materials to support the discussion: - recall of tac11 (1-2 april 2015) recommendations -hom and ped...

21
Materials to support the discussion: - Recall of TAC11 (1-2 April 2015) recommendations - HOM and PED - Possible QA applicable to SRF collaboration projects

Upload: laurel-wilcox

Post on 30-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Materials to support the discussion:

- Recall of TAC11 (1-2 April 2015) recommendations- HOM and PED- Possible QA applicable to SRF collaboration projects

Elliptical Cavity Cryomodules

• Recommendations– The success oriented schedule presented leaves almost(?) no room for

iteration of any of the sub-components or the module itself. Thus an extremely careful self-assessment of technical risks is to be made.

– Qualification of sub-components and finally of the completed cryo modules requires smoothly running infrastructure. A complete list of all related infrastructure with commissioning and training plans should be established.

– The IKC concept for the cryo module and its‘ components requires precisely defined interfaces. Include in all IK negotiations aspects for technical, logistical and contractual issues.

– At the time of the cryo module CDR the final design has to be absolutely stable. Series production of components requires precise specifications for all components and procedures. A clear timeline for all related project decisions should be established.

1-2 April 2015 ; ESS TAC11

Elliptical Cavity Cryomodules (con‘

– CEA Saclay / Irfu is strongly contributing to ESS and XFEL cryo module assembly. Lessons learned should be discussed and documented / presented.

– The cryo module QC at ESS Lund will lead into some repair actions. The planned coordination meetings between ESS/CEA/INFN/STFC should address this issue.

– Identify cryo module tooling to be made available to ESS for long term. Either at ESS or through long-term binding contracts at the IKC labs.

1-2 April 2015 ; ESS TAC11

Elliptical Cavities (high beta)

• Comments• Cavity vendors need to modify existing infrastructure and tooling for

surface treatment. Since STFC has no prototypes to be simply copied by industry, good coordination between STFC, INFN and industry is required. What can one learn from other lab infrastructures? Knowledge exchange / transfer is of utmost importance.

• Recommendations– The presented STFC schedule includes time for infrastructure

modification, commissioning and training. But self-assessment of technical risks should be made. Comparison with other similar infrastructures already used for series production should be done as much as possible.

– Industrial infrastructure needs to be developed and supervised. Identify what can be learned from others.

– If STFC is building to print clarify responsibilities.

1-2 April 2015 ; ESS TAC11

Medium beta cryomodules

• Comments– degradation after heat-treatment : possible explanation is an

insufficient chemical etching, – there will be no feedback from first cryomodule power testing

on the assembly of the following cryomodules, and this is a serious concern

• Recommendations– Degradation cause should be confirmed as soon as possible In

order to secure the global process– Regarding manufacturing geometry accuracy, analysis should

be performed to determine the geometric tolerance to escape the HOMs from the harmonics with a minimum spacing of 5 MHz

1-2 April 2015 ; ESS TAC11

Elliptical Cavities (medium & high beta)

• Comments– Using large grain niobium for producing cavities at INFN adds

some risk to the project schedule. Should a problem occur with this R&D, definite milestones should be established that would trigger a decision to revert to known fabrication techniques with small grain niobium.

– It has been decided to not scan sheets of niobium for acceptable RRR. Experience at DESY in the construction of X-FEL have shown a 3% failure rate of niobium sheets. This presents a risk to cavity construction, especially since production did not include the fabrication of spare cavities. This decision needs to be reassessed.

1-2 April 2015 ; ESS TAC11

Elliptical Cavities (medium & high beta) -

• Recommendations– There are many common issues between medium and high

beta elliptical cavities. • try to avoid double work; • profit from each other;• develop common strategies for industry supervision• Check common Nb procurement across work-packages• use identical clean room and vacuum specs

– Work to understand the source of cavity performance degradation following the additional treatment. Contact SRF community experts.

– In case the currently used elliptical cavity design is questioned, establish schedule decision point milestones for elliptical cavity redesign efforts (e.g. geometry optimization and material selection).

– Identify cavity tooling to be made available to ESS for long term. Either at ESS or through long-term binding contracts.

