

P1(27.5) =(27.5− 32.0)(22.2− 32.0)

f (22.2)+(27.5− 22.2)(32.0− 22.2)

f (32.0) ≈ 0.46009

Page 5: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Higher Order ApproximationsQuadratic approximation: (two choices)

P2(27.5) =(27.5− 22.2)(27.5− 32.0)(10.1− 22.2)(10.1− 32.0)

f (10.1)

+(27.5− 10.1)(27.5− 32.0)(22.2− 10.1)(22.2− 32.0)

f (22.2)

+(27.5− 10.1)(27.5− 22.2)(32.0− 10.1)(32.0− 22.2)

f (32.0) ≈ 0.46141

P̂2(27.5) =(27.5− 32.0)(27.5− 41.6)(22.2− 32.0)(22.2− 41.6)

f (22.2)

+(27.5− 22.2)(27.5− 41.6)(32.0− 22.2)(32.0− 41.6)

f (32.0)

+(27.5− 22.2)(27.5− 32.0)(41.6− 22.2)(41.6− 32.0)

f (41.6) ≈ 0.46200

There are also two potential cubic interpolating polynomialsand a single quartic polynomial.

Page 6: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Remarks

I Without knowing f (x) we have no idea of the size of theerrors in these approximations.

I The highest degree polynomial does not necessarilydeliver the smallest error.

I Knowing the Lagrange Interpolating Polynomial of degreek does not help us find the one of degree k + 1.

I There is a method for using previous calculations to derivehigher order interpolations.

Page 7: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Remarks

I Without knowing f (x) we have no idea of the size of theerrors in these approximations.

I The highest degree polynomial does not necessarilydeliver the smallest error.

I Knowing the Lagrange Interpolating Polynomial of degreek does not help us find the one of degree k + 1.

I There is a method for using previous calculations to derivehigher order interpolations.

Page 8: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Lagrange Polynomials

DefinitionIf f is a function defined at x0, x1, . . . , xn distinct real numbersand m1, m2, . . . , mk are k distinct integers with 0 ≤ mi ≤ n,then the Lagrange polynomial that agrees with f at the k pointsxm1 , xm2 , . . . , xmk is denoted Pm1,m2,··· ,mk .

Page 9: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (1 of 2)

Let x0 = 1, x1 = 2, x2 = 4, x3 = 5, and x4 = 7 and f (x) = J0(x)(Bessel function of the first kind of order zero).

Determine P1,3,4(x).

P1,3,4(x) =(x − 5)(x − 7)(2− 5)(2− 7)

J0(2) +(x − 2)(x − 7)(5− 2)(5− 7)

J0(5)

+(x − 2)(x − 5)(7− 2)(7− 5)

J0(7)

=

[1

15x2 − 4

5x +

73

]J0(2) +

[−1

6x2 +

32

x +73

]J0(5)

+

[1

10x2 − 7

10x + 1

]J0(7)

Page 10: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (1 of 2)

Let x0 = 1, x1 = 2, x2 = 4, x3 = 5, and x4 = 7 and f (x) = J0(x)(Bessel function of the first kind of order zero).

Determine P1,3,4(x).

P1,3,4(x) =(x − 5)(x − 7)(2− 5)(2− 7)

J0(2) +(x − 2)(x − 7)(5− 2)(5− 7)

J0(5)

+(x − 2)(x − 5)(7− 2)(7− 5)

J0(7)

=

[1

15x2 − 4

5x +

73

]J0(2) +

[−1

6x2 +

32

x +73

]J0(5)

+

[1

10x2 − 7

10x + 1

]J0(7)

Page 11: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Let x0 = 1, x1 = 2, x2 = 4, x3 = 5, and x4 = 7 and f (x) = J0(x).

Use P1,3,4(3) to approximate J0(3).

P1,3,4(x) =(x − 5)(x − 7)(2− 5)(2− 7)

J0(2) +(x − 2)(x − 7)(5− 2)(5− 7)

J0(5)

+(x − 2)(x − 5)(7− 2)(7− 5)

J0(7)

P1,3,4(3) =815

J0(2) +23

J0(5)−15

J0(7)

≈ −0.0590053

Actual value: J0(3) ≈ −0.260052

Page 12: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Let x0 = 1, x1 = 2, x2 = 4, x3 = 5, and x4 = 7 and f (x) = J0(x).

Use P1,3,4(3) to approximate J0(3).

