materials data book - psna college of engineering and ... · 1 materials data book ... m f ashby...

41
Materials Data Book 2003 Edition Cambridge University Engineering Department

Upload: phungdat

Post on 22-Jun-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

1

MaterialsData Book

2003 Edition

Cambridge University Engineering Department

2

PHYSICAL CONSTANTS IN SI UNITS

Absolute zero of temperature – 273.15 °C Acceleration due to gravity, g 9. 807 m/s2 Avogadro’s number, AN 6.022x1026 /kmol Base of natural logarithms, e 2.718 Boltzmann’s constant, k 1.381 x 10–26 kJ/K Faraday’s constant, F 9.648 x 107 C/kmol Universal Gas constant, R 8.3143 kJ/kmol K Permeability of vacuum, µo 1.257 x 10–6 H/m Permittivity of vacuum, εo 8.854 x 10–12 F/m Planck’s constant, h 6.626 x 10–37 kJ/s Velocity of light in vacuum, c 2.998 x 108 m/s Volume of perfect gas at STP 22.41 m3/kmol

CONVERSION OF UNITS

Angle, θ 1 rad 57.30 ° Energy, U See inside back cover Force, F 1 kgf

1 lbf 9.807 N 4.448 N

Length, l 1 ft 1 inch 1 Å

304.8 mm 25.40 mm 0.1 nm

Mass, M 1 tonne 1 lb

1000 kg 0.454 kg

Power, P See inside back cover Stress, σ See inside back cover Specific Heat, Cp 1 cal/g.°C 4.188 kJ/kg.K Stress Intensity, K 1 ksi in 1.10 MPa m Temperature, T 1 °F 0.556 K Thermal Conductivity, λ 1 cal/s.cm.oC 4.18 W/m.K Volume, V 1 Imperial gall

1 US gall 4.546 x 10–3 m3

3.785 x 10–3 m3 Viscosity, η 1 poise

1 lb ft.s 0.1 N.s/m2

0.1517 N.s/m2

1

CONTENTS Page Number

Introduction 3 Sources 3

I. FORMULAE AND DEFINITIONS

Stress and strain 4 Elastic moduli 4

Stiffness and strength of unidirectional composites 5 Dislocations and plastic flow 5 Fast fracture 6 Statistics of fracture 6 Fatigue 7 Creep 7 Diffusion 8

Heat flow 8

II. PHYSICAL AND MECHANICAL PROPERTIES OF MATERIALS Melting temperature 9 Density 10 Young’s modulus 11 Yield stress and tensile strength 12 Fracture toughness 13 Environmental resistance 14 Uniaxial tensile response of selected metals and polymers 15

III. MATERIAL PROPERTY CHARTS Young’s modulus versus density 16 Strength versus density 17 Young’s modulus versus strength 18 Fracture toughness versus strength 19 Maximum service temperature 20 Material price (per kg) 21

IV. PROCESS ATTRIBUTE CHARTS Material-process compatibility matrix (shaping) 22

Mass 23 Section thickness 23 Surface roughness 24 Dimensional tolerance 24 Economic batch size 25

2

V. CLASSIFICATION AND APPLICATIONS OF ENGINEERING MATERIALS Metals: ferrous alloys, non-ferrous alloys 26 Polymers and foams 27 Composites, ceramics, glasses and natural materials 28

VI. EQUILIBRIUM (PHASE) DIAGRAMS Copper – Nickel 29 Lead – Tin 29 Iron – Carbon 30 Aluminium – Copper 30 Aluminium – Silicon 31 Copper – Zinc 31 Copper – Tin 32 Titanium-Aluminium 32 Silica – Alumina 33

VII. HEAT TREATMENT OF STEELS TTT diagrams and Jominy end-quench hardenability curves for steels 34

VIII. PHYSICAL PROPERTIES OF SELECTED ELEMENTS Atomic properties of selected elements 36 Oxidation properties of selected elements 37

3

INTRODUCTION The data and information in this booklet have been collected for use in the Materials Courses in Part I of the Engineering Tripos (as well as in Part II, and the Manufacturing Engineering Tripos). Numerical data are presented in tabulated and graphical form, and a summary of useful formulae is included. A list of sources from which the data have been prepared is given below. Tabulated material and process data or information are from the Cambridge Engineering Selector (CES) software (Educational database Level 2), copyright of Granta Design Ltd, and are reproduced by permission; the same data source was used for the material property and process attribute charts. It must be realised that many material properties (such as toughness) vary between wide limits depending on composition and previous treatment. Any final design should be based on manufacturers’ or suppliers’ data for the material in question, and not on the data given here.

SOURCES

Cambridge Engineering Selector software (CES 4.1), 2003, Granta Design Limited, Rustat House, 62 Clifton Rd, Cambridge, CB1 7EG M F Ashby, Materials Selection in Mechanical Design, 1999, Butterworth Heinemann M F Ashby and D R H Jones, Engineering Materials, Vol. 1, 1996, Butterworth Heinemann M F Ashby and D R H Jones, Engineering Materials, Vol. 2, 1998, Butterworth Heinemann M Hansen, Constitution of Binary Alloys, 1958, McGraw Hill I J Polmear, Light Alloys, 1995, Elsevier C J Smithells, Metals Reference Book, 6th Ed., 1984, Butterworths Transformation Characteristics of Nickel Steels, 1952, International Nickel

4

I. FORMULAE AND DEFINITIONS

STRESS AND STRAIN

AF

t =σ oA

Fn =σ

=

ot

l

llnε o

on

l

ll −=ε

F = normal component of force tσ = true stress

oA = initial area nσ = nominal stress A = current area tε = true strain

ol = initial length nε = nominal strain l = current length

Poisson’s ratio, strainallongitudin

strainlateral−=ν

Young’s modulus E = initial slope of tt εσ − curve = initial slope of nn εσ − curve. Yield stress yσ is the nominal stress at the limit of elasticity in a tensile test. Tensile strength tsσ is the nominal stress at maximum load in a tensile test. Tensile ductility fε is the nominal plastic strain at failure in a tensile test. The gauge length of the specimen should also be quoted.

ELASTIC MODULI

)1(2 ν+= EG

)21(3 ν−= EK

For polycrystalline solids, as a rough guide,

Poisson’s Ratio 31≈ν

Shear Modulus EG83≈

Bulk Modulus EK ≈

These approximations break down for rubber and porous solids.

5

STIFFNESS AND STRENGTH OF UNIDIRECTIONAL COMPOSITES

mfffII E)V(EVE −+= 1

11 −

−+=

m

f

f

f

EV

EV

E

mf 1 yfffts )V(V σσσ −+=

IIE = composite modulus parallel to fibres (upper bound)

⊥E = composite modulus transverse to fibres (lower bound)

fV = volume fraction of fibres

fE = Young’s modulus of fibres

mE = Young’s modulus of matrix

tsσ = tensile strength of composite parallel to fibres ffσ = fracture strength of fibres

myσ = yield stress of matrix

DISLOCATIONS AND PLASTIC FLOW

The force per unit length F on a dislocation, of Burger’s vector b , due to a remote shear stress τ , is bF τ= . The shear stress yτ required to move a dislocation on a single slip plane is

LbTc

y =τ where T = line tension (about 221 bG , where G is the shear modulus)

L = inter-obstacle distance c = constant ( 2≈c for strong obstacles, 2<c for weak obstacles) The shear yield stress k of a polycrystalline solid is related to the shear stress yτ required to

move a dislocation on a single slip plane: yk τ23≈ .

The uniaxial yield stress yσ of a polycrystalline solid is approximately ky 2=σ , where k is the shear yield stress.

Hardness H (in MPa) is given approximately by: yH σ3≈ .

Vickers Hardness HV is given in kgf/mm2, i.e. g/HHV = , where g is the acceleration due to gravity.

6

FAST FRACTURE

The stress intensity factor, K : aYK πσ=

Fast fracture occurs when ICKK =

In plane strain, the relationship between stress intensity factor K and strain energy release rate G is:

GEEGK ≈−

=21 ν

(as 102 .≈ν )

Plane strain fracture toughness and toughness are thus related by: IC2IC

IC1

GEGE

K ≈−

“Process zone size” at crack tip given approximately by: 2

2IC

fp

Kr

σπ=

Note that ICK (and ICG ) are only valid when conditions for linear elastic fracture mechanics apply (typically the crack length and specimen dimensions must be at least 50 times the process zone size).