HOM and PED

9

Dangerous Higher Order Mode close to 1408.8 MHz

704 MHz

1421,32 MHz

Slater coefficient analysis which represents frequency sensitivity to

volume changes:

Both high beta prototype cavities are not conform with the ESS HOM Requirement

Reminder: « All higher order modes (HOMs) shall be at least 5 MHz away from integer multiples of the beam-bunching frequency (352.21 MHz) for any HOMs whose resonant frequencies are below the cut-off frequency of the beam-pipe.”

Design (at 300K)

Measured on ESS086-P01

Calculated with measured

shape (HFSS)Measured on ESS086-P02

Calculated with measured

shape (HFSS)

1418.178 1402.254 1403.8 1407.848

1418.674 1404.666 1406.8 1408.258

3D measurements of the cavity shape have been performed Shape reconstructed in the simulation software HFSS

Þ On P01 cavity (from ZANON), a strong internal shape deviation in this dome region (more than 1 mm instead of 0.3 mm) explains very well the frequency decrease of the two dangerous HOM

Þ Study under progress on P02 cavity (from RI)

Cells reshaping has to be implemented in the fabrication process of future cavities

Annual Review 23rd April 2015

10

• Volumes of the helium circuits and vessels < 50 l• 1,431 bars< Working pressure• Ps = 1,9 bars

TUV Nord analysis report:The elliptical cryomodules are

classified according to PED article 3.3

Compliance with European PED 97/23/EC

Cryo pipes designed to reduce the overpressure in case of beam vacuum failure

continuous diphasic pipe F=100 with large

curvatures

2 F=100 bursting disks at each extremity

Annual Review 23rd April 2015

- 12 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

QA / QC Plans for the ESS spoke production

Main goal and path:• Develop all the necessary tools and documentation to

insure a high quality/traceability of the fabrication and assembly of the ESS spoke cryomodule parts.

• Take benefit of the ongoing prototyping phase to draft and later on modify/correct these tools

• Once ready, transfer and/or adapt to the overall ESS QA system that will be developed.

We started to set our QA/QC plans only a few months ago, the basis is here, but it’s only a start…

Based on our past contributions to LHC, SPIRAL-2…

- 13 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

QA / QC Plans for the ESS spoke production

HOW ? Based on the following pillars:

• A Product Breakdown Structure to list all components, equipments, tooling to be used for the spoke production

• A detailed life cycle of the components that could also serve as a Work Breakdown Structure to list in details all the production/preparation/assembly/test of the components and associate the required input/output

• A component identification/naming convention to be able to identify all basic component / assembly

- 14 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

QA / QC Plans for the ESS spoke production

HOW ? Based on the following pillars:

• A set-up of documentation (procedure, travelers, reports, legal/purchase documents, publications…) to properly insure a reliable, stable, not company or people-dependent quality of production

• A document management system to insure access, ordering, sorting, traceability of all documentation produced.

• A configuration table to trace which sub-system is installed in each cryomodule.

General overview & Component life cycle

- 16 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

Spoke cryomodule overall life cycle

Appro Niobium

FabricationCavité

Traitement surfaceCavité

Assemblagecavité

Salle blanche

Test en CV

COMPONENT

PHAS

EEx

port

/de

liver

yTe

st /

valid

ation

Prép

arati

on/

asse

mbl

ySU

pply

/Pr

oduc

tion

Niobium Cavities Couplers vesselVacuum

Cryomod.Full.

compon..Cryomod.

stringCavityCTS …

Transport -> site

assemblage

Transport -> Fabriquant

cavités

FabricationEnceinte

Cryomodule

Transport -> site

assemblage

Appro Compos.

cryomodule

Transport -> site

assemblage

Assemblagetrain

cavités

Transport -> site

assemblage

FabricationSAF

AssemblageSAF

Test à chaud SAF

Transport -> site

assemblage

Assemblagecryomodule

Test àchaud

Transport -> Uppsala

FabricationCoupleur

Préparation salle blanche

coupleurs

Conditionn-ement

coupleurs

Transport -> site

assemblage

- 17 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

Spoke cryomodule detailed life cycle

Phase_Name

Validation stage -> Go /

No Go

Stage name (number

Phase and stages

Names, shapes and colors

- 18 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

Spoke cryomodule detailed life cycle

Names, shapes and colors

Requirement

Administrative / Contractual

Milestone

Technical

Report

Minutes

Contractual/legal document

Input /Output documents

Document type Color convention

- 19 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

Spoke cryomodule detailed life cycle

1st example: Niobium production

Production Niobium

Spécifications Techniquesdu Niobium

SpécificationsNiobium (CCTP)