P1,3,4(x) =(x − 5)(x − 7)(2− 5)(2− 7)

J0(2) +(x − 2)(x − 7)(5− 2)(5− 7)

J0(5)

+(x − 2)(x − 5)(7− 2)(7− 5)

J0(7)

P1,3,4(3) =815

J0(2) +23

J0(5)−15

J0(7)

≈ −0.0590053

Actual value: J0(3) ≈ −0.260052

Page 13: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Let x0 = 1, x1 = 2, x2 = 4, x3 = 5, and x4 = 7 and f (x) = J0(x).

Use P1,3,4(3) to approximate J0(3).

P1,3,4(x) =(x − 5)(x − 7)(2− 5)(2− 7)

J0(2) +(x − 2)(x − 7)(5− 2)(5− 7)

J0(5)

+(x − 2)(x − 5)(7− 2)(7− 5)

J0(7)

P1,3,4(3) =815

J0(2) +23

J0(5)−15

J0(7)

≈ −0.0590053

Actual value: J0(3) ≈ −0.260052

Page 14: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Theoretical Result

TheoremLet f be defined at x0, x1, . . . , xk and xi and xj be two distinctreal numbers in this set. Then the kth degree Lagrangepolynomial that interpolates f at x0, x1, . . . , xk is

P(x) =(x − xj)

(xi − xj)P0,1,...,j−1,j+1,...,k (x)−

(x − xi)

(xi − xj)P0,1,...,i−1,i+1,...,k (x).

This theorem allows us to build a Lagrange polynomial ofdegree k from two Lagrange polynomials each of degree k −1.

Page 15: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Theoretical Result

TheoremLet f be defined at x0, x1, . . . , xk and xi and xj be two distinctreal numbers in this set. Then the kth degree Lagrangepolynomial that interpolates f at x0, x1, . . . , xk is

P(x) =(x − xj)

(xi − xj)P0,1,...,j−1,j+1,...,k (x)−

(x − xi)

(xi − xj)P0,1,...,i−1,i+1,...,k (x).

This theorem allows us to build a Lagrange polynomial ofdegree k from two Lagrange polynomials each of degree k −1.

Page 16: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

ProofLet Q(x) = P0,1,...,j−1,j+1,...,k (x) and Q̂(x) = P0,1,...,i−1,i+1,...,k (x),then

P(x) =(x − xj)Q(x)− (x − xi)Q̂(x)

(xi − xj).

If x = xi , then P(xi) = Q(xi) = f (xi). If x = xj , thenP(xj) = Q̂(xj) = f (xj). If l ∈ {0,1, . . . , k} with i 6= l 6= j then

P(xl) =(xl − xj)Q(xl)− (xl − xi)Q̂(xl)

(xi − xj)

=(xl − xj)f (xl)− (xl − xi)f (xl)

(xi − xj)= f (xl).

Thus P(x) is a polynomial of degree at most k whichinterpolates f (x) at xi for i = 0,1, . . . , k and thus

P(x) = P0,1,...,k (x).

Page 17: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

ProofLet Q(x) = P0,1,...,j−1,j+1,...,k (x) and Q̂(x) = P0,1,...,i−1,i+1,...,k (x),then

P(x) =(x − xj)Q(x)− (x − xi)Q̂(x)

(xi − xj).

If x = xi , then P(xi) = Q(xi) = f (xi). If x = xj , thenP(xj) = Q̂(xj) = f (xj). If l ∈ {0,1, . . . , k} with i 6= l 6= j then

P(xl) =(xl − xj)Q(xl)− (xl − xi)Q̂(xl)

(xi − xj)

=(xl − xj)f (xl)− (xl − xi)f (xl)

(xi − xj)= f (xl).

Thus P(x) is a polynomial of degree at most k whichinterpolates f (x) at xi for i = 0,1, . . . , k and thus

P(x) = P0,1,...,k (x).

Page 18: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

ProofLet Q(x) = P0,1,...,j−1,j+1,...,k (x) and Q̂(x) = P0,1,...,i−1,i+1,...,k (x),then

P(x) =(x − xj)Q(x)− (x − xi)Q̂(x)

(xi − xj).

If x = xi , then P(xi) = Q(xi) = f (xi). If x = xj , thenP(xj) = Q̂(xj) = f (xj). If l ∈ {0,1, . . . , k} with i 6= l 6= j then

P(xl) =(xl − xj)Q(xl)− (xl − xi)Q̂(xl)

(xi − xj)

=(xl − xj)f (xl)− (xl − xi)f (xl)

(xi − xj)= f (xl).

Thus P(x) is a polynomial of degree at most k whichinterpolates f (x) at xi for i = 0,1, . . . , k and thus

P(x) = P0,1,...,k (x).