In the above: σ = remote tensile stress a = crack length Y = dimensionless constant dependent on geometry; typically 1≈Y

ICK = plane strain fracture toughness;

ICG = critical strain energy release rate, or toughness; E = Young’s modulus ν = Poisson’s ratio

fσ = failure strength

STATISTICS OF FRACTURE

Weibull distribution,

−= ∫ o

m

os V

dV

V(V)P

σσexp

For constant stress:

−=

o

m

os V

V(V)Pσσexp

sP = survival probability of component V = volume of component σ = tensile stress on component

oV = volume of test sample

oσ = reference failure stress for volume oV , which gives 3701 .P es ==

m = Weibull modulus

7

FATIGUE

Basquin’s Law (high cycle fatigue):

1CN f =ασ∆

Coffin-Manson Law (low cycle fatigue):

2CN fp =βε∆ l

Goodman’s Rule. For the same fatigue life, a stress range σ∆ operating with a mean stress mσ , is equivalent to a stress range oσ∆ and zero mean stress, according to the relationship:

−=

ts

mo σ

σσ∆σ∆ 1

Miner’s Rule for cumulative damage (for i loading blocks, each of constant stress amplitude and duration iN cycles):

1=∑fi

iNN

i

Paris’ crack growth law:

nKANdad ∆=

In the above: σ∆ = stress range;

=lpε∆ plastic strain range; K∆ = tensile stress intensity range;

N = cycles; fN = cycles to failure;

=n,A,C,C,, 21βα constants; a = crack length;

tsσ = tensile strength.

CREEP

Power law creep: )RT/Q(A nss −= expσε&

ssε& = steady-state strain-rate

Q = activation energy (kJ/kmol) R = universal gas constant T = absolute temperature

n,A = constants

8

DIFFUSION

Diffusion coefficient: )RT/Q(DD o −= exp

Fick’s diffusion equations: dxdCDJ −= and

2

2

xCD

tC

∂=∂∂

C = concentration J = diffusive flux x = distance D = diffusion coefficient (m2/s) t = time oD = pre-exponential factor (m2/s)

Q = activation energy (kJ/kmol)

HEAT FLOW

Steady-state 1D heat flow (Fourier’s Law): dxdTq λ−=

Transient 1D heat flow: 2

2

xTa

tT

∂=∂∂

T = temperature (K) λ = thermal conductivity (W/m.K) q = heat flux per second, per unit area (W/m2.s) a = thermal diffusivity (m2/s)

For many 1D problems of diffusion and heat flow, the solution for concentration or temperature depends on the error function, erf :

=

tDxf)t,x(C

2erf or

=

taxf)t,x(T

2erf

A characteristic diffusion distance in all problems is given by tDx ≈ , with the corresponding

characteristic heat flow distance in thermal problems being tax ≈ . The error function, and its first derivative, are:

( ) dyyX

)X( 20

exp2

erf −= ∫π ( )2exp

2erfand X)]X([

dXd −=

π

The error function integral has no closed form solution – values are given in the Table below.

X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 )(Xerf 0 0.11 0.22 0.33 0.43 0.52 0.60 0.68 0.74

X 0.9 1.0 1.1 1.2 1.3 1.4 1.5 ∞

)(Xerf 0.80 0.84 0.88 0.91 0.93 0.95 0.97 1.0

9

T m

(o C)

Met

als

Ferr

ous

Cas

t Iro

ns

1130

-

1250

Hig

h C

arbo

n S

teel

s 12

89

- 14

78

M

ediu

m C

arbo

n S

teel

s 13

80

- 15

14

Lo

w C

arbo

n S

teel

s 14

80

- 15

26

Lo

w A

lloy

Ste

els

1382

-

1529

Sta

inle

ss S

teel

s 13

75

- 14

50

Non

-ferr

ous

Alu

min

ium

Allo

ys

475

- 67

7

Cop

per A

lloys

98

2 -

1082

Lead

Allo

ys

322

- 32

8

Mag

nesi

um A

lloys

44

7 -

649

N

icke

l Allo

ys

1435

-

1466

Tita

nium

Allo

ys

1477

-

1682

Zinc

Allo

ys

375

- 49

2 C

eram

ics

Gla

sses

Bor

osili

cate

Gla

ss (

*)

450

- 60

2

Gla

ss C

eram

ic (

*)

563

- 16

47

S

ilica

Gla

ss (

*)

957

- 15

57

S

oda-

Lim

e G

lass

(*)

44

2 -

592

Por

ous

Bric

k 92

7 -

1227

Con

cret

e, ty

pica

l 92

7 -

1227

Sto

ne

1227

-

1427

Te

chni

cal

Alu

min

a 20

04

20

96

A

lum

iniu

m N

itrid

e 23

97

- 25

07

B

oron

Car

bide

23

72

- 25

07

S

ilico

n 14

07

- 14

12

S

ilico

n C

arbi

de

2152

-

2500

Sili

con

Nitr

ide

2388

-

2496

Tung

sten

Car

bide

28

27

- 29

20

Com

posi

tes

Met

al

Alu

min

ium

/Sili

con

Car

bide

52

5 -

627

Pol

ymer

C

FRP

n/

a

GFR

P

n/a

Nat

ural

Bam

boo

(*)

77

- 10

2

Cor

k (*

) 77

-

102

Le

athe

r (*

) 10

7 -

127

W

ood,

typi

cal (

Long

itudi

nal)

(*)

77

-

102

W

ood,

typi

cal (

Tran

sver

se)

(*)

77

- 10

2

T m (o C

) Po

lym

ers

1

E

last

omer

B

utyl

Rub

ber

(*)

– 73

-

– 63

EV

A (

*)

– 73

-

– 23

Isop

rene

(IR

) (*

) –

83

- –

78

N

atur

al R

ubbe

r (N

R)

(*)

– 78

-

– 63

Neo

pren

e (C

R)

(*)

– 48

-

– 43

Pol

yure

than

e E

last

omer

s (e

lPU

) (*

) –

73

- –

23

S

ilico

ne E

last

omer

s (*

) –

123

- –

73

Ther

mop

last

ic

AB

S (

*)

88

- 1

28

C

ellu

lose

Pol

ymer

s (C

A)

(*)

– 9

- 1

07

Io

nom

er (I

) (*

) 27

-

77

N

ylon

s (P

A)

(*)

44

- 5

6

Pol

ycar

bona

te (P

C)

(*)

142

- 2

05

P

EE

K (

*)

143

- 1

99

P

olye

thyl

ene

(PE

) (*

) –

25

- –

15

P

ET

(*)

68

- 8

0

Acr

ylic

(PM

MA

) (*

) 85

-

165

Ace

tal (

PO

M)

(*)

– 18

-

– 8

P

olyp

ropy

lene

(PP

) (*

) –

25

- –

15

P

olys

tyre

ne (P

S)

(*)

74

-

110

P

olyu

reth

ane

Ther

mop

last

ics

(tpP

U)

(*)

120

- 1

60

P

VC

75

-

105

Teflo

n (P

TFE

) 10

7 -

123

Th

erm

oset

E

poxi

es

n/a

P

heno

lics

n/a

P

olye

ster

n/

a Po

lym

er F

oam

s

Flex

ible

Pol

ymer

Foa

m (V

LD)

(*)

112

- 17

7

Flex

ible

Pol

ymer

Foa

m (L

D)

(*)

112

- 17

7

Flex

ible

Pol

ymer

Foa

m (M

D)

(*)

112

- 17

7

Rig

id P

olym

er F

oam

(LD

) (*

) 67

-

171

R

igid

Pol

ymer

Foa

m (M

D)

(*)

67

- 15

7

Rig

id P

olym

er F

oam

(HD

) (*

) 67

-

171

1 For

full

nam

es a

nd a

cron

yms o

f pol

ymer

s – se

e Se

ctio

n V

. (*

) gl

ass t

rans

ition

(sof

teni

ng) t

empe

ratu

re

n/a:

not

app

licab

le (m

ater

ials

dec

ompo

se, r

athe

r tha

n m

elt)

II. P

HY

SIC

AL

AN

D M

EC

HA

NIC

AL

PR

OP

ER

TIE

S O

F M

ATE

RIA

LS

II.1

MEL

TIN

G (

or S

OFT

ENIN

G)

TEM

PER

ATU

RE,

Tm

A

ll da

ta a

re f

or m

eltin

g po

ints

at

atm

osph

eric

pre

ssur

e.

For

poly

mer

s (a

nd g

lass

es)

the

data

ind

icat

e th

e gl

ass

trans

ition

(so

fteni

ng)

tem

pera

ture

, abo

ve w

hich

the

mec

hani

cal p

rope

rties

rapi

dly

fall.

M

eltin

g te

mpe

ratu

res o

f sel

ecte

d el

emen

ts a

re g

iven

in se

ctio

n V

III.

