math 104/184 f e r session

14
MATH 104/184 FINAL EXAM REVIEW SESSION BY RAYMOND SITU

Upload: others

Post on 18-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MATH 104/184 F E R SESSION

MATH104/184FINALEXAMREVIEWSESSION

BYRAYMONDSITU

Page 2: MATH 104/184 F E R SESSION

TABLEOFCONTENT

I. Relatedratesin3dimensionsII. OptimizationIII. LocallinearapproximationIV. TaylorpolynomialsV. CurvesketchingVI. Somefunlimits

Page 3: MATH 104/184 F E R SESSION

RELATEDRATESAplaneistakingofftherunwayataspeedof300km/hdueNorth.Theangleofelevationis30degrees.Acaristravellingdueeastat150km/honastraight,level,road.Howfastisthedistancebetweentheplaneandthecarincreasingwhentheplanehasreachedanaltitudeof3km,assumingtheybothstartedfromthesamepointandreachedtheirrespectivevelocitiesinstantly.(redisplane,greeniscar,blueisdistances).IheardtherewasafunrelatedratesonthemidterminvolvingtrianglessoImadethisquestionswithlotsoftriangles.

Fig1

Fig2 Fig3

Page 4: MATH 104/184 F E R SESSION

Wewanttofindtherateofchangeofdistance.Aswecanseeinfig2andfig3,distanceisthehypotenuseofgrounddistanceandheightdistance.Togetanequationfordistanceweneedanequationforheightdistanceandgrounddistance.Lookingatfig1,grounddistanceisthehypotenuseofthehorizontaldistancetravelledbythecarandtheplane.Tofindthehorizontaldistancetravelledbytheplanewecanusetrig.Tofindhorizontaldistancetravelledbythecaritisthevelocityofthecarmultipliedbytime(thecaronlyhasvelocityin1direction).Whentheplaneisatanaltitudeof3kmhowmanysecondshaspassed?Tofindthatoutweneedtofindouthowlongittakestheplanetoreach3kmaltitude.

1. sin '(= *++*,-./

01+*./23,/= 4

+562/.768/59-,.62:/

;<= 4

+562/.768/59-,.62:/

๐‘๐‘™๐‘Ž๐‘›๐‘’๐‘ก๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ = 6๐‘˜๐‘š

2.๐‘ก๐‘–๐‘š๐‘’ = +562/.768/59-,.62:/8/5*:-.1

= (4LL

= 0.02h

3. cos '(= 69R6:/2.

01+*./23,/= +562/0*7-S*2.659-,.62:/

(

โˆš4<= +562/0*7-S*2.659-,.62:/

(

๐‘๐‘™๐‘Ž๐‘›๐‘’โ„Ž๐‘œ๐‘Ÿ๐‘–๐‘ง๐‘ก๐‘œ๐‘›๐‘Ž๐‘™๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ = 3โˆš3๐‘˜๐‘š

๐‘๐‘™๐‘Ž๐‘›๐‘’โ„Ž๐‘œ๐‘Ÿ๐‘–๐‘ง๐‘œ๐‘›๐‘ก๐‘Ž๐‘™๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘ก๐‘ฆ = +562/0*7-S*2.659-,.62:/.-Y/

= 4โˆš4L.L<

= 150โˆš3๐‘˜๐‘š/โ„Ž

๐‘๐‘™๐‘Ž๐‘›๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ก๐‘–๐‘๐‘Ž๐‘™๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘ก๐‘ฆ = +562/0/-\0.9-,.62:/.-Y/

= 4L.L<

= 150๐‘˜๐‘š/โ„Ž

5.Carhorizontaldistance=time*carvelocity=0.02*150=3km

6.๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’< = ๐‘๐‘™๐‘Ž๐‘›๐‘’โ„Ž๐‘œ๐‘Ÿ๐‘–๐‘ง๐‘œ๐‘›๐‘ก๐‘Ž๐‘™๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’< + ๐‘๐‘Ž๐‘Ÿโ„Ž๐‘œ๐‘Ÿ๐‘–๐‘ง๐‘œ๐‘›๐‘ก๐‘Ž๐‘™๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’<

๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ = `(3โˆš3)< + 3<

=c9(3) + 9=โˆš36 = 6๐‘˜๐‘š

7.findingrateofchangeforgrounddistanceForsakeofsimplicity(justforthispart)Ipluginnumbersfromstepsabovesoifyouarewonderwhereanumbercamefrom.Lookup!

grounddistance=cplanehorizontaldistance=acarhorizontaldistance=b

๐‘< = ๐‘Ž< +๐‘<nowwederive

2๐‘(9:9.) = 2๐‘Ž(96

9.) + 2๐‘(9f

9.)