Appel d’offre Niobium CCAP, RC, AE

Analyse offres et choix fournisseur Nb

Rapport d’analyse

Commande Niobium

Suivi de fabrication Nb

Rapports d’avancement

Livraison Niobium P.V. Livraison

Contrôle et

Réception Niobium

Rapport de phase Prod Nb

Procédure de contrôle

Niobium

Notification et bon de commande

Choix et marquage des faces RF

- 20 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

Spoke cryomodule detailed life cycle

2nd example: Cavity production

Fabrication Cavités

Spécifications Techniques

cavités

Spécificationscavités (CCTP)

Appel d’offre cavités

Analyse offres et choix fournisseur

cavités

Rapport d’analyse

Commande Cavités

Suivi de fabrication cavités

Rapports d’avancement

Transport Cavités vers IPNO P.V. Livraison cavités

Acceptation Cavités

Rapport de phase Prod

cavités

Notification et bon de commande

Recette usine

Accord en fréquence

P.V. Recette usine

P.V. accord en fréq.

CCAP, RC, AE

Procédure de tuning cavités

Procédure contrôle

visuel cavitéP.V. Contrôle visuel

Procédure contrôle

dimensionnelP.V. Contrôle dim.

Procédure test de fuite

P.V. Contrôle étanchéité

Contrôle visuel

Contrôle dimensionnel

Contrôle étanchéité

Fabrication Cavités

Spécifications Techniques

cavités

Spécificationscavités (CCTP)

Appel d’offre cavités

Analyse offres et choix fournisseur

cavités

Rapport d’analyse

Commande Cavités

Suivi de fabrication cavités

Rapports d’avancement

Transport Cavités vers IPNO P.V. Livraison cavités

Acceptation Cavités

Rapport de phase Prod

cavités

Notification et bon de commande

Recette usine

Accord en fréquence

P.V. Recette usine

P.V. accord en fréq.

CCAP, RC, AE

Procédure de tuning cavités

Procédure contrôle

visuel cavitéP.V. Contrôle visuel

Procédure contrôle

dimensionnelP.V. Contrôle dim.

Procédure test de fuite

P.V. Contrôle étanchéité

Contrôle visuel

Contrôle dimensionnel

Contrôle étanchéité

- 21 -S. Bousson, Workshop on Requirements Conformance for SRF Cryomodules, Lund, 15th Oct. 2014

Spoke cryomodule detailed life cycle

3rd example: Cavity preparationPréparation Cavités (1/2)

Nettoyage U.S. cavité

Pesée #1 cavité

Chimie #1 cavité

Validation chimie cavité

Rapport de phase chimie

cavités

O.K

.

Procédure nettoyage US cavité

P.V. nettoyage US

P.V. pesée #1Procédure

pesée cavité

P.V. chimie #1Procédure

chimie cavité

Pesée #2 cavité P.V. pesée #2Procédure

pesée cavité

Chimie #2 cavité P.V. chimie #2Procédure

chimie cavité

Mesure fréquence cavité P.V. mesure f #1

Procédure mesure f

cavité

Pesée #2 cavité P.V. pesée #2Procédure

pesée cavité

Mesure fréquence cavité P.V. mesure f #2

Procédure mesure f

cavité

Transport vers salle blanche

Procédure transport chim/SB

Mesure fréquence cavité P.V. mesure f #2

Procédure mesure f

cavité

Préparation cavités (2/2)

HPR cavité

Assemblage cavité pour test CV

Validation Prépa cavité

Rapport phase préparation

cavités

O.K

.

Procédure HPR cavité P.V. HPR cavités

P.V. assemblageProcédure

pesée cavité

Traitement thermique

Procédure traitement thermique

cavité

P.V. Traitement thermique cavités

Flash BCPProcédure chimie flash P.V chimie flash

Test de fuite en SB P.V. Test de fuite SBProcédure

test de fuite SB

Etuvage SB P.V. Étuvage SBProcédure étuvage SB