10

ρ

(Mg/

m3 )

Met

als

Ferr

ous

Cas

t Iro

ns

7.05

-

7.25

Hig

h C

arbo

n S

teel

s 7.

8 -

7.9

M

ediu

m C

arbo

n S

teel

s 7.

8 -

7.9

Lo

w C

arbo

n S

teel

s 7.

8 -

7.9

Lo

w A

lloy

Ste

els

7.8

- 7.

9

Sta

inle

ss S

teel

s 7.

6 -

8.1

Non

-ferr

ous

Alu

min

ium

Allo

ys

2.5

- 2.

9

Cop

per A

lloys

8.

93

- 8.

94

Le

ad A

lloys

10

-

11.4

Mag

nesi

um A

lloys

1.

74

- 1.

95

N

icke

l Allo

ys

8.83

-

8.95

Tita

nium

Allo

ys

4.4

- 4.

8

Zinc

Allo

ys

4.95

-

7 C

eram

ics

Gla

sses

Bor

osili

cate

Gla

ss

2.2

- 2.

3

Gla

ss C

eram

ic

2.2

- 2.

8

Sili

ca G

lass

2.

17

- 2.

22

S

oda-

Lim

e G

lass

2.

44

- 2.

49

Por

ous

Bric

k 1.

9 -

2.1

C

oncr

ete,

typi

cal

2.2

- 2.

6

Sto

ne

2.5

- 3

Tech

nica

l A

lum

ina

3.5

3.

98

A

lum

iniu

m N

itrid

e 3.

26

- 3.

33

B

oron

Car

bide

2.

35

- 2.

55

S

ilico

n 2.

3 -

2.35

Sili

con

Car

bide

3

- 3.

21

S

ilico

n N

itrid

e 3

- 3.

29

Tu

ngst

en C

arbi

de

15.3

-

15.9

C

ompo

site

s

M

etal

A

lum

iniu

m/S

ilico

n C

arbi

de

2.66

-

2.9

Pol

ymer

C

FRP

1.

5 -

1.6

G

FRP

1.

75

- 1.

97

Nat

ural

Bam

boo

0.

6 -

0.8

C

ork

0.

12

- 0.

24

Le

athe

r

0.81

-

1.05

Woo

d, ty

pica

l (Lo

ngitu

dina

l)

0.6

- 0.

8

Woo

d, ty

pica

l (Tr

ansv

erse

)

0.6

- 0.

8

ρ (M

g/m

3 ) Po

lym

ers

1

E

last

omer

B

utyl

Rub

ber

0.

9 -

0.92

EV

A

0.94

5 -

0.95

5

Isop

rene

(IR

)

0.93

-

0.94

Nat

ural

Rub

ber (

NR

)

0.92

-

0.93

Neo

pren

e (C

R)

1.

23

- 1.

25

P

olyu

reth

ane

Ela

stom

ers

(elP

U)

1.

02

- 1.

25

S

ilico

ne E

last

omer

s

1.3

- 1.

8 Th

erm

opla

stic

A

BS

1.

01

- 1.

21

C

ellu

lose

Pol

ymer

s (C

A)

0.

98

- 1.

3

Iono

mer

(I)

0.

93

- 0.

96

N

ylon

s (P

A)

1.

12

- 1.

14

P

olyc

arbo

nate

(PC

)

1.14

-

1.21

PE

EK

1.

3 -

1.32

Pol

yeth

ylen

e (P

E)

0.

939

- 0.

96

P

ET

1.

29

- 1.

4

Acr

ylic

(PM

MA

)

1.16

-

1.22

Ace

tal (

PO

M)

1.

39

- 1.

43

P

olyp

ropy

lene

(PP

)

0.89

-

0.91

Pol

ysty

rene

(PS

)

1.04

-

1.05

Pol

yure

than

e Th

erm

opla

stic

s (tp

PU

) 1.

12

- 1.

24

P

VC

1.

3 -

1.58

Teflo

n (P

TFE

) 2.

14

- 2.

2 Th

erm

oset

E

poxi

es

1.11

-

1.4

P

heno

lics

1.24

-

1.32

Pol

yest

er

1.04

-

1.4

Poly

mer

Foa

ms

Fl

exib

le P

olym

er F

oam

(VLD

) 0.

016

- 0.

035

Fl

exib

le P

olym

er F

oam

(LD

) 0.

038

- 0.

07

Fl

exib

le P

olym

er F

oam

(MD

) 0.

07

- 0.

115

R

igid

Pol

ymer

Foa

m (L

D)

0.

036

- 0.

07

R

igid

Pol

ymer

Foa

m (M

D)

0.

078

- 0.

165

R

igid

Pol

ymer

Foa

m (H

D)

0.

17

- 0.

47

1 For

full

nam

es a

nd a

cron

yms o

f pol

ymer

s – se

e Se

ctio

n V

.

II.2

D

ENSI

TY,

ρ

11

E

(G

Pa)

M

etal

s

Fe

rrou

s C

ast I

rons

16

5 -

180

H

igh

Car

bon

Ste

els

200

- 21

5

Med

ium

Car

bon

Ste

els

200

- 21

6

Low

Car

bon

Ste

els

200

- 21

5

Low

Allo

y S

teel

s 20

1 -

217

S

tain

less

Ste

els

189

- 21

0 N

on-fe

rrou

s A

lum

iniu

m A

lloys

68

-

82

C

oppe

r Allo

ys

112

- 14

8

Lead

Allo

ys

12.5

-

15

M

agne

sium

Allo

ys

42

- 47

Nic

kel A

lloys

19

0 -

220

Ti

tani

um A

lloys

90

-

120

Zi

nc A

lloys

68

-

95

Cer

amic

s

G

lass

esB

oros

ilica

te G

lass

61

-

64

G

lass

Cer

amic

64

-

110

S

ilica

Gla

ss

68

- 74

Sod

a-Li

me

Gla

ss

68

- 72

P

orou

s B

rick

10

- 50

Con

cret

e, ty

pica

l 25

-

38

S

tone

6.

9 -

21

Tech

nica

l A

lum

ina

215

41

3

Alu

min

ium

Nitr

ide

302

- 34

8

Bor

on C

arbi

de

400

- 47

2

Sili

con

140

- 15

5

Sili

con

Car

bide

30

0 -

460

S

ilico

n N

itrid

e 28

0 -

310

Tu

ngst

en C

arbi

de

600

- 72

0 C

ompo

site

s

M

etal

A

lum

iniu

m/S

ilico

n C

arbi

de

81

- 10

0 P

olym

er

CFR

P

69

- 15

0

GFR

P

15

- 28

N

atur

al

B

ambo

o

15

- 20

Cor

k

0.01

3 -

0.05

Leat

her

0.

1 -

0.5

W

ood,

typi

cal (

Long

itudi

nal)

6

- 20

Woo

d, ty

pica

l (Tr

ansv

erse

)

0.5

- 3

E (

GP

a)

Poly

mer

s 1

Ela

stom

er

But

yl R

ubbe

r

0.00

1 -

0.00

2

EV

A

0.01

-

0.04

Isop

rene

(IR

)

0.00

14

- 0.

004

N

atur

al R

ubbe

r (N

R)

0.

0015

-

0.00

25

N

eopr

ene

(CR

)

0.00

07

- 0.

002

P

olyu

reth

ane

Ela

stom

ers

(elP

U)

0.

002

- 0.

003

S

ilico

ne E

last

omer

s

0.00

5 -

0.02

Th

erm

opla

stic

A

BS

1.

1 -

2.9

C

ellu

lose

Pol

ymer

s (C

A)

1.

6 -

2

Iono

mer

(I)

0.

2 -

0.42

4

Nyl

ons

(PA

)

2.62

-

3.2

P

olyc

arbo

nate

(PC

)

2 -

2.44

PE

EK

3.

5 -

4.2

P

olye

thyl

ene

(PE

)

0.62

1 -

0.89

6

PE

T

2.76

-

4.14

Acr

ylic

(PM

MA

)

2.24

-

3.8

A

ceta

l (P

OM

)

2.5

- 5

P

olyp

ropy

lene

(PP

)

0.89

6 -

1.55

Pol

ysty

rene

(PS

)

2.28

-

3.34

Pol

yure

than

e Th

erm

opla

stic

s (tp

PU

) 1.

31

- 2.

07

P

VC

2.

14

- 4.

14

Te

flon

(PTF

E)

0.4

- 0.

552

Ther

mos

et

Epo

xies

2.

35

- 3.

075

P

heno

lics

2.76

-

4.83

Pol

yest

er

2.07

-

4.41

Po

lym

er F

oam

s

Flex

ible

Pol

ymer

Foa

m (V

LD)

0.00

03

- 0.