2(6)(9:9.) = 2(3โˆš3)(150โˆš3) + 2(3)(150)

12(9:9.) = 2700 + 900

h9:9.i = 4(LL

;<= 300๐‘˜๐‘š/โ„Žrateofchangeofgrounddistancewhenplanehaselevationof3km

Page 5: MATH 104/184 F E R SESSION

8.Heightdistance=3km(given)

9.๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’< = โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’< + ๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’<

๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ = โˆš3< + 6< = โˆš45

10.Forthissectiononlywewillusethefollowingvariablenames,nottobeconfusedwithpart7.Ipluginnumbersfromstepsabovesoifyouarewonderwhereanumbercamefrom.Lookup!

Distance=cheightdistance=agrounddistance=b๐‘< = ๐‘Ž< +๐‘<nowwederive

2๐‘(9:9.) = 2๐‘Ž(96

9.) + 2๐‘(9f

9.)

2โˆš45(9:9.) = 2(3)(150) + 2(6)(300)

2โˆš45(9:9.) = 900 + 3600

2โˆš45(9:9.) = 4500

9:9.= klLL

<โˆškl

9:9.= <<lL

โˆškl๐‘˜๐‘š/โ„Žfinalanswer

Page 6: MATH 104/184 F E R SESSION

OPTIMIZATIONThefirstyearstudentsatUBC(UniversityofBurnabyCoquitlam)havecriedariverafterfailingtheirMATH140/148midterm.Theriveris5kmwideandthestudentsneed togetacross to theotherside toapoint that is10kmdownstream fromthepointdirectlyacrossfromtheircurrentposition.Thestudentscanwalkataspeedof5km/h.Theriverisalsososaltythatthecurrentisnolongerflowingwhichallowsthe students to swimat a speedof3km/h.What is themost efficientway for thestudentstoโ€œgetoveritโ€?(bothphysicallyandpsychologically)

Wewanttominimizetime.0โ‰คxโ‰ค10Thereare2separatesections(swimmingandwalking)Thetimeofswimmingsectionisdefinedby:

๐‘ก = 9-,.62:/8/5*:-.1

= โˆšlmnom

4

Thetimeofthewalkingsectionisdefinedby:๐‘ก = 9-,.62:/

8/5*:-.1= ;Lpo

l

ThetotaltimetogettopointBwouldbe:๐‘ก = โˆšlmnom

4+ ;Lpo

l

๐‘กq = ;4;<

<oโˆšlmnom

โˆ’ ;l

๐‘กq = <o(โˆšlmnom

โˆ’ ;l

0 = o4โˆšlmnom

โˆ’ ;l

;l= o

4โˆšlmnom

3โˆš5< + ๐‘ฅ< = 5๐‘ฅsquarebothsides9(5< + ๐‘ฅ<) = 25๐‘ฅ<9 โˆ— 5< + 9๐‘ฅ< = 25๐‘ฅ<9 โˆ— 5< = 16๐‘ฅ<

๐‘ฅ = `uโˆ—lm

;(

๐‘ฅ = โˆšuโˆšlm

โˆš;(

๐‘ฅ = 4โˆ—lk

๐‘ฅ = ;lk

Testboundarycasesaswell(x=0andx=10)

๐‘ก = โˆšlmnLm

4+ ;LpL

l

= โˆšlm

4+ ;L

l

= l4+ 2

= ;;4

๐‘ก = `lmn(vw

x)m

4+

;Lpvwx

l

๐‘ก = `mwvnmmwvy

4+

mwx

l

๐‘ก = `ymwvy

4+ l

k

๐‘ก = mwx

4+ l

k

๐‘ก = ;L4

๐‘ฅ = ;l

kgivesusthesmallestt.

๐‘ก = โˆšlmn;Lm

4+ ;Lp;L

l

๐‘ก = โˆš<ln;LL4

๐‘ก = โˆš;<l4

Wecancomparethiswith10/3bysquaringbothofthem.125/9>100/9

Page 7: MATH 104/184 F E R SESSION

LOCALLINEARAPPROXIMATIONGiven: 65z

a) Findthelinearapproximationb) Usethelinearapproximationtoapproximatethedesiredvaluec) Determineifitisanoverestimateoranunderestimated) Whatistheboundontheerror?

