materials for nano -composite films

1
NIRT: Controlling Interfacial Activity of Nanoparticles: Robust Routes to Nanoparticle-based Capsules, Membranes, and Electronic Materials (CBET 0609107) Todd Emrick and Thomas P Russell, Polymer Science & Engineering Department, University of Massachusetts Amherst Anthony Dinsmore and Narayanan Menon, Physics Department, University of Massachusetts Amherst Benny D. Freeman, Chemical Engineering Department, University of Texas at Austin Objectives: Harness the interfacial activity of nanoparticles, and the reactivity of functionalized ligands, for the preparation of robust, self-assembled structures , devices, and membranes Materials for nano-composite films Responsive Nanocomposites: using ligands to direct nanoparticles to polymer domains and interfacial boundaries Thermal annealing Idealized schematic of responsive nanocomposite Effect on mechanical properties?? 50 nm 100 nm 25% OH terminated: NPs segregate to PS-PVP interface 50% OH terminated: NPs distributed within PVP domain OH OH HO Lamellar morphology (solvent annealed films) with avg. 2.4 nm Au NPs avg. 4.5 nm diameter Au NPs Nanoparticle ripening + entropic penalty = reorganization 170 deg C Diblock copolymer host: polystyrene-poly(4- vinylpyridine) Self-assembled nanorods and bionanorods using fluid interfaces H ydrophilic segm ent H ydrophobic segm ent * S O O O O S O O * 100-X O O S O O O - Y + S + Y - O O O X H ydrophilic segm ent H ydrophobic segm ent * S O O O O S O O * 100-X O O S O O O - Y + S + Y - O O O X 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10 0 5 10 15 20 25 30 W aterPerm eability (L.um /(m 2 .h.bar)) pH t (days) B P S-35N B PS-32K B PS-32K /0.5% Au 94 95 96 97 98 99 100 5 10 0 5 10 15 20 25 30 SaltR ejection (% ) pH t (days) B PS-35N B P S-32K B PS-32K /0.5% Au PF D PF D Low Concentration PFD PFD PF D High Concentration PF D PF D PF D High Concentration PF D PF D Washing H2O interior Oil phase Nanoparticle Assembly 20µm Fluorescence confocal images of quantum dots on water droplets in a continuous oil phase TOPO-covered CdSe quantum dots z/R E(z)/kT Oil Water Emin Pieranski, P. Phys. Rev. Lett 45, 569 (1980) Interfacial assembly of nanoparticles: droplets and sheets TCB Water 20 mm 80 mm Droplet resizing through track-etch membranes Confocal images reduction in droplet size from 200 mm to 10 mm and less Lin, Y., Skaff, H., Emrick, T., Dinsmore, A. D. & Russell, T. P., Science 299, 226-229. Interfacial energy well: The structure and orientation of nanorods at the liquid-liquid interface can be manipulated by varying nanorod concentration in the bulk. At low TMV concentration, the rods orient parallel to the interface, which maximizes interfacial stabilizaiton. At high TMV concentrations, the rods orient normal to the interface, both mediating the interfacial interactions and neutralizing inter-rod electrostatic repulsion. For charged nanorods like TMV, repulsive forces dominate the oil-water interfaces, which is strongly affected by the ionic strength, but not the pH, of the bulk solution in the range of pH = 6~8. Removal of the buffer solution leads to cleavage of the TMV nanorods at the oil/water interface. 25 µm 400 nm 0.2 m g/ml 25 µm 400 nm 0.2 m g/ml B 0.8 m g/ml B 0.8 m g/ml 5 µm 400 nm B 0.8 m g/ml B 0.8 m g/ml 5 µm 400 nm B 0.8 m g/ml B 0.8 m g/ml 5 µm 400 nm L ow concentration H igh concentration // / / / 2 sin 2 ( ) ow pw po E RL RL Where / / / cos pw po ow L>>R 2 / / / / / ( ) ( )2 pw ow po pw po E R Rh Oil Oil Oil Oil Oil Oil 1. Concentration 2. pH value 3. Ionic strength 4. In-plane compression C onditions Au nanoparticles: EG4-058A Citrate-stabilized gold nanoparticles in water ~20 nm in diameter ~1 mg/ml in water Di-sulfonated poly(arylene ether sulfone) (BPS): BPS-XY series, X = mol% of disulfonated monomer (0<X<100), Y = “H” (free acid form) , “N” (sodium salt form), or “K” (potassium salt form). Acid/base tolerance: steady water permeability and salt rejection over a wide range of pH 1. Measured in cross-flow cells. Feed solution: 2000 ppm NaCl, pressure = 27.2 atm (400 psig), flow rate = 1 gpm, temperature = 25oC. 2. BPS-32K/0.5%Au: BPS-32K with 0.5 wt% of Au nanoparticles (EG4-058A) Film Formation at the Interface 0 50 100 150 200 250 20 25 30 35 0.4 m g/mL 0.25 m g/mL 0.025 m g/mL IF T [m N/m ] Tim e [m in] B C A H 2 O Toluene/CdSe D 1 mm 4.6 nm CdSe in Toluene/Water H. Zettl, Universität Bayreuth 1 2 2 / / / / / / / / 2 / 2 W O W P W O O P W O W P W O O P W O R z R z R z E R z E W O O P W P / / / at min W P / O P / W O / 2 / / / / 2 min / l Engery Wel l Interfacia O P W P W O W O O P R E E E