001

Fl

exib

le P

olym

er F

oam

(LD

) 0.

001

- 0.

003

Fl

exib

le P

olym

er F

oam

(MD

) 0.

004

- 0.

012

R

igid

Pol

ymer

Foa

m (L

D)

0.

023

- 0.

08

R

igid

Pol

ymer

Foa

m (M

D)

0.

08

- 0.

2

Rig

id P

olym

er F

oam

(HD

)

0.2

- 0.

48

1 For

full

nam

es a

nd a

cron

yms o

f pol

ymer

s – se

e Se

ctio

n V

.

II.3

YO

UN

G’S

MO

DU

LUS,

E

12

σ y

(MP

a)

σ ts (

MP

a)

Met

als

Fe

rrou

s C

ast I

rons

21

5 -

790

350

- 10

00

H

igh

Car

bon

Ste

els

400

- 11

55

550

- 16

40

M

ediu

m C

arbo

n S

teel

s 30

5 -

900

410

- 12

00

Lo

w C

arbo

n S

teel

s 25

0 -

395

345

- 58

0

Low

Allo

y S

teel

s 40

0 -

1100

46

0 -

1200

Sta

inle

ss S

teel

s 17

0 -

1000

48

0 -

2240

N

on-fe

rrou

s A

lum

iniu

m A

lloys

30

-

500

58

- 55

0

Cop

per A

lloys

30

-

500

100

- 55

0

Lead

Allo

ys

8 -

14

12

- 20

Mag

nesi

um A

lloys

70

-

400

185

- 47

5

Nic

kel A

lloys

70

-

1100

34

5 -

1200

Tita

nium

Allo

ys

250

- 12

45

300

- 16

25

Zi

nc A

lloys

80

-

450

135

- 52

0 C

eram

ics

G

lass

es

Bor

osili

cate

Gla

ss (*

) 26

4 -

384

22

- 32

Gla

ss C

eram

ic (

*)

750

- 21

29

62

- 17

7

Sili

ca G

lass

(*)

11

00

- 16

00

45

- 15

5

Sod

a-Li

me

Gla

ss (

*)

360

- 42

0 31

-

35

Por

ous

Bric

k (*

) 50

-

140

7 -

14

C

oncr

ete,

typi

cal

(*)

32

- 60

2

- 6

S

tone

(*)

34

-

248

5 -

17

Tech

nica

l A

lum

ina

(*)

690

55

00

350

66

5

Alu

min

ium

Nitr

ide

(*)

1970

-

2700

19

7 -

270

B

oron

Car

bide

(*)

25

83

- 56

87

350

- 56

0

Sili

con

(*)

3200

-

3460

16

0 -

180

S

ilico

n C

arbi

de (

*)

1000

-

5250

37

0 -

680

S

ilico

n N

itrid

e (*

) 52

4 -

5500

69

0 -

800

Tu

ngst

en C

arbi

de (

*)

3347

-

6833

37

0 -

550

Com

posi

tes

M

etal

A

lum

iniu

m/S

ilico

n C

arbi

de

280

- 32

4 29

0 -

365

Pol

ymer

C

FRP

55

0 -

1050

55

0 -

1050

GFR

P

110

- 19

2 13

8 -

241

Nat

ural

B

ambo

o 35

-

44

36

- 45

Cor

k 0.

3 -

1.5

0.5

- 2.

5

Leat

her

5 -

10

20

- 26

Woo

d, ty

pica

l (Lo

ngitu

dina

l) 30

-

70

60

- 10

0

Woo

d, ty

pica

l (Tr

ansv

erse

) 2

- 6

4 -

9

σ y (M

Pa)

σ t

s (M

Pa)

Po

lym

ers

1

Ela

stom

er

But

yl R

ubbe

r 2

- 3

5 -

10

E

VA

12

-

18

16

- 20

Isop

rene

(IR

) 20

-

25

20

- 25

Nat

ural

Rub

ber (

NR

) 20

-

30

22

- 32

Neo

pren

e (C

R)

3.4

- 24

3.

4 -

24

P

olyu

reth

ane

Ela

stom

ers

(elP

U)

25

- 51

25

-

51

S

ilico

ne E

last

omer

s 2.

4 -

5.5

2.4

- 5.

5 Th

erm

opla

stic

A

BS

18

.5

- 51

27

.6

- 55

.2

C

ellu

lose

Pol

ymer

s (C

A)

25

- 45

25

-

50

Io

nom

er (I

) 8.

3 -

15.9

17

.2

- 37

.2

N

ylon

s (P

A)

50

- 94

.8

90

- 16

5

Pol

ycar

bona

te (P

C)

59

- 70

60

-

72.4

PE

EK

65

-

95

70

- 10

3

Pol

yeth

ylen

e (P

E)

17.9

-

29

20.7

-

44.8

PE

T 56

.5

- 62

.3

48.3

-

72.4

Acr

ylic

(PM

MA

) 53

.8

- 72

.4

48.3

-

79.6

Ace

tal (

PO

M)

48.6

-

72.4

60

-

89.6

Pol

ypro

pyle

ne (P

P)

20.7

-

37.2

27

.6

- 41

.4

P

olys

tyre

ne (P

S)

28.7

-

56.2

35

.9

- 56

.5

P

olyu

reth

ane

Ther

mop

last

ics

(tpP

U)

40

- 53

.8

31

- 62

PV

C

35.4

-

52.1

40

.7

- 65

.1

Te

flon

(PTF

E)

15

- 25

20

-

30

Ther

mos

et

Epo

xies

36

-

71.7

45

-

89.6

Phe

nolic

s 27

.6

- 49

.7

34.5

-

62.1

Pol

yest

er

33

- 40

41

.4

- 89

.6

Poly

mer

Foa

ms

Flex

ible

Pol

ymer

Foa

m (V

LD)

0.01

-

0.12

0.

24

- 0.

85

Fl

exib

le P

olym

er F

oam

(LD

) 0.

02

- 0.

3 0.

24

- 2.

35

Fl

exib

le P

olym

er F

oam

(MD

) 0.

05

- 0.

7 0.

43

- 2.

95

R

igid

Pol

ymer

Foa

m (L

D)

0.3

- 1.

7 0.

45

- 2.

25

R

igid

Pol

ymer

Foa

m (M

D)

0.4

- 3.

5 0.

65

- 5.

1

Rig

id P

olym

er F

oam

(HD

) 0.

8 -

12

1.2

- 12

.4

1 For

full

nam

es a

nd a

cron

yms o

f pol

ymer

s – se

e Se

ctio

n V

. (*

) N

B:

For c

eram

ics,

yiel

d st

ress

is re

plac

ed b

y co

mpr

essi

ve s

tren

gth,

w

hich

is m

ore

rele

vant

in c

eram

ic d

esig

n. N

ote

that

cer

amic

s ar

e of

the

orde

r of

10 ti

mes

stro

nger

in c

ompr

essi

on t

han

in te

nsio

n.

II.4

YI

ELD

STR

ESS,

σy,

AN

D T

ENSI

LE S

TREN

GTH

, σts

13

K

IC (

MP

a√m

) M

etal

s

Fe

rrou

s C

ast I

rons

22

-

54

H

igh

Car

bon

Ste

els

27

- 92

Med

ium

Car

bon

Ste

els

12

- 92

Low

Car

bon

Ste

els

41

- 82

Low

Allo

y S

teel

s 14

-

200

S

tain

less

Ste

els

62

- 28

0 N

on-fe

rrou

s A

lum

iniu

m A

lloys

22

-

35

C

oppe

r Allo

ys

30

- 90

Lead

Allo

ys

5 -

15

M

agne

sium

Allo

ys

12

- 18

Nic

kel A

lloys

80

-

110

Ti

tani

um A

lloys

14

-

120

Zi

nc A

lloys

10

-

100

Cer

amic

s

G

lass

esB

oros

ilica

te G

lass

0.

5 -

0.7

G

lass

Cer

amic

1.

4 -

1.7

S

ilica

Gla

ss

0.6

- 0.

8

Sod

a-Li

me

Gla

ss

0.55

-

0.7

Por

ous

Bric

k 1

- 2

C

oncr

ete,

typi

cal

0.35

-

0.45

Sto

ne

0.7

- 1.

5 Te

chni

cal

Alu

min

a 3.

3

4.8

A

lum

iniu

m N

itrid

e 2.

5 -

3.4

B

oron

Car

bide

2.

5 -

3.5

S

ilico

n 0.

83

- 0.