Originally,IhadaveryfunquestionplannedforyouguysbutProfessorDesaulnierssaidโ€œIthinkthisproblemmayconfusethemโ€soIhadtochangeittoasimplerone:(

a) ๐ฟ(๐‘ฅ) = ๐‘“(๐‘Ž) + ๐‘“q(๐‘Ž)(๐‘ฅ โˆ’ ๐‘Ž)Wecanchoosea=64.๐‘“(๐‘Ž) = 4

๐‘“q(๐‘ฅ) = ;4(๐‘ฅ

}mz )

๐‘“q(64) = ;4h ;;(i = ;

k~

๐ฟ(๐‘ฅ) = 4 + ;k~(๐‘ฅ โˆ’ 64)

b) ๐ฟ(65) = 4 + ;

k~(65 โˆ’ 64)

๐ฟ(65) = 4 + ;k~= k

;hk~k~i + ;

k~= ;u<

k~+ ;

k~= ;u4

k~

c) ๐‘“q(๐‘ฅ) = ;4(๐‘ฅ

}mz )

๐‘“qq(๐‘ฅ) = ;4hโˆ’ <

4i (๐‘ฅ

}wz ) = โˆ’ <

u(๐‘ฅ

}wz )

๐‘“โ€ฒโ€ฒ(64) =โˆ’29(64

โˆ’53)๐‘“qq(64) = ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’Thesecondderivativeisnegativemeaningitisconcavedown.Thismeansitisanoverestimate.

d) Youneedtoknowthat|๐‘“qq(๐‘)| โ‰ค ๐‘€inotherwordsweneedtofindthemaximumvalueof|๐‘“qq(๐‘)|๐‘–๐‘›๐‘กโ„Ž๐‘’๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘ฃ๐‘Ž๐‘™[64,65]

๐‘“qqq(๐‘ฅ) = โˆ’ <uhโˆ’ l

4i h๐‘ฅ

}๏ฟฝz i = 0

h๐‘ฅ}๏ฟฝz i = 0

;

๏ฟฝo๏ฟฝz๏ฟฝ= 0๐‘›๐‘œ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘›, ๐‘Ž๐‘™๐‘กโ„Ž๐‘œ๐‘ข๐‘”โ„Ž๐‘คโ„Ž๐‘’๐‘›๐‘ฅ = 0๐‘“qqq(๐‘ฅ)๐‘–๐‘ ๐‘ข๐‘›๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘’๐‘‘

Therearenocriticalpointsinourintervalsowecanjusttesttheboundaries

Page 8: MATH 104/184 F E R SESSION

Noticethat:๐‘“qq(๐‘ฅ) = โˆ’ <uh๐‘ฅ

}wz i = โˆ’ <

u;

(owz)

xisinthedenominatormeaningthatsmallerx=biggerfโ€™โ€™(x).Therefore,x=64willgiveusthelargervalue

|Error|โ‰คh;<i hโˆ’ <

uih(64)

}wz i (|65 โˆ’ 64|)<

Page 9: MATH 104/184 F E R SESSION

TAYLORPOLYNOMIALSWhatisthe2nddegreeTaylorpolynomialof:

๐‘“ ๐‘ฅ = sin(๐‘ฅ<) + log( on;)z( ๐‘ฅ + 1)(Lata= ๐œ‹

๐‘“(๐‘ฅ) = sin(๐‘ฅ<) + 20simplifytheweirdlogattheendto20.

๐ถL = ๏ฟฝ(โˆš')L!

= ๐‘“๏ฟฝโˆš๐œ‹๏ฟฝ = 0 + 20 = 20

๐ถ; = ๏ฟฝ๏ฟฝ(โˆš');!

= ๐‘“q๏ฟฝโˆš'๏ฟฝ = cos hโˆš๐œ‹<i๏ฟฝ2โˆš๐œ‹๏ฟฝ = โˆ’2โˆš๐œ‹

๐ถ< = ๏ฟฝ๏ฟฝ๏ฟฝ(โˆš')

<!= ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโˆš'๏ฟฝ

<= ;

<๏ฟฝโˆ’ sin hโˆš๐œ‹

<i ๏ฟฝ2โˆš๐œ‹๏ฟฝ๏ฟฝ2โˆš๐œ‹๏ฟฝ + cos hโˆš๐œ‹

<i (2)๏ฟฝ = p<

<= โˆ’1

The2nddegreeTaylorpolynomialis:

๐‘ƒ๏ฟฝ(๐‘ฅ) = ๐ถL + ๐ถ;(๐‘ฅ โˆ’ ๐‘Ž) + ๐ถ<(๐‘ฅ โˆ’ ๐‘Ž)<

๐‘ƒ๏ฟฝ(๐‘ฅ) = 20 โˆ’ 2โˆš๐œ‹๏ฟฝ๐‘ฅ โˆ’ โˆš๐œ‹๏ฟฝโˆ’(๐‘ฅ โˆ’ โˆš๐œ‹)<

Page 10: MATH 104/184 F E R SESSION

CURVESKETCHING

Sketchthecurve๐‘“ ๐‘ฅ = 3๐‘ฅl โˆ’ 5๐‘ฅ4

1.Domain:allrealnumbers2.Asymptotes:

Vertical:noneHorizontal:takelimitasx->infinityandnegativeinfinityandyouwillnotgetafinitenumberasaresult.Therefore,nohorizontalasymptotes.