Page 19: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Recursive Generation of Polynomials

P0,1(x) =1

x1 − x0[(x − x0)P1 − (x − x1)P0]

P1,2(x) =1

x2 − x1[(x − x1)P2 − (x − x2)P1]

P0,1,2(x) =1

x2 − x0

[(x − x0)P1,2 − (x − x2)P0,1

]...

Page 20: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Neville’s Method

Define polynomial Qi,j(x) = Pi−j,i−j+1,...,i(x) where 0 ≤ j ≤ i .I j represents the degree of the polynomial.I i determines the consecutive values of x used.I Qi,j(x) can be found recursively.

Qi,j(x) =(x − xi−j)Qi,j−1(x)− (x − xi)Qi−1,j−1(x)

xi − xi−j

Page 21: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Tabular Calculation

Given x0, x1, . . . , xn and f (x0), f (x1), . . . f (xn) we can arrangethe Lagrange interpolating polynomials in the following table.

x0 f (x0) = P0 = Q0,0x1 f (x1) = P1 = Q1,0 P0,1 = Q1,1x2 f (x2) = P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2...

......

...xn f (xn) = Pn = Qn,0 Pn−1,n = Qn,1 Pn−2,n−1,n = Qn,2 · · · P0,1,...,n = Qn,n

Page 22: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example

Approximate f (27.5) from the following data.

xi f (xi)

10.1 0.1753722.2 0.3778432.0 0.5299241.6 0.6639350.5 0.63608

Page 23: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example

Order points by increasing distance from x = 27.5.

xi Qi,032.0 0.5299222.2 0.3778441.6 0.6639310.1 0.1753750.5 0.63608

Page 24: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example

xi Qi,0 Qi,132.0 0.5299222.2 0.37784 0.46009†

41.6 0.66393 0.45600‡

10.1 0.17537 0.44524∗

50.5 0.63608 0.37380∗∗

†0.46009 =(27.5− 32.0)(0.37784)− (27.5− 22.2)(0.52992)

22.2− 32.0‡0.45600 =

(27.5− 22.2)(0.66393)− (27.5− 41.6)(0.37784)41.6− 22.2

∗0.44524 =(27.5− 41.6)(0.17537)− (27.5− 10.1)(0.66393)

10.1− 41.6∗∗0.37380 =

(27.5− 10.1)(0.63608)− (27.5− 50.5)(0.17537)50.5− 10.1

Page 25: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example

xi Qi,0 Qi,1 Qi,232.0 0.5299222.2 0.37784 0.4600941.6 0.66393 0.45600 0.46200†

10.1 0.17537 0.44524 0.46071‡

50.5 0.63608 0.37380 0.55843∗

†0.46200 =(27.5− 32.0)(0.45600)− (27.5− 41.6)(0.46009)

41.6− 32.0‡0.46071 =

(27.5− 22.2)(0.44524)− (27.5− 10.1)(0.45600)10.1− 22.2

∗0.55843 =(27.5− 41.6)(0.37380)− (27.5− 50.5)(0.44524)

50.5− 41.6

Page 26: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example

xi Qi,0 Qi,1 Qi,2 Qi,332.0 0.5299222.2 0.37784 0.4600941.6 0.66393 0.45600 0.4620010.1 0.17537 0.44524 0.46071 0.46174†

50.5 0.63608 0.37380 0.55843 0.47901‡

†0.46174 =(27.5− 32.0)(0.46071)− (27.5− 10.1)(0.46200)

10.1− 32.0‡0.47901 =

(27.5− 22.2)(0.55843)− (27.5− 50.5)(0.46071)50.5− 22.2

Page 27: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example

xi Qi,0 Qi,1 Qi,2 Qi,3 Qi,432.0 0.5299222.2 0.37784 0.4600941.6 0.66393 0.45600 0.4620010.1 0.17537 0.44524 0.46071 0.4617450.5 0.63608 0.37380 0.55843 0.47901 0.45754†

†0.45754 =(27.5− 32.0)(0.47901)− (27.5− 50.5)(0.46174)

50.5− 32.0

Page 28: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Neville’s Iterated Interpolation Algorithm

Goal: evaluate the interpolating polynomial P on n + 1 distinctnumbers x0, . . . , xn at x to approximate f (x).

INPUT values x , x0, . . . , xn, f (x0), . . . , f (xn)

STEP 1 For i = 0,1, . . . ,n set Qi,0 = f (xi).STEP 2 For i = 1,2, . . . ,n

for j = 1,2, . . . , iset Qi,j =

1xi − xj

[(x − xi−j)Qi,j−1 − (x − xi)Qi−1,j−1

].