94

S

ilico

n C

arbi

de

2.5

- 5

S

ilico

n N

itrid

e 4

- 6

Tu

ngst

en C

arbi

de

2 -

3.8

Com

posi

tes

Met

al

Alu

min

ium

/Sili

con

Car

bide

15

-

24

Pol

ymer

C

FRP

6.

1 -

88

G

FRP

7

- 23

N

atur

al

B

ambo

o

5 -

7

Cor

k

0.05

-

0.1

Le

athe

r

3 -

5

Woo

d, ty

pica

l (Lo

ngitu

dina

l)

5 -

9

Woo

d, ty

pica

l (Tr

ansv

erse

)

0.5

- 0.

8

KIC

(M

Pa√

m)

Poly

mer

s 1

Ela

stom

er

But

yl R

ubbe

r

0.07

-

0.1

E

VA

0.

5 -

0.7

Is

opre

ne (I

R)

0.

07

- 0.

1

Nat

ural

Rub

ber (

NR

)

0.15

-

0.25

Neo

pren

e (C

R)

0.

1 -

0.3

P

olyu

reth

ane

Ela

stom

ers

(elP

U)

0.

2 -

0.4

S

ilico

ne E

last

omer

s

0.03

-

0.5

Ther

mop

last

ic

AB

S

1.19

-

4.30

Cel

lulo

se P

olym

ers

(CA

)

1 -

2.5

Io

nom

er (I

)

1.14

-

3.43

Nyl

ons

(PA

)

2.22

-

5.62

Pol

ycar

bona

te (P

C)

2.

1 -

4.60

PE

EK

2.

73

- 4.

30

P

olye

thyl

ene

(PE

)

1.44

-

1.72

PE

T

4.5

- 5.

5

Acr

ylic

(PM

MA

)

0.7

- 1.

6

Ace

tal (

PO

M)

1.

71

- 4.

2

Pol

ypro

pyle

ne (P

P)

3

- 4.

5

Pol

ysty

rene

(PS

)

0.7

- 1.

1

Pol

yure

than

e Th

erm

opla

stic

s (tp

PU

) 1.

84

- 4.

97

P

VC

1.

46

- 5.

12

Te

flon

(PTF

E)

1.32

-

1.8

Ther

mos

et

Epo

xies

0.

4 -

2.22

Phe

nolic

s 0.

79

- 1.

21

P

olye

ster

1.

09

- 1.

70

Poly

mer

Foa

ms

Fl

exib

le P

olym

er F

oam

(VLD

) 0.

005

- 0.

02

Fl

exib

le P

olym

er F

oam

(LD

) 0.

015

- 0.

05

Fl

exib

le P

olym

er F

oam

(MD

) 0.

03

- 0.

09

R

igid

Pol

ymer

Foa

m (L

D)

0.

002

- 0.

02

R

igid

Pol

ymer

Foa

m (M

D)

0.

007

- 0.

049

R

igid

Pol

ymer

Foa

m (H

D)

0.

024

- 0.

091

1 For

full

nam

es a

nd a

cron

yms o

f pol

ymer

s – se

e Se

ctio

n V

.

Not

e:IC

K o

nly

valid

for

con

ditio

ns o

f lin

ear

elas

tic f

ract

ure

mec

hani

cs

(see

I. F

orm

ulae

& D

efin

ition

s).

Plan

e St

rain

Tou

ghne

ss,

ICG

, may

be

estim

ated

from

IC

2IC

2 IC1

GE

)/(

GE

K≈

−=

ν (

as

10

2.

≈ν

).

II.5

FR

AC

TUR

E T

OU

GH

NES

S (P

LAN

E S

TRA

IN),

KIC

14

Flammability

Fresh water

Salt water

Sunlight (UV)

Wear resistance

Met

als

Ferr

ous

Cas

t Iro

ns

A

B

C

A

A

H

igh

Car

bon

Ste

els

A

B

C

A

A

M

ediu

m C

arbo

n S

teel

s A

B

C

A

A

Low

Car

bon

Ste

els

A

B

C

A

A

Lo

w A

lloy

Ste

els

A

B

C

A

A

S

tain

less

Ste

els

A

A

A

A

B

Non

-ferr

ous

Alu

min

ium

Allo

ys

B

A

B

A

C

C

oppe

r Allo

ys

A

A

A

A

A

Le

ad A

lloys

A

A

A

A

C

Mag

nesi

um A

lloys

A

A

D

A

C

Nic

kel A

lloys

A

A

A

A

B

Tita

nium

Allo

ys

A

A

A

A

C

Zi

nc A

lloys

A

A

C

A

E

C

eram

ics

Gla

sses

B

oros

ilica

te G

lass

A

B

B

A

A

Gla

ss C

eram

ic

A

A

A

A

A

S

ilica

Gla

ss

A

A

A

A

B

S

oda-

Lim

e G

lass

A

A

A

A

A

P

orou

s B

rick,

Con

cret

e, S

tone

A

A

A

A

C

Te

chni

cal

Alu

min

a

A

A

A

A

A

A

lum

iniu

m N

itrid

e

A

A

A

A

A

B

oron

Car

bide

A

A

A

A

A

Sili

con

A

A

B

A

B

Sili

con

Car

bide

A

A

A

A

A

Sili

con

Nitr

ide

A

A

A

A

A

Tung

sten

Car

bide

A

A

A

A

A

C

ompo

site

s

M

etal

A

lum

iniu

m/S

ilico

n C

arbi

de

A

A

B

A

B

Pol

ymer

C

FRP

B

A

A

B

C

GFR

P

B

A

A

B

C

Nat

ural

Bam

boo

D

C

C

B

D

C

ork

D

B

B

A

B

Le

athe

r D

B

B

B

B

Woo

d D

C

C

B

D

Flammability

Fresh water

Salt water

Sunlight (UV)

Wear resistance

Poly

mer

s 1

Ela

stom

er

But

yl R

ubbe

r E

A

A

B

B

EV

A

E

A

A

B

B

Is

opre

ne (I

R)

E

A

A

B

B

N

atur

al R

ubbe

r (N

R)

E

A

A

B

B

N

eopr

ene

(CR

) E

A

A

B

B

Pol

yure

than

e E

last

omer

s (e

lPU

) E

A

A

B

B

Sili

cone

Ela

stom

ers

B

A

A

B

B

Ther

mop

last

ic

AB

S

D

A

A

C

D

C

ellu

lose

Pol

ymer

s (C

A)

D

A

A

B

C

Io

nom

er (I

) D

A

A

B

C

Nyl

ons

(PA

) C

A

A

C

C

Pol

ycar

bona

te (P

C)

B

A

A

B

C

P

EE

K

B

A

A

A

C

P

olye

thyl

ene

(PE

) D

A

A

D

C

PE

T D

A

A

B

C

Acr

ylic

(PM

MA

) D

A

A

A

C

Ace

tal (

PO

M)

D

A

A

C

B

P

olyp

ropy

lene

(PP

) D

A

A

D

C

Pol

ysty

rene

(PS

) D

A

A

C

D

Pol

yure

than

e Th

erm

opla

stic

s (tp

PU

) C

A

A

B

C

PV

C

A

A

A

A

C

Te

flon

(PTF

E)

A

A

A

B

B

Ther

mos

et

Epo

xies

B

A

A

B

C

Phe

nolic

s B

A

A

A

C

Pol

yest

er

D

A

A

A

C

Poly

mer

Foa

ms

Fl

exib

le P

olym

er F

oam

s E

A

A

C

D

Rig

id P

olym

er F

oam

s C

A

A

B

E

1 F

or fu

ll na

mes

and

acr

onym

s of p

olym

ers –

see

Sect

ion

V.

Ran

king

:

A =

ver

y go

od; B

= g

ood;

C =

ave

rage

; D =

poo

r; E

= ve

ry p

oor.

II.6

EN

VIR

ON

MEN

TAL

RES

ISTA

NC

E

15

II.7 UNIAXIAL TENSILE RESPONSE OF SELECTED METALS & POLYMERS

Figure 2.1 Tensile response of some common metals

Figure 2.2 Tensile response of some common polymers

16

III. MATERIAL PROPERTY CHARTS

III.1 YOUNG’S MODULUS – DENSITY

Figure 3.1: Young’s modulus, E , against density, ρ . The design guide-lines assist in selection of materials for minimum weight, stiffness-limited design.

17

III.2 STRENGTH – DENSITY

Figure 3.2: Failure strength, fσ , against density, ρ . Failure strength is defined as the tensile

elastic limit (usually yield stress) for all materials other than ceramics, for which it is the compressive strength. The design guide-lines assist in selection of materials for minimum weight, strength-limited design.