Upload: mairi

Post on 24-Feb-2016

38 views

Category:

Documents


1 download

DESCRIPTION

E(z) /kT. Nanoparticle Assembly. Oil phase. Water. A. OH . H 2 O interior. H 2 O. OH . HO . Oil. E min. 20 µ m. Toluene/CdSe. z/R. C. 80 m m. 20 m m. 100 nm. TCB. 50 nm. Water. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Materials for  nano -composite films

NIRT: Controlling Interfacial Activity of Nanoparticles: Robust Routes to Nanoparticle-based Capsules, Membranes, and Electronic Materials (CBET 0609107)

Todd Emrick and Thomas P Russell, Polymer Science & Engineering Department, University of Massachusetts AmherstAnthony Dinsmore and Narayanan Menon, Physics Department, University of Massachusetts Amherst

Benny D. Freeman, Chemical Engineering Department, University of Texas at Austin

Objectives: Harness the interfacial activity of nanoparticles, and the reactivity of functionalized ligands,for the preparation of robust, self-assembled structures , devices, and membranes

Materials for nano-composite films

Responsive Nanocomposites: using ligands to direct nanoparticles to polymer domains and interfacial boundaries

Thermalannealing

Idealized schematic of responsive nanocomposite

Effect on mechanical properties??

50 nm 100 nm

25% OH terminated:NPs segregate to PS-PVP interface

50% OH terminated:NPs distributed within PVP domain

OH

OH HO

Lamellar morphology (solvent annealed films) with avg. 2.4 nm Au NPs avg. 4.5 nm diameter Au NPs

Nanoparticle ripening + entropic penalty =

reorganization

170 deg C

Diblock copolymer host: polystyrene-poly(4-vinylpyridine)

Self-assembled nanorods and bionanorods using fluid interfaces

Hydrophilic segment Hydrophobic segment

* S

O

O

O O S O O *

100-X

O

O

SO

O O-Y+

S+Y-O

O

OX

Hydrophilic segment Hydrophobic segment

* S

O

O

O O S O O *

100-X

O

O

SO

O O-Y+

S+Y-O

O

OX

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5

10

15

20

25

30

0 5 10 15 20 25 30

Wat

er P

erm

eabi

lity

(L.u

m/(m

2 .h.b

ar))

pH

t (days)