3.Intercepts:xintercept:

0 = 3๐‘ฅl โˆ’ 5๐‘ฅ40 = ๐‘ฅ4(3๐‘ฅ< โˆ’ 5)

x=0,x=ยฑ`l4

(0,0),(โˆ’`l4, 0), (`l

4, 0)

yintercept:๐‘ฆ = 3(0l) โˆ’ 5(04)y=0(0,0)

4.Intervalsofincreaseanddecrease: ๐‘“q(๐‘ฅ) = 15๐‘ฅk โˆ’ 15๐‘ฅ<

0 = 15๐‘ฅ<(๐‘ฅ< โˆ’ 1)x=00= ๐‘ฅ< โˆ’ 1 ๐‘ฅ< = 1 ๐‘ฅ = ยฑ1

๐‘“โ€ฒ(โˆ’2)>0 ๐‘“โ€ฒ(โˆ’0.5)<0 ๐‘“โ€ฒ(0.5)<0 ๐‘“โ€ฒ(2)>0

Increasingon(โˆ’โˆž,โˆ’1)๐‘Ž๐‘›๐‘‘(1,โˆž)Decreasingon(โˆ’1,0)๐‘Ž๐‘›๐‘‘(0,1)

Page 11: MATH 104/184 F E R SESSION

5.Localmax/minAtx=-1.๐‘“(โˆ’1) = 3(โˆ’1)4 โˆ’ 5(โˆ’1)4=โˆ’3 โˆ’ (โˆ’5) = 2Localmax(-1,2)Atx=1.๐‘“(1) = 3(1)4 โˆ’ 5(1)4=3 โˆ’ 5 = โˆ’2Localmin(1,-2)

6.Concavity ๐‘“q(๐‘ฅ) = 15๐‘ฅk โˆ’ 15๐‘ฅ< ๐‘“qq(๐‘ฅ) = 60๐‘ฅ4 โˆ’ 30๐‘ฅ 0 = 30๐‘ฅ(2๐‘ฅ2 โˆ’ 1) ๐‘ฅ = 00 = 2๐‘ฅ< โˆ’ 1 ๐‘ฅ< = ;

<

๐‘ฅ = ยฑ`;<

๐‘“โ€ฒโ€ฒ(โˆ’1) < 0 ๐‘“โ€ฒโ€ฒ(โˆ’0.1) > 0 ๐‘“โ€ฒโ€ฒ(0.1) < 0 ๐‘“โ€ฒโ€ฒ(1) > 0

Concavedownon๏ฟฝโˆ’โˆž,โˆ’`12๏ฟฝ ๐‘Ž๐‘›๐‘‘ ๏ฟฝ0,`12๏ฟฝ

Concaveupon๏ฟฝโˆ’`12, 0๏ฟฝ ๐‘Ž๐‘›๐‘‘ ๏ฟฝ`12, โˆž๏ฟฝ

7.sketch

Page 12: MATH 104/184 F E R SESSION

Sketch๐‘“ ๐‘ฅ = oomn;

,given๐‘“q ๐‘ฅ = ;(omn;)z

and๐‘“qq ๐‘ฅ = โˆ’ 4o(omn;)w

1.Domain:Allrealnumbers2.AsymptotesVertical:noneHorizontal-โˆž limoโ†’p๏ฟฝ

oโˆšomn;

= ๏ฟฝ๏ฟฝ ยกโ†’}ยข

o

๏ฟฝ๏ฟฝ ยกโ†’}ยข

โˆšomn;

=

๏ฟฝ๏ฟฝ ยกโ†’}ยข

o

๏ฟฝ๏ฟฝ ยกโ†’}ยข

โˆšomn;=

๏ฟฝ๏ฟฝ ยกโ†’}ยข

o

๏ฟฝ๏ฟฝ ยกโ†’}ยข

|o|= โˆ’1

Horizontalasymptoteof-1as๐‘ฅ โ†’ โˆ’โˆž

Horizontalโˆž limoโ†’๏ฟฝ

oโˆšomn;