18

III.3 YOUNG’S MODULUS – STRENGTH

Figure 3.3: Young’s modulus, E , against failure strength, fσ . Failure strength is defined as

the tensile elastic limit (usually yield stress) for all materials other than ceramics, for which it is the compressive strength. The design guide-lines assist in the selection of materials for maximum stored energy, volume-limited design.

19

III.4 FRACTURE TOUGHNESS – STRENGTH

Figure 3.4: Fracture toughness (plane strain), ICK , against failure strength, fσ . Failure

strength is defined as the tensile elastic limit (usually yield stress) for all materials other than ceramics, for which it is the compressive strength. The contours show 22

fIC /K πσ , which is

approximately the diameter of the process zone at a crack tip. Valid application of linear elastic fracture mechanics using K requires that the specimen and crack dimensions are large compared to this process zone. The design guide-lines are used in selecting materials for damage tolerant design.

20

III.5 MAXIMUM SERVICE TEMPERATURE

Figure 3.5: Maximum service temperature. The shaded bars extend to the maximum service temperature – materials may be used safely for all temperatures up to this value, without significant property degradation. (Note: there is a modest range of maximum service temperature in a given material class – not all variants within a class may be used up to the temperature shown, so caution should be exercised if a material appears close to its limit). NB: For full names and acronyms of polymers – see Section V.

21

III.6 MATERIAL PRICE (PER KG)

Figure 3.6: Material price (per kg), mC (2003 data). mC represents raw material price/kg, and does not include manufacturing or end-of-life costs.

NB: For full names and acronyms of polymers – see Section V.

22

IV.

PR

OC

ES

S A

TTR

IBU

TE C

HA

RTS

IV.1

M

ATE

RIA

L –

PRO

CES

S C

OM

PATI

BIL

ITY

MA

TRIX

(SH

API

NG

) Fi

gure

4.1

a:

Met

als

M

etal

s

Sand Casting

Die Casting

Investment Casting

Rolling/ Forging

Extrusion

Sheet Forming

Powder Methods

Machining

Ferr

ous

Cas

t Iro

ns

M

ediu

m/H

igh

Car

bon

Ste

els

Lo

w C

arbo

n S

teel

s

Low

Allo

y/S

tain

less

Ste

els

Non

-ferr

ous

Alu

min

ium

, Cop

per,

Lead

, M

agne

sium

, Zin

c A

lloys

N

icke

l Allo

ys

Ti

tani

um A

lloys

Figu

re 4

.1b:

Po

lym

ers

and

Foam

s

Poly

mer

s

Machining

Injection Moulding

Blow Moulding

Compression Moulding

Rotational Moulding

Polymer Casting

Composite Forming

Elas

tom

ers

Th

erm

opla

stic

s

Ther

mos

ets

Poly

mer

Foa

ms

Not

es o

n ot

her m

ater

ials

:

Cer

amic

s ar

e al

l pro

cess

ed b

y po

wde

r met

hods

, and

G

lass

es a

re a

lso

mou

lded

. B

oth

are

diff

icul

t to

m

achi

ne.

Poly

mer

C

ompo

site

s ar

e sh

aped

by

de

dica

ted

form

ing

tech

niqu

es, a

nd a

re d

iffic

ult t

o m

achi

ne.

Nat

ural

Mat

eria

ls c

an o

nly

be m

achi

ned,

tho

ugh

som

e w

oods

are

als

o ho

t for

med

.

23

IV.2 MASS

Figure 4.2: Process attribute chart for shaping processes: mass range (kg)

IV.3 SECTION THICKNESS

Figure 4.3: Process attribute chart for shaping processes: section thickness (m)

Sand casting

Die casting

Investment Casting

Rolling/Forging

Extrusion

Sheet forming

Powder methods

Machining

Injection moulding

Blow moulding

Compression moulding

Rotational moulding

Polymer casting

Composite forming

10-3 10-2 0.1 1 10 102 103 104

Mass (kg)

Met

al s

hapi

ng

Cer

amic

shap

ing

Poly

mer

and

com

posi

te s

hapi

ng

Sand casting

Die casting

Investment Casting

Rolling/Forging

Extrusion

Sheet forming

Powder methods

Machining

Injection moulding

Blow moulding

Compression moulding

Rotational moulding

Polymer casting

Composite forming

10-4 10-3 10-2 0.1 1Section thickness (m)

Met

al s

hapi

ng

Cer

amic

shap

ing

Poly

mer

and

com

posi

te s

hapi

ng

24

IV.4 SURFACE ROUGHNESS

Figure 4.4: Process attribute chart for shaping processes: surface roughness (µm)

IV.5 DIMENSIONAL TOLERANCE

Figure 4.5: Process attribute chart for shaping processes: dimensional tolerance (mm)

Sand casting

Die casting

Investment Casting

Rolling/Forging

Extrusion

Sheet forming

Powder methods

Machining

Injection moulding

Blow moulding

Compression moulding

Rotational moulding

Polymer casting

Composite forming

0.1 1 10 102

Roughness (µm)

Met

al s

hapi

ng

Cer

amic

shap

ing

Poly

mer

and

com

posi

te s

hapi

ng

Sand casting

Die casting

Investment Casting

Rolling/Forging

Extrusion

Sheet forming

Powder methods

Machining

Injection moulding

Blow moulding

Compression moulding

Rotational moulding

Polymer casting

Composite forming

10-2 0.1 1 10Tolerance (mm)

Met

al s

hapi

ng

Cer

amic

shap

ing

Poly

mer

and

com

posi

te s

hapi

ng

25

IV.6 ECONOMIC BATCH SIZE

Figure 4.6: Process attribute chart for shaping processes: economic batch size

Sand casting

Die casting

Investment Casting

Rolling/Forging

Extrusion

Sheet forming

Powder methods

Machining

Injection moulding

Blow moulding

Compression moulding

Rotational moulding

Polymer casting

Composite forming

Met

al s

hapi

ng

Cer

amic

shap

ing

Poly

mer

and

com

posi

te s

hapi

ng

1 10 102 103 104 105 106 107

Economic batch size (units)

26

V.

CLA

SS

IFIC

ATI

ON

AN

D A

PP

LIC

ATI

ON

S O

F E

NG

INE

ER

ING

MA

TER

IALS

V.1

MET

ALS

: FE

RR

OU

S A

LLO

YS, N

ON

-FER

RO

US

ALL

OYS

Met

als

A

pplic

atio

ns

Ferr

ous

Cas

t Iro

ns

Aut

omot

ive

parts

, eng

ine

bloc

ks, m

achi

ne to

ol s

truct

ural

par

ts, l

athe

bed

s

Hig

h C

arbo

n S

teel

s C

uttin

g to

ols,

spr

ings

, bea

rings

, cra

nks,

sha

fts, r

ailw

ay tr

ack

M

ediu

m C

arbo

n S

teel

s G

ener

al m

echa

nica

l eng

inee

ring

(tool

s, b

earin

gs, g

ears

, sha

fts, b

earin

gs)

Lo

w C

arbo

n S

teel

s S

teel

stru

ctur

es (

“mild

ste

el”)

– b

ridge

s, o

il rig

s, s

hips

; rei

nfor

cem

ent f

or c

oncr

ete;

aut

omot

ive

parts

, ca

r bod

y pa

nels

; gal

vani

sed

shee

t; pa

ckag

ing

(can

s, d

rum

s)

Lo

w A

lloy

Ste

els

Spr

ings

, too

ls, b

all b

earin

gs, a

utom

otiv

e pa

rts (g

ears

con

nect

ing

rods

etc

)

Sta

inle

ss S

teel

s Tr

ansp

ort,

chem

ical

and

foo

d pr

oces

sing

pla

nt,

nucl

ear

plan

t, do

mes

tic w

are

(cut

lery

, w

ashi

ng

mac

hine

s, s

tove

s),

surg

ical

impl

emen

ts, p

ipes

, pre

ssur

e ve

ssel

s, li

quid

gas

con

tain

ers

Non

-ferr

ous

Alu

min

ium

Allo

ys

C

astin

g A

lloys

A

utom

otiv

e pa

rts (c

ylin

der b

lock

s), d

omes

tic a

pplia

nces

(iro

ns)