BPS-35N BPS-32K

BPS-32K/0.5%Au

94

95

96

97

98

99

100

5

10

15

20

25

30

0 5 10 15 20 25 30

Salt

Rej

ectio

n (%

)

pH

t (days)

BPS-35N

BPS-32KBPS-32K/0.5%Au

PFDPFD

Low Concentration

PFDPFD

PFD

High Concentration

PFD

PFDPFD

High Concentration

PFDPFD

Washing

H2Ointerior

Oilphase

NanoparticleAssembly

20µm

Fluorescence confocal imagesof quantum dots on water droplets in a continuous oil phase

TOPO-covered CdSe quantum dots

122

/

/

/

/

/

/

/

/2

/2

WO

WP

WO

OP

WO

WP

WO

OPWO R

zRzRzE

RzEWO

OPWP

/

//at min

z/R

E(z)/kT

Oil

Water

Emin

Pieranski, P. Phys. Rev. Lett 45, 569 (1980)

WP /

OP /

WO /

Interfacial assembly of nanoparticles: droplets and sheets

TCB

Water

20 mm80 mm

Droplet resizingthrough track-etch

membranes Confocal images

reduction in droplet size from

200 mm to 10 mm and less

Lin, Y., Skaff, H., Emrick, T., Dinsmore, A. D. & Russell, T. P., Science 299, 226-229.

2////

2

min/ lEngery Wel lInterfacia OPWPWOWO

OPREEE

Interfacial energy well:

The structure and orientation of nanorods at the liquid-liquid interface can be manipulated by varying nanorod concentration in the bulk. At low TMV concentration, the rods orient parallel to the interface, which maximizes interfacial stabilizaiton. At high TMV concentrations, the rods orient normal to the interface, both mediating the interfacial interactions and neutralizing inter-rod electrostatic repulsion.

For charged nanorods like TMV, repulsive forces dominate the oil-water interfaces, which is strongly affected by the ionic strength, but not the pH, of the bulk solution in the range of pH = 6~8. Removal of the buffer solution leads to cleavage of the TMV nanorods at the oil/water interface.

25 µm

400 nm0.2 mg/ml

25 µm

400 nm0.2 mg/ml

B

0.8 mg/ml

B

0.8 mg/ml

5 µm

400 nm

B

0.8 mg/ml

B

0.8 mg/ml

5 µm

400 nm

B

0.8 mg/ml

B

0.8 mg/ml

5 µm

400 nm

Low concentration High concentration

/ / / / /2 sin 2 ( )o w p w p oE RL RL

Where / /

/

cos p w p o

o w

L>>R

2/ / / / /( ) ( )2p w o w p o p w p oE R Rh

Oil

Oil

Oil

Oil

Oil

Oil

1. Concentration2. pH value3. Ionic strength4. In-plane compression

Conditions

Au nanoparticles: EG4-058ACitrate-stabilized gold nanoparticles in water

~20 nm in diameter~1 mg/ml in water

Di-sulfonated poly(arylene ether sulfone) (BPS):BPS-XY series, X = mol% of disulfonated monomer (0<X<100), Y = “H” (free acid form) , “N” (sodium salt form), or “K” (potassium salt form).

Acid/base tolerance: steady water permeability and salt rejection over a wide range of pH

1. Measured in cross-flow cells. Feed solution: 2000 ppm NaCl, pressure = 27.2 atm (400 psig), flow rate = 1 gpm, temperature = 25oC.

2. BPS-32K/0.5%Au: BPS-32K with 0.5 wt% of Au nanoparticles (EG4-058A)

Film Formation at the Interface

0 50 100 150 200 25020

25

30

35 0.4 mg/mL 0.25 mg/mL 0.025 mg/mL

IFT

[mN

/m]

Time [min]

B

C

A

H2O

Toluene/CdSe

D

1 mm

4.6 nm CdSe in Toluene/Water

H. Z

ettl,

Uni

vers

ität B

ayre

uth