=๏ฟฝ๏ฟฝ ยกโ†’ยข

o

๏ฟฝ๏ฟฝ ยกโ†’}ยข

โˆšomn;

=

๏ฟฝ๏ฟฝ ยกโ†’ยข

o

๏ฟฝ๏ฟฝ ยกโ†’ยข

โˆšomn;=

๏ฟฝ๏ฟฝ ยกโ†’ยข

o

๏ฟฝ๏ฟฝ ยกโ†’ยข

|o|= 1

Horizontalasymptoteof1as๐‘ฅ โ†’ โˆž

3.Interceptsxโ€“intercept0= o

โˆšomn;

x=0intercept(0,0)

yโ€“intercepty= L

โˆšLmn;

y=0intercept(0,0)

4.Intervalsofincreaseanddecrease๐‘“q(๐‘ฅ) = ;

c(omn;)z

0 = c(๐‘ฅ< + 1)4and0= ;c(omn;)z

havenosolutions.

Wecancheckthederivativeatx=0togetapositivenumbermeaningthefunctionisincreasingfrom(-โˆž,โˆž)withnocriticalpoints.5.Localmax/minNone6.Concavity๐‘“qq(๐‘ฅ) = โˆ’ 4o

c(omn;)w

0=-3x0=c(๐‘ฅ< + 1)lx=0nosolution๐‘“qq(โˆ’1) = ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘ฃ๐‘’๐‘“qq(1) = ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’Concaveupon(-โˆž,0),concavedownon(0,โˆž),inflectionpointat(0,0)

Page 13: MATH 104/184 F E R SESSION
Page 14: MATH 104/184 F E R SESSION

SOMEFUNLIMITS

Evaluatethelimit: limoโ†’;}

๐‘™๐‘› ๐‘ฅk โˆ’ 1 โˆ’ ๐‘™๐‘› โˆ’1

Letf(x)= sin ๐‘’z ๐‘–๐‘“๐‘ฅ = ๐‘’'๐‘’'๐‘–๐‘“๐‘ฅ โ‰  ๐‘’'

,evaluatethelimit limoโ†’/ยค

๐‘“(๐‘“ ๐‘ฅ ).

Giveyouranswerinacalculatorreadyform

Supposethatlimoโ†’:

๐‘“ ๐‘ฅ = ๐‘ง,wherezisapositiveinteger,whichofthefollowingstatementsareguaranteedtobetrue?(Youmaycirclemultipleoptions)

a)๐‘“q ๐‘ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘ b)๐‘“ ๐‘ฅ ๐‘–๐‘ ๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘œ๐‘ข๐‘ ๐‘Ž๐‘ก๐‘ฅ = ๐‘c)๐‘“ ๐‘ฅ ๐‘–๐‘ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘’๐‘‘๐‘Ž๐‘ก๐‘ฅ = ๐‘d)๐‘“ ๐‘ = ๐‘งe)๐‘Ž)๐‘Ž๐‘›๐‘‘๐‘‘)f)๐‘)๐‘Ž๐‘›๐‘‘๐‘)g)๐‘๐‘œ๐‘›๐‘’๐‘œ๐‘“๐‘กโ„Ž๐‘’๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’

Startwiththeinsidef(x)firstthenworkoutwards limoโ†’/ยค

๐‘“(๐’‡(๐’™)).

AsxAPPROACHES๐‘’' ,whichalsomeansxisNOT๐‘’' ,thenvalueoff(x)willbe๐‘’' (bottomcase)

Nowweareleftwithf(๐‘’')whichwillgiveusavalueofsinโˆš๐‘’z

Therefore,thefinalansweris๐ฌ๐ข๐งโˆš๐’†๐Ÿ‘

limoโ†’;}

๐‘™๐‘›|๐‘ฅk โˆ’ 1| โˆ’ ๐‘™๐‘› |โˆ’1|

= ๐‘™๐‘›|(1p)k โˆ’ 1| โˆ’ ๐‘™๐‘› 1(ln1=0)= ๐‘™๐‘›|(1p) โˆ’ 1|(somethingslightlysmallerthan1tothepowerof4isstillsomethingslightlysmallerthan1)= ๐‘™๐‘›|0p|=๐‘™๐‘›0n=-โˆž(graphofln,youshouldknowhappensatln0)

g)itispossiblefor๐‘“(๐‘ฅ)tohaveaholeatx=c.Thismeansb),c),andd)arefalse.Thereisnot

enoughinformationtosaya)isalwaystrue.Example:๐‘“(๐‘ฅ) = ยญ(op<)(op<)(op<)

ยญwithc=2.Checkitout

ingraphingcalculator.