Non

-hea

t-tre

atab

le A

lloys

E

lect

rical

con

duct

ors,

hea

t ex

chan

gers

, fo

il, t

ubes

, sa

ucep

ans,

bev

erag

e ca

ns,

light

wei

ght

ship

s,

arch

itect

ural

pan

els

Hea

t-tre

atab

le A

lloys

A

eros

pace

eng

inee

ring,

aut

omot

ive

bodi

es a

nd p

anel

s, li

ghtw

eigh

t stru

ctur

es a

nd s

hips

Cop

per A

lloys

E

lect

rical

co

nduc

tors

an

d w

ire,

elec

troni

c ci

rcui

t bo

ards

, he

at

exch

ange

rs,

boile

rs,

cook

war

e,

coin

age,

scu

lptu

res

Le

ad A

lloys

R

oof a

nd w

all c

ladd

ing,

sol

der,

X-r

ay s

hiel

ding

, bat

tery

ele

ctro

des

M

agne

sium

Allo

ys

Auto

mot

ive

cast

ings

, w

heel

s, g

ener

al l

ight

wei

ght

cast

ings

for

tra

nspo

rt, n

ucle

ar f

uel

cont

aine

rs;

prin

cipa

l allo

ying

add

ition

to A

lum

iniu

m A

lloys

Nic

kel A

lloys

G

as tu

rbin

es a

nd je

t eng

ines

, the

rmoc

oupl

es, c

oina

ge;

allo

ying

add

ition

to a

uste

nitic

sta

inle

ss s

teel

s

Tita

nium

Allo

ys

Airc

raft

turb

ine

blad

es; g

ener

al s

truct

ural

aer

ospa

ce a

pplic

atio

ns; b

iom

edic

al im

plan

ts.

Zi

nc A

lloys

D

ie c

astin

gs (a

utom

otiv

e, d

omes

tic a

pplia

nces

, toy

s, h

andl

es);

coat

ing

on g

alva

nise

d st

eel

27

V.2

PO

LYM

ERS

AN

D F

OA

MS

Poly

mer

s

Abb

revi

atio

n A

pplic

atio

ns

Elas

tom

erB

utyl

Rub

ber

Ty

res,

sea

ls, a

nti-v

ibra

tion

mou

ntin

gs, e

lect

rical

insu

latio

n, tu

bing

Eth

ylen

e-vi

nyl-a

ceta

te

EV

A

Bag

s, fi

lms,

pac

kagi

ng, g

love

s, in

sula

tion,

runn

ing

shoe

s

Isop

rene

IR

Ty

res,

inne

r tub

es, i

nsul

atio

n, tu

bing

, sho

es

N

atur

al R

ubbe

r N

R

Glo

ves,

tyre

s, e

lect

rical

insu

latio

n, tu

bing

Pol

ychl

orop

rene

(Neo

pren

e)

CR

W

etsu

its, O

-rin

gs a

nd s

eals

, foo

twar

e

Pol

yure

than

e E

last

omer

s

el-P

U

Pac

kagi

ng, h

oses

, adh

esiv

es, f

abric

coa

ting

S

ilico

ne E

last

omer

s

E

lect

rical

insu

latio

n, e

lect

roni

c en

caps

ulat

ion,

med

ical

impl

ants

Th

erm

opla

stic

Acr

ylon

itrile

but

adie

ne s

tyre

ne

AB

S

Com

mun

icat

ion

appl

ianc

es, a

utom

otiv

e in

terio

rs, l

ugga

ge, t

oys,

boa

ts

C

ellu

lose

Pol

ymer

s C

A

Tool

and

cut

lery

han

dles

, dec

orat

ive

trim

, pen

s

Iono

mer

I

Pac

kagi

ng, g

olf b

alls

, blis

ter p

acks

, bot

tles

P

olya

mid

es (N

ylon

s)

PA

G

ears

, bea

rings

; plu

mbi

ng, p

acka

ging

, bot

tles,

fabr

ics,

text

iles,

rope

s

Pol

ycar

bona

te

PC

S

afet

y go

ggle

s, s

hiel

ds, h

elm

ets;

ligh

t fitt

ings

, med

ical

com

pone

nts

P

olye

ther

ethe

rket

one

P

EE

K

Ele

ctric

al c

onne

ctor

s, ra

cing

car

par

ts, f

ibre

com

posi

tes

P

olye

thyl

ene

P

E

Pac

kagi

ng, b

ags,

squ

eeze

tube

s, to

ys, a

rtific

ial j

oint

s

Pol

yeth

ylen

e te

reph

thal

ate

PE

T B

low

mou

lded

bot

tles,

film

, aud

io/v

ideo

tape

, sai

ls

P

olym

ethy

l met

hacr

ylat

e (A

cryl

ic)

PM

MA

A

ircra

ft w

indo

ws,

lens

es, r

efle

ctor

s, li

ghts

, com

pact

dis

cs

P

olyo

xym

ethy

lene

(Ace

tal)

P

OM

Zi

ps, d

omes

tic a

nd a

pplia

nce

parts

, han

dles

Pol

ypro

pyle

ne

PP

R

opes

, gar

den

furn

iture

, pip

es, k

ettle

s, e

lect

rical

insu

latio

n, a

stro

turf

P

olys

tyre

ne

PS

To

ys, p

acka

ging

, cut

lery

, aud

io c

asse

tte/C

D c

ases

Pol

yure

than

e Th

erm

opla

stic

s

tp-P

U

Cus

hion

ing,

sea

ting,

sho

e so

les,

hos

es, c

ar b

umpe

rs, i

nsul

atio

n

Pol

yvin

ylch

lorid

e P

VC

P

ipes

, gut

ters

, win

dow

fram

es, p

acka

ging

Pol

ytet

raflu

oroe

thyl

ene

(Tef

lon)

P

TFE

N

on-s

tick

coat

ings

, bea

rings

, ski

s, e

lect

rical

insu

latio

n, ta

pe

Ther

mos

etE

poxi

es

A

dhes

ives

, fib

re c

ompo

site

s, e

lect

roni

c en

caps

ulat

ion

P

heno

lics

E

lect

rical

plu

gs, s

ocke

ts, c

ookw

are,

han

dles

, adh

esiv

es

P

olye

ster

Furn

iture

, boa

ts, s

ports

goo

ds

Poly

mer

Foa

ms

Flex

ible

Pol

ymer

Foa

m

P

acka

ging

, buo

yanc

y, c

ushi

onin

g, s

pong

es, s

leep

ing

mat

s

Rig

id P

olym

er F

oam

Ther

mal

insu

latio

n, s

andw

ich

pane

ls, p

acka

ging

, buo

yanc

y

28

V.3

CO

MPO

SITE

S, C

ERA

MIC

S, G

LASS

ES A

ND

NA

TUR

AL

MA

TER

IALS

Com

posi

tes

A

pplic

atio

ns

Met

alA

lum

iniu

m/S

ilico

n C

arbi

de

Aut

omot

ive

parts

, spo

rts g

oods

Po

lym

erC

FRP

Li

ghtw

eigh

t stru

ctur

al p

arts

(aer

ospa

ce, b

ike

fram

es, s

ports

goo

ds, b

oat h

ulls

and

oar

s, s

prin

gs)