STEP 3 OUTPUT Q. STOP.

Page 29: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (1 of 2)

Use Neville’s Iterated Interpolation to obtain the approximationsfor Lagrange interpolating polynomials of degrees one, two, andthree for f (0).

xi f (xi)

−0.50 1.93750−0.25 1.332030.25 0.800780.50 0.68750

Page 30: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Qi,j(0) =(0− xi−j)Qi,j−1(0)− (0− xi)Qi−1,j−1(0)

xi − xi−j

i xi Qi,0 Qi,1 Qi,2 Qi,30 −0.50 1.937501 −0.25 1.33203

0.72656

2 0.25 0.80078

1.06641 0.95312

3 0.50 0.68750

0.91406 1.01562 0.98437

Page 31: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Qi,j(0) =(0− xi−j)Qi,j−1(0)− (0− xi)Qi−1,j−1(0)

xi − xi−j

i xi Qi,0 Qi,1 Qi,2 Qi,30 −0.50 1.937501 −0.25 1.33203 0.726562 0.25 0.80078

1.06641 0.95312

3 0.50 0.68750

0.91406 1.01562 0.98437

Q1,1 =(0− x0)Q1,0 − (0− x1)Q0,0

x1 − x0

=(0.50)(1.33203) + (−0.25)(1.93750)

−0.25− (−0.50)= 0.72656

Page 32: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Qi,j(0) =(0− xi−j)Qi,j−1(0)− (0− xi)Qi−1,j−1(0)

xi − xi−j

i xi Qi,0 Qi,1 Qi,2 Qi,30 −0.50 1.937501 −0.25 1.33203 0.726562 0.25 0.80078 1.06641

0.95312

3 0.50 0.68750

0.91406 1.01562 0.98437

Q2,1 =(0− x1)Q2,0 − (0− x2)Q1,0

x2 − x1

=(0.25)(0.80078) + (0.25)(1.33203)

0.25− (−0.25)= 1.06641

Page 33: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Qi,j(0) =(0− xi−j)Qi,j−1(0)− (0− xi)Qi−1,j−1(0)

xi − xi−j

i xi Qi,0 Qi,1 Qi,2 Qi,30 −0.50 1.937501 −0.25 1.33203 0.726562 0.25 0.80078 1.06641

0.95312

3 0.50 0.68750 0.91406

1.01562 0.98437

Q3,1 =(0− x2)Q3,0 − (0− x3)Q2,0

x3 − x2

=(−0.25)(0.68750) + (0.50)(0.80078)

0.50− 0.25= 0.91406

Page 34: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Qi,j(0) =(0− xi−j)Qi,j−1(0)− (0− xi)Qi−1,j−1(0)

xi − xi−j

i xi Qi,0 Qi,1 Qi,2 Qi,30 −0.50 1.937501 −0.25 1.33203 0.726562 0.25 0.80078 1.06641 0.953123 0.50 0.68750 0.91406

1.01562 0.98437

Q2,2 =(0− x0)Q2,1 − (0− x2)Q1,1

x2 − x0

=(0.50)(1.06641) + (0.25)(0.72656)

0.25− (−0.50)= 0.95312

Page 35: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Qi,j(0) =(0− xi−j)Qi,j−1(0)− (0− xi)Qi−1,j−1(0)

xi − xi−j

i xi Qi,0 Qi,1 Qi,2 Qi,30 −0.50 1.937501 −0.25 1.33203 0.726562 0.25 0.80078 1.06641 0.953123 0.50 0.68750 0.91406 1.01562

0.98437

Q3,2 =(0− x1)Q3,1 − (0− x3)Q2,1

x3 − x1

=(0.25)(0.91406) + (0.50)(1.06641)

0.50− (−0.25)= 1.01562

Page 36: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Example (2 of 2)

Qi,j(0) =(0− xi−j)Qi,j−1(0)− (0− xi)Qi−1,j−1(0)

xi − xi−j

i xi Qi,0 Qi,1 Qi,2 Qi,30 −0.50 1.937501 −0.25 1.33203 0.726562 0.25 0.80078 1.06641 0.953123 0.50 0.68750 0.91406 1.01562 0.98437

Q3,3 =(0− x0)Q3,2 − (0− x3)Q2,2

x3 − x0

=(0.50)(1.01562) + (0.50)(0.95312)

0.50− (−0.50)= 0.98437

Page 37: MATH 375 Numerical Analysisbanach.millersville.edu/~bob/math375/Neville/main.pdf · Neville’s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Spring

Homework

I Read Section 3.2.I Exercises: 1a, 3, 5, 7