G

FRP

B

oat h

ulls

, aut

omot

ive

parts

, che

mic

al p

lant

Cer

amic

s

G

lass

esB

oros

ilica

te G

lass

O

venw

are,

labo

rato

ry w

are,

hea

dlig

hts

Gla

ss C

eram

ic

Coo

kwar

e, la

sers

, tel

esco

pe m

irror

s S

ilica

Gla

ss

Hig

h pe

rform

ance

win

dow

s, c

ruci

bles

, hig

h te

mpe

ratu

re a

pplic

atio

ns

Sod

a-Li

me

Gla

ss

Win

dow

s, b

ottle

s, tu

bing

, lig

ht b

ulbs

, pot

tery

gla

zes

Poro

usB

rick

Bui

ldin

gs

Con

cret

e G

ener

al c

ivil

engi

neer

ing

cons

truct

ion

Sto

ne

Bui

ldin

gs, a

rchi

tect

ure,

scu

lptu

re

Tech

nica

lA

lum

ina

Cut

ting

tool

s, s

park

plu

gs, m

icro

circ

uit s

ubst

rate

s, v

alve

s A

lum

iniu

m N

itrid

e M

icro

circ

uit s

ubst

rate

s an

d he

atsi

nks

Bor

on C

arbi

de

Ligh

twei

ght a

rmou

r, no

zzle

s, d

ies,

pre

cisi

on to

ol p

arts

S

ilico

n M

icro

circ

uits

, sem

icon

duct

ors,

pre

cisi

on in

stru

men

ts, I

R w

indo

ws,

ME

MS

S

ilico

n C

arbi

de

Hig

h te

mpe

ratu

re e

quip

men

t, ab

rasi

ve p

olis

hing

grit

s, b

earin

gs, a

rmou

r S

ilico

n N

itrid

e B

earin

gs, c

uttin

g to

ols,

die

s, e

ngin

e pa

rts

Tung

sten

Car

bide

C

uttin

g to

ols,

dril

ls, a

bras

ives

Nat

ural

Bam

boo

B

uild

ing,

sca

ffold

ing,

pap

er, r

opes

, bas

kets

, fur

nitu

re

C

ork

C

orks

and

bun

gs, s

eals

, flo

ats,

pac

kagi

ng, f

loor

ing

Le

athe

r

Sho

es, c

loth

ing,

bag

s, d

rive-

belts

Woo

d C

onst

ruct

ion,

floo

ring,

doo

rs, f

urni

ture

, pac

kagi

ng, s

ports

goo

ds

29

VI. EQUILIBRIUM (PHASE) DIAGRAMS

Figure 6.1 Copper – Nickel equilibrium diagram

Figure 6.2 Lead – Tin equilibrium diagram

30

Figure 6.3 Iron – Carbon equilibrium diagram

Figure 6.4 Aluminium – Copper equilibrium diagram

31

Figure 6.5 Aluminium – Silicon equilibrium diagram

Figure 6.6 Copper – Zinc equilibrium diagram

32

Figure 6.7 Copper – Tin equilibrium diagram

Figure 6.8 Titanium – Aluminium equilibrium diagram

33

Figure 6.9 Silica – Alumina equilibrium diagram

34

Figure 7.1 Isothermal transformation diagram for 1% nickel steel, BS503M40 (En12)

Figure 7.2 Jominy end quench curves for 1% nickel steel, BS503M40 (En12)

VII. HEAT TREATMENT OF STEELS

35

Figure 7.3 Isothermal transformation diagram for 1.5% Ni – Cr – Mo steel, BS817M40 (En24)

Figure 7.2 Jominy end quench curves for 1.5% Ni – Cr – Mo steel, BS817M40 (En24)

36

VIII. PHYSICAL PROPERTIES OF SELECTED ELEMENTS

ATOMIC PROPERTIES OF SELECTED ELEMENTS

Lattice constants 3 (at 20oC)Element Symbol Atomic Number

Relative Atomic

Weight 1

Melting Point (oC)

Crystal structure 2(at 20oC) a, (b) (Å) c (Å)

Aluminium Al 13 26.982 660 f.c.c. 4.0496 Beryllium Be 4 9.012 1280 h.c.p. 2.2856 3.5843

Boron B 5 10.811 2300 t. 8.73 5.03 Carbon C 6 12.011 3500 hex. 2.4612 6.7079 Chlorine Cl 17 35.453 – 101 – –

Chromium Cr 24 51.996 1900 b.c.c. 2.8850 Copper Cu 29 63.54 1083 f.c.c. 2.5053

Germanium Ge 32 72.59 958 d. 5.6575 Gold Au 79 196.967 1063 f.c.c. 4.0786

Hydrogen H 1 1.008 – 259 – – Iron Fe 26 55.847 1534 b.c.c. 2.8663 Lead Pb 82 207.19 327 f.c.c. 4.9505

Magnesium Mg 12 24.312 650 h.c.p. 3.2094 5.2103 Manganese Mn 25 54.938 1250 cub. 8.912 Molybdenum Mo 42 95.94 2620 b.c.c. 3.1468

Nickel Ni 28 58.71 1453 f.c.c. 3.5241 Niobium Nb 41 92.906 2420 b.c.c. 3.3007 Nitrogen N 7 14.007 – 210 – – Oxygen O 8 15.999 – 219 – –

Phosphorus P 15 30.974 44 cub. 7.17 ( at – 35oC) Silicon Si 14 28.086 1414 d. 5.4305 Silver Ag 47 107.870 961 f.c.c. 4.0862

Sulphur S 16 32.064 119 f.c.orth. 10.437, (12.845) 24.369 Tin Sn 50 118.69 232 b.c.t. 5.8313 3.1812

Titanium Ti 22 47.90 1670 h.c.p. 2.9504 4.6833 Tungsten W 74 183.85 3380 b.c.c. 3.1652 Vanadium V 23 50.942 1920 b.c.c. 3.0282

Zinc Zn 30 65.37 419 h.c.p. 2.6649 4.9468 Zirconium Zr 40 91.22 1850 h.c.p. 3.2312 5.1476

1 The values of atomic weight are those in the Report of the International Commission on

Atomic Weights (1961). The unit is 1/12th of the mass of an atom of C12. 2 f.c.c. = face-centred cubic; h.c.p. = hexagonal close-packed; b.c.c. = body-centred cubic;

t. = tetragonal; hex. = hexagonal; d. = diamond structure; cub. = cubic; f.c.orth. = face-centred orthorhombic; b.c.t. = body-centred tetragonal.

3 Lattice constants are in Ångström units (1 Å = 10–10 m)

37

St

anda

rd e

lect

rode

pot

entia

ls (

300K

, mol

ar s

olut

ions

)

Oxi

datio

n re

actio

n fo

r sol

utio

n of

the

met

al

Nor

mal

hyd

roge

n sc

ale

(vol

ts)

Mg

→ M

g2+ +

2e–

– 2.

36

Al →

Al3+

+ 3

e– –

1.66

Zn →

Zn2+

+ 2

e– –

0.76

Cr →

Cr3+

+ 3

e– –

0.74

Fe →

Fe2+

+ 2

e– –

0.44

Ni →

Ni2+

+ 2

e– –

0.25

Sn

→ S

n2+ +

2e–

– 0.

14

Pb

→ P

b2+ +

2e–

– 0.

13

H2 →

2H

+ + 2

e– 0.

00

Sn2+

→ S

n4+ +

2e–

+ 0.

15

Cu

→ C

u2+ +

2e–

+ 0.

34

O2 +

2H

2O +

4e–

→ 4

(OH

)– +

0.40

Fe2+

→ F

e3+ +

e–

+ 0.

77

Ag

→ A

g+ + e

– +

0.80

2H2O

→ O

2 + 4

H+

+ 4e

– +

1.23

Au

→ A

u3+ +

3e–

+ 1.

42

Free

ene

rgy

of o

xida

tion

(at 2

73K

)

Mat

eria

l O

xide

Fr

ee e

nerg

y (k

J/m

ol O

2)

Ber

ylliu

m

BeO

1182

M

agne

sium

M

gO

– 11

62

Alu

min

ium

A

l 2O3

– 10

45

Zirc

oniu

m

ZrO

2 –1

028

Tita

nium

Ti

O

– 84

8 S

ilicon

S

iO2

– 83

6 N

iobi

um

Nb 2

O5

– 75

7 C

hrom

ium

C

r 2O

3 –

701

Zinc

Zn

O

– 63

6 S

ilico

n ni

tride

3

SiO

2 + 2

N2

– 62

9 S

ilico

n ca

rbid

e S

iO2 +

CO

2 –

580

Mol

ybde

num

M

oO2

– 53

4 Tu

ngst

en

WO

3 –

510

Iron

Fe3O

4 –

508

Nic

kel

NiO

439

Mos

t pol

ymer

s –

– 40

0 D

iam

ond,

gra

phite

C

O2

– 38

9 Le

ad

Pb 3

O4

– 30

9 C

oppe

r C

uO

– 25

4 G

FRP

– 20

0 S

ilver

A

g 2O

5 G

old

Au 2

O3

+ 80

OXI

DA

TIO

N P

RO

PER

TIES

OF

SEL

ECTE

D E

LEM

ENTS

38

0

CONVERSION OF UNITS – STRESS, PRESSURE AND ELASTIC MODULUS *

MN/m2 (or MPa) lb/in2 kgf/mm2 bar

MN/m2 (or MPa) 1 1.45 x 102 0.102 10 lb/in2 6.89 x 10–3 1 7.03 x 10–4 6.89 x 10–2

kgf/mm2 9.81 1.42 x 103 1 98.1 bar 0.10 14.48 1.02 x 10–2 1

CONVERSION OF UNITS – ENERGY *

J cal eV ft lbf J 1 0.239 6.24 x 1018 0.738

cal 4.19 1 2.61 x 1019 3.09 eV 1.60 x 10–19 3.83 x 10–20 1 1.18 x 10–19

ft lbf 1.36 0.324 8.46 x 1018 1

CONVERSION OF UNITS – POWER *

kW (kJ/s) hp ft lbf/s kW (kJ/s) 1 1.34 7.38 x 102

hp 0.746 1 5.50 x 102

ft lbf/s 1.36 x 10–3 1.82 x 10–3 1

* To convert row unit to column unit, multiply by the number at the column-row intersection, thus

1 MN/m2 = 